
crystals

Review

Review of Size Effects during Micropillar
Compression Test: Experiments and
Atomistic Simulations

Sharif Shahbeyk 1, George Z. Voyiadjis 2,*, Vahid Habibi 3, Sarah Hashemi Astaneh 4 and
Mohammadreza Yaghoobi 5,*

1 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Jalal Ale Ahmad Highway,
P.O. Box 14115-143, Tehran, Iran

2 Computational Solid Mechanics Laboratory, Department of Civil and Environmental Engineering,
Louisiana State University, Baton Rouge, LA 70803, USA

3 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
4 Chemical Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA
5 Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
* Correspondence: voyiadjis@eng.lsu.edu (G.Z.V.); yaghoobi@umich.edu (M.Y.)

Received: 17 October 2019; Accepted: 8 November 2019; Published: 10 November 2019
����������
�������

Abstract: The micropillar compression test is a novel experiment to study the mechanical properties
of materials at small length scales of micro and nano. The results of the micropillar compression
experiments show that the strength of the material depends on the pillar diameter, which is commonly
termed as size effects. In the current work, first, the experimental observations and theoretical models
of size effects during micropillar compression tests are reviewed in the case of crystalline metals. In the
next step, the recent computer simulations using molecular dynamics are reviewed as a powerful tool
to investigate the micropillar compression experiment and its governing mechanisms of size effects.
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1. Introduction

The current work reviews the size effects, during micropillar compression experiments. Size effect
is the change in mechanical properties of the sample as its characteristic length varies. The metallic
structures of confined volumes have many applications spanning from thin films in the electrical
industry to bio applications, and the understanding of the effects of sample size is gaining a lot of
attention among researchers [1–6]. The focus of this work is on the governing mechanisms of size
effects for crystalline metals during micropillar compression tests. The micropillar compression test
was introduced by Uchic and his coworkers [7–9]. They used the focused ion beam (FIB) machining
to prepare pillars with diameters in the order of microns and smaller. A very apparent size effect
was observed in a way that reducing the pillar diameter to 0.5 µm leads to strength increase up to 15
times of the bulk strength. Following that, many experimental studies have been conducted using
the same technique to address the size effects in materials (see, e.g., [2–4]). One interesting aspect
of micropillar compression tests is, unlike the nanoindentation experiment that includes the strain
gradients [10], there is no strain gradient during this test. Accordingly, the size effects mechanisms can
be investigated independent of the size effects induced by such strain gradient. Papanikolaou et al. [11]
reviewed the experimental and numerical studies of dislocation avalanche that leads to strain bursts in
crystal plasticity.

One way to address the size effects in crystalline metal during the micropillar compression
experiment is to model the sample with full atomistic details using molecular dynamics (MD).
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The simulation results can be used along with the experimental results to extract the underlying
mechanism of size effects [12–21]. MD simulation has its own limitations of time and length scales.
Nowadays, by developing supercomputers and efficient numerical algorithms, samples with the length
scale on the order of microns can be captured using atomistic simulations [21–23]. However, when
it comes to the time scale, the simulation times are much shorter than the experiment, which leads
to higher strain rates during the MD simulation. Accordingly, understanding the coupling effects of
strain rate and sample size is essential to interpret the results obtained from the atomistic simulation.
Voyiadjis and Yaghoobi [24] reviewed the atomistic simulation studies on governing mechanisms of
size effects.

The current work reviews the size effects in crystalline metals during micropillar compression
tests. The governing mechanisms of size effect are the focus of the current work. In the first step,
available experimental results for samples with different crystal structures of FCC, BCC, and HCP
are presented. Accordingly, the observed size effects will be elaborated for each crystal structure.
Three size effects mechanisms of source truncation, source exhaustion, and weakest link theory are
elaborated to explain the observed size effects. In the next step, the methodology and framework of
MD simulation of crystalline metals during micropillar compression test are presented. The available
results of MD simulation are incorporated to investigate the presented size effects’ mechanisms.
MD simulation captures different size effects’ mechanisms including dislocation starvation, source
exhaustion, and forest hardening mechanisms. The results showed that the governing mechanisms of
size effects depend on the size of the pillar in a way that the mechanisms changed from dislocation
starvation, which is a special subset of source exhaustion mechanism, for very small samples to the
forest hardening mechanism for larger samples. Another aspect that is addressed here is to study the
coupling effects of size and strain rate during the micropillar compression experiment. The results
show that, as the strain rate increases, less size effects will be observed. The observed trend can justify
why the observed size effects in MD simulation is different from those of the quasi-static experiments.

2. Experimental Observations

Inspired by the uniaxial compression test of bulk samples, Uchic and his coworkers [7–9] combined
the focused-ion-beam (FIB) milling and flattened-tip nanoindentation to assess the in situ deformation
plasticity of micron/submicron sized pillars of pure Ni and Ni super alloy at room temperature
(Figure 1). Uchic and his coworkers [7–9] reported the variation of stress–strain curves as the pillar
diameter changes and observed that the yield stress inversely depends on sample size. For instance,
Figure 2 shows that the yield stress of a 0.5 µm Ni3Al-Ta pillar is more than one order larger than
that of the bulk sample. Following that, this technique has become very popular for studying the size
effects in different materials.

The original finding of Uchic and his coworkers [7–9] confirmed that both extrinsic and
intrinsic length scales should be simultaneously considered to explain the size effects in crystalline
materials. This opened a new era in the field of mechanical metallurgy and triggered an avalanche of
researches aim at exploring the effect of samples size on the uniaxial stress–strain curves of different
classes of materials raging from face centered cubic (FCC), body centered cubic (BCC), hexagonal
close-packed (HCP), tetragonal metals, to shape memory alloys, metallic glasses, and nanocrystalline
materials. Uchic et al. [2] reviewed the relevant literature on the pillar compression tests of metals
with FCC, BCC, and HCP crystal structures and discussed the required experimental procedures and
challenges including the nonuniform stress distribution along the slightly tapered FIB-machined pillars,
the presence of FIB-irradiation damaged layer, the confinement provided by the elastic substrate, and
the plastic instability of micropillars. They also put forward some possible governing mechanisms for
the observed smaller-being-stronger size effect. After Uchic et al. [2], other groups have also reviewed
the size effects and deformation mechanisms in metallic micro/nano-sized pillars (Kraft et al. [4] and
Greer and De Hosson [3]).
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Figure 1. The images of Ni super alloy pillars prepared by focused-ion-beam milling: (a) A Ni3(Al, 
Hf) single crystal pillar with the diameter of 43 μm; (b) a single-crystal Ni super alloy (UM-F19) pillar 
with the diameter of 2.3 μm (after Uchic et al. [7]). 

 

Figure 2. Stress–strain curves of bulk and micron sized Ni3Al-Ta pillars under uniaxial compression 
at room temperature (after Uchic et al. [9]). 

 In this section, the uniaxial compressive micropillar test results of the FCC, BCC, and HCP crystal 
structures are presented and discussed in more detail. Among them, most of the earlier studies were 
devoted to the FCC crystals. The key reasons behind this tendency were twofold as, first, there exists 
good knowledge around the dislocation mechanisms associated with the bulk and whisker samples 
of FCC metals, and, second, Au has been favorable since it is not trivial at all to interpret micropillar 
test results in the presence of interfering oxide layers. The measured yield or flow stress, i.e., 𝜎, of 
FCC micropillar samples showed a strong size dependency of the following power law function of 
the pillar diameter, i.e., 𝐷, 𝜎 = 𝐴𝐷ି௡, (1) 

where 𝐴 is a constant and 𝑛 is the power law exponent. 
In order to remove the effect of sample’s texture, one should consider the critical resolved shear 

stress, i.e., CRSS, instead of the flow stress. In Figure 3, the critical resolved shear stress normalized 
by the shear modulus, 𝜇, of a broad range of micro/nano-sized FCC metallic pillars are extracted 
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Figure 1. The images of Ni super alloy pillars prepared by focused-ion-beam milling: (a) A Ni3(Al, Hf)
single crystal pillar with the diameter of 43 µm; (b) a single-crystal Ni super alloy (UM-F19) pillar with
the diameter of 2.3 µm (after Uchic et al. [7]).
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Figure 2. Stress–strain curves of bulk and micron sized Ni3Al-Ta pillars under uniaxial compression at
room temperature (after Uchic et al. [9]).

In this section, the uniaxial compressive micropillar test results of the FCC, BCC, and HCP crystal
structures are presented and discussed in more detail. Among them, most of the earlier studies were
devoted to the FCC crystals. The key reasons behind this tendency were twofold as, first, there exists
good knowledge around the dislocation mechanisms associated with the bulk and whisker samples
of FCC metals, and, second, Au has been favorable since it is not trivial at all to interpret micropillar
test results in the presence of interfering oxide layers. The measured yield or flow stress, i.e., σ, of
FCC micropillar samples showed a strong size dependency of the following power law function of the
pillar diameter, i.e., D,

σ = AD−n, (1)

where A is a constant and n is the power law exponent.
In order to remove the effect of sample’s texture, one should consider the critical resolved shear

stress, i.e., CRSS, instead of the flow stress. In Figure 3, the critical resolved shear stress normalized by
the shear modulus, µ, of a broad range of micro/nano-sized FCC metallic pillars are extracted from the
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literature and plotted against the sample diameter normalized by the Burgers vector, b. It can be seen
that a reasonable fit of the following form can be achieved for n = ∼ 0.64:

CRSS
µ

= A
(D

b

)−n
. (2)

The calculated exponent is almost identical to those obtained by Uchic et al. [2] and Greer and De
Hosson [3].
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Figure 3. Variation of the critical resolved shear stress normalized by the shear modulus versus
the sample diameter normalized by the Burgers vector in FCC metals. The original experimental
data have been reported by Dimiduk et al. [25], Greer et al. [26], Greer and Nix [27], Volkert and
Lilleodden [28], Kiener et al. [29], Kraft and Volkert [30], Frick et al. [31], Ng and Ngan [32], Lee et al. [33],
Jennings et al. [34], Kiener and Minor [35], Jennings et al. [36], Kunz et al. [37], and Gu and Ngan [38].

As mentioned previously, most of the experimental data available in the literature regarding
the micropillar compression experiments are for FCC samples. However, some studies also have
addressed the BCC materials. Figure 4 summarizes the data for the BCC pillars available in the
literature. The results show a trend similar to FCC samples in which smaller samples are stronger.
However, unlike the FCC materials, one cannot find a global fit for BCC metals due to their complex
deformation mechanisms. For example, unlike the FCC metals which can be fully described using the
Schmid’s law, this may not be true for BCC metals and the slip system with the maximum resolved
shear stress might not always become the dominant mode of deformation. Furthermore, many factors
including the temperature, strain rate, and orientation may influence the size effects in BCC pillars.
Greer and De Hosson [3] found a strong correlation between the BCC metals observed power law
exponents and their residual Peierls barrier at room temperature. They stated that a higher residual
Peierls stress leads to a lower power law exponent (Figure 5).
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Figure 4. Variation of the critical resolved shear stress normalized by the shear modulus versus
the sample diameter normalized by the Burgers vector in BCC metals. The original experimental
data is reported by Schneider et al. [39], Kim et al. [40], Han et al. [41], Rogne and Thaulow [42],
Huang et al. [43], and Yilmaz [44].
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In the case of the HCP metals, the size effects data obtained from the pillar compression test
are limited compared to the FCC structure. Figure 6 summarizes the available data in the literature
regarding size effects of HCP samples during micropillar compression test. In the case of samples with
[0001] orientations, basal and prismatic slip systems cannot be activated. Accordingly, the yield occurs
due to two deformation mechanisms of pyramidal slip and twinning. In the case of Ti, Sun et al. [45],
the twin system is the governing deformation mechanism. However, Lilleodden [46] and Byer et al. [47]
reported the pyramidal slip systems to be dominant in the case of pure Mg. For HCP metallic samples
of orientations other than [0001], both basal and prismatic slip modes have been reported to become
activated. Ye et al. [48] reported that the basal slip occurs for the pure Mg sample with the loading
axis close to the [3964] direction. They observed that the smaller pillars required higher stresses to
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initiate the basal sliding which governs the size effects. In the case of Ti with the loading axis along
[1120], Sun et al. [45] reported that the slip occurs on the prismatic planes. Similar to the observations
of Greer and De Hosson [3], depending on the governing deformation mode occurred, different power
law slopes can be obtained for HCP metals. In the case of basal slip mode, the slope is close to FCC
metals, i.e., n = ∼ 0.6; however, for the prismatic slip mode, the power law exponent is about 0.44.
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Figure 6. Variation of the critical resolved shear stress normalized by the shear modulus versus the
sample diameter normalized by the Burgers vector in HCP metals. The original experimental data are
reported by Byer et al. [47], Yu et al. [49], Lilleodden [46], Ye et al. [48], Sun et al. [45], Kim [50], and
Sim et al. [51].

3. Size Effects Models

From a theoretical point of view, various models have been already suggested to interpret the
extrinsic size effects observed. Among them, source truncation, source exhaustion hardening, and
weakest link theory are the three underlying mechanisms mostly addressed by the researchers. These
mechanisms are discussed in more details in the following sections.

3.1. Dislocation Source Truncation Mechanism

In confined volumes like micro- and nanopillars, the source truncation mechanism occurs when
the double-ended dislocation sources are transformed into the single-ended ones due to the presence
of free surfaces. Consequently, the mean length of dislocation sources reduces as the sample size
decreases and thus the flow stress increases. Parthasarathy et al. [52] adopted this mechanism and
mathematically interpreted the role of size on the flow stress. To do so, they assumed a cylindrical pillar
containing n randomly positioned pins. Now, for this set of pins, the probability to have the maximum
distance from the free surface equals λmax, which can be estimated from the following equation:

p(λmax)dλmax =

[
1−

π(R− λmax)(b− λmax)

πRb

]n−1(π[(R− λmax) + (b− λmax)]

πRb

)
ndλmax, (3)
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where R is the specimen radius, b = R/ cos β is the major axis of the elliptical glide plane, and β is
the angle between the primary slip plane and the loading axis. Defining λmax as the mean effective
dislocation source length, it can be readily calculated from the following integral:

λmax =
∫ R

0 λmaxp(λmax)dλmax

=
∫ R

0

[
1− π(R−λmax)(b−λmax)

πRb

]n−1(
π[(R−λmax)+(b−λmax)]

πRb

)
nλmaxdλmax.

(4)

Basically, Parthasarathy et al. [52] and later Rao et al. [53] related the size effects to this mean effective
dislocation source length. Parthasarathy et al. [52] neglected the effect of sample size on the truncation
of the Taylor potential and assumed that the critical resolved shear stress (CRSS) is related to λmax

as follows:

CRSS =
αµb

λmax
+ τ0 + 0.5µb

√
ρ, (5)

where α is a constant, µ is the shear modulus, b is the Burgers vector, τ0 is the friction stress, and ρ is
the dislocation density. The number of pins, n, can also be estimated from the equation below:

n = Integer
[Lmobile

Lave

]
, (6)

where Lmobile = ρπR2H/s is the total length of mobile dislocations. H is the height of the pillar and s is
the number of slip system. Lave is the average length of dislocation segments. Parthasarathy et al. [52]
also assumed that CRSS = CRSSmax = γ/b (γ is the stacking fault energy). Figure 7 shows the
predictions of the proposed model which compares well with the experimental results for Ni ([7,25])
and Au ([26,28]).
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Figure 7. Size effects in pillars with different sizes for: (a) Ni; (b) Au. The original experimental data has
been reported by Uchic et al. [7], Dimiduk et al. [25], Greer et al. [26], and Volkert and Lilleodden [28]
(after Parthasarathy et al. [52]).

3.2. Dislocation Source Exhaustion Mechanism

There exist several mechanisms such as dislocation escape from the free surfaces, dislocation
source shutdown, and mechanical annealing that can decrease the mobile dislocation density and make
the population of available dislocations insufficient to sustain the applied plastic flow. Consequently,
the stress should be increased to activate stronger sources for the plastic flow to be continued. This is
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commonly termed in the literature as the dislocation source exhaustion hardening (see, e.g., [54]). As a
special case of dislocation source exhaustion, dislocation starvation may occur in a confined volume
when all its mobile dislocations leave the body. In such a case, the plastic flow mechanism, which is
known as the dislocation starvation hardening [26], depends on source-limited activations.

The dislocation source exhaustion mechanism including dislocation starvation was addressed
by Zhou et al. [55] in a numerical study in which they used 3D discrete dislocation dynamics (DDD)
to model uniaxially loaded Ni single crystal pillars of various diameters from 300 nm to 1000 nm.
Assuming the primary glide plane at an angle of β with respect to the loading axis, 50% escaping
chance for any dislocation closer than υdt from free surfaces, and neglecting dislocation losses due to
annihilation or source shutdown, they estimated dislocation loss rate, dρloss, as the following inverse
function of the pillar radius, R,

dρloss = −ρmob

(
1
2
π(a + R)υdt

πaR

)
= −ρmob

cos2(β/2)υdt
R

, (7)

where v is the velocity of dislocation and ρmob is the density of mobile dislocations. Considering
the rate of dislocation multiplication as dρmult =

ρmobυdt
L , where L is the dislocation mean free path,

the dislocation content of the sample can be estimated as follows:

ρ = ρ0 +

[
1/L− cos2(β/2)/R

]
b

εp

M
, (8)

where ρ0, M, and εp = ρmobbvdt is the initial dislocation content, the Schmid factor, and the plastic
strain induced by the movement of mobile dislocations, respectively. For negative values of the second
term in in the RHS of Equation (8), the total dislocation content of the pillar decreases as plastic flow
increases, and, if continued, dislocation starvation is unavoidable. Figure 8 shows the numerically
predicted stress and dislocation density as the strain changes. As seen, dislocation starvation has
occurred for the two pillar diameters of 300 nm and 500 nm, while the total dislocation content of
750 nm sample has increased with the growth of plastic flow. Moreover, with the appearance of
dislocation starvation in the two smaller pillars, they start to behave elastically. Figure 8 depicts the
stress and dislocation density with respect to the applied engineering strain for the case of a pillar
diameter of 750 nm, which shows no trace of dislocation starvation.
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Zhou et al. [55] simulated a pillar with the diameter of 1 µm with the initial realistic dislocation
density to model the exhaustion hardening. Figure 9 shows the response of the sample during the
compression test. They observed an increase in the sample stress, which is shown in Figure 9 using
an arrow. They related this increase in response to the exhaustion hardening. Figure 10 shows the
evolution of dislocation network of the sample before, i.e., Figure 10a, and after, i.e., Figure 10d,
the hardening. Figure 10 shows that two dislocation sources of S1 and S2 provide the required plastic
flow until they interact, get close to each other, and form a junction, as shown in Figure 10b,c. Following
that, a new dislocation source needs to be activated to sustain the applied plastic strain, as shown in
Figure 10d. This requires higher applied stress, which leads to the observed hardening in Figure 9.
This is the so-called exhaustion hardening, as shown by Zhou et al. [55].
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3.3. Weakest Link Theory

Norfleet et al. [56] uniaxially compressed Ni pillars with diameters in the range of 1 µm to 20 µm.
Moreover, they measured the density of dislocations in both intact and deformed samples. Considering
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both forest and source truncation hardening terms, they proposed the following equation to capture
the size dependency of critical resolved shear stress, CRSS ,

CRSS = τ0 + ksµ
ln

(
λ/b

)(
λ/b

) + k fµb ln

 1

b
√
ρ f /2


√
ρ f /2, (9)

where τ0 and ks are the lattice-friction stress and the source hardening constant, respectively. λ denotes
the average dislocation source length, k f is the average strength of the forest dislocations, and ρ f = Rρ
is the scalar density of the forest dislocations. Since the accurate estimation of R depends on sample’s
geometry and experienced strain, they used two values of 0.5 and 0.75 corresponding to the lower
and upper bounds [56]. The predictions of the model and those of the experiments are presented and
compared in Figure 11. As seen, although satisfactory agreements have been achieved for samples with
diameter larger than about 5 µm, the model underestimates the experimental results of the smaller
pillars. Part of the difference was compensated by introducing the dislocation density correction
measured for smaller samples to the term of forest hardening mechanism in Equation (9) (Figure 12).
However, the enhanced model also underestimates the flow stress of smaller pillars. This conflict
triggered an idea in which there should be other hardening sources that are not accounted for in
the primary and enhanced models. Accordingly, Norfleet et al. (2008) tried to bridge the gap by
including the effect of the weakest link theory in the model. The weakest link theory states that
there is a mean-field limit, ξ∗, for any crystals, for which the dislocation ensemble of larger samples
behave according to the conventional forest hardening mechanism. However, for samples smaller than
ξ∗, the mean effective dislocation source length breaks down due to the new altered distribution of
dislocations as the longest dislocation sources, which are the weakest ones, are vanished leading to an
enhanced contribution of the forest-hardening mechanism.
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4. Atomistic Simulation of Micropillar Compression Tests

Nowadays, using molecular dynamics (MD), the mechanical response and deformation
mechanisms of crystalline materials can be studied with full atomistic details. The MD simulation
challenge is its limits on the simulation time and length scales. However, developing new efficient
parallel algorithms and new strong supercomputers extend these limits. Atomistic simulation
has successfully addressed many aspects of the crystalline materials including the role of grain
boundary [57], nanoindentation size effects [58–61], effects of temperature [23], and strain rate
effects [16,22,23]. Similarly, in the case of micropillar compression tests, atomistic simulation can
be successfully incorporated to shed more light on underlying mechanisms of size effects. More
specifically, atomistic simulation can precisely capture the role of free surfaces of pillars, which is a very
important feature for modelling the micropillars deformation mechanisms. Other methods such as
finite element (FE) and discrete dislocation dynamics (DDD) incorporate ad hoc models to capture the
free surfaces. Furthermore, unlike the FE and DDD methods, the atomistic simulation can accurately
capture the dislocation cross-slip mechanism. The new atomistic simulations have modeled samples
with the length scale of 0.5 µm using powerful supercomputers (see, e.g., [22,23]), and the sizes of the
simulated pillars are getting close to the experimental samples. However, the time scale limit is still
not solved and the simulations cannot model the quasi-static experiments. Consequently, the atomistic
simulations are mainly in the region of high rate deformations.

Bringa et al. [12] incorporated the atomistic simulation of large copper pillars consisting of
352 million atoms to investigate the response and governing mechanisms of deformation during
high rate compression test. Diao et al. [13] investigated the effects of gold nanowire size on its yield
strength using atomistic simulation. They reported the surface stress governs the nanowires strength
in the region of nanowires with very small diameters. In the case of BCC metals, Weinberger and
Cai [17] used the atomistic simulation and showed that the dislocation multiplication mechanism
depends on the crystal structure by comparing the response of BCC Molybdenum pillar against the
gold pillars during the uniaxial compression. They observed that a single dislocation multiplies itself
repeatedly in BCC samples, which does not occur in FCC samples. Sansoz [14] conducted one of
the most comprehensive MD studies of size effects during micropillar compression test. Sansoz [14]
generated copper pillars with diameter range of 10.8 nm–72.3 nm. Instead of simulating the defect
free pillars, Sansoz [14] used the high-temperature annealing and quenching technique to generate
samples with physical initial dislocation density. Figure 13 shows the responses of three pillars with
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the diameters of D = 10.8 nm, 21.7 nm, and 43.4 nm. Evolution of dislocation density is represented by
a fraction of HCP atoms. The results showed that, in the range of simulated samples, independent of
pillar diameter, both dislocation exhaustion and source-limited activation mechanisms play a role in
the observed size effects. However, the strain at which the transition from dislocation exhaustion to
source-limited activations occurs depends on the pillar diameter. In other words, as the pillar diameter
increases, the transition occurs at larger strains.
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Figure 13. The responses of copper pillars with diameters of 10.8 nm, 21.7 nm, and 43.4 nm during
uniaxial compression. Evolution of dislocation density is represented by a fraction of HCP atoms.
(a,c,e) Variation of the fraction of HCP atoms versus the true strain. (b,d,f) Variation of true stress
versus true strain (after Sansoz [14]).

Weinberger et al. [18] used the transition state theory and excluded the effects of high strain rates
from the MD results. They simulated pillars with different cross-section geometries and studied the
dislocation nucleation stress and failure mechanisms. Weinberger and Tucker [19] investigated the
stability of a single arm source in copper nanopillars with two diameters of 32 nm and 50 nm using the
MD simulation. They focused on Lomer–Cottrell dislocations as pinning points. They observed that
the dislocation arm is not stable enough to create static pinning points. Consequently, they created
artificial pining points to study the size effects in pillars with a stable dislocation arm source. They
observed typical size effects of smaller is stronger. Tucker et al. [15] investigated the grain boundary
(GB) effects on the response of aluminum bicrystalline nanowires during uniaxial compression using
MD simulation. They showed that the GB can act as a dislocation nucleation source. Xu et al. [20] used
the MD simulation to study the effects of crystallographic orientation in aluminum pillars during the
compression test.

Yaghoobi and Voyiadjis [21] conducted a very extensive MD study on the size effects mechanisms
of FCC pillars during the high rate compression for a wide range of Ni pillar diameter. They used
the parallel code LAMMPS [62] for the MD simulation of micropillar compression test. The Ni–Ni
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atomic interaction is modeled using the embedded-atom method (EAM) potential developed by
Mishin et al. [63]. In order to study the size effects, first, Yaghoobi and Voyiadjis [21] modeled pillars
with a height of H = 45 nm and different diameters of D = 22.5 nm, 45 nm, 90 nm, and 135 nm were
simulated. In the next step, two pillar diameters of D = 22.5 nm and 135 nm with different heights of
H = 30 nm, 45 nm, and 75 nm were simulated. In the last step, Yaghoobi and Voyiadjis [21] simulated
a very large sample with the height of 0.3 µm and diameter of 0.15 µm consisting around 487 million
atoms. The pillars are circular cross sections with the axis along [1 1 1] direction.

The pillar boundary conditions are very critical to precisely mimic the micropillar compression
experiment. Yaghoobi and Voyiadjis [21] set the boundary conditions at the surroundings free surfaces.
Among different scenarios applicable to model the boundary conditions along the loading direction,
Yaghoobi and Voyiadjis [21] stated that the variation of dislocation content should be accurately
accounted for during the atomistic simulation. Accordingly, they set free the top and bottom surfaces
to allow dislocations to freely leave the sample. A prescribed potential wall is used to model the
substrate. A large flat indenter is then used for applying the uniaxial compression, which is modeled
using a repulsive potential. The strain rate of the simulation is 3.33× 108 s−1. The interaction between
the substrate and Ni atoms is modeled using the Lennard–Jones (LJ) potential. The equations of
motions are numerically integrated using the velocity Verlet algorithm. The NVT ensemble is used to
model the uniaxial compression experiment. As the precise cross section is required for the correct
assessment of true stress, Yaghoobi and Voyiadjis [21] used the triangulation method to calculate the
contact area. Both initially defect free and pre-strained pillars were simulated to address the effect
of sample initial condition on the response of the pillar during the compression test. The dislocation
structures are extracted at each step utilizing the Crystal Analysis Tool developed by Stukowski and
his co-workers [64–66]. The post-processing of dislocation network and corresponding information are
performed using the software OVITO [67] and Paraview [68].

Figure 14 presents the variation of true stress versus the strain for 45 nm long pillars with diameters
of D = 22.5 nm, 45 nm, 90 nm, and 135 nm. As described in Yaghoobi and Voyiadjis [21], the stress after
initial dislocation nucleation is considered to study the size effects. The results show that, for pillars
with diameters smaller than 90 nm, the smaller diameter is stronger. There are no size effects for
pillars with diameters larger than 90 nm. In order to unravel the underlying size effects mechanisms,
the variation of dislocation content is shown in Figure 15. Figure 15a shows that the source-limited
activation governs the size effects for pillar with a diameter of 22.5 nm. In this case, the mobile
dislocations are driven out of the sample during the loading, which locally increases the stress until
another dislocation nucleation and evolution occurs leading to a stress relaxation. Figure 15b shows
that the exhaustion hardening mechanism governs the size effects in the pillar with D = 45 nm. In this
case, as the dislocation density decreases, the stress increases. Some small local jumps are observed in
true stress, which occur because some dislocations leave the pillar from the free surfaces. However,
the peaks of these local changes are smaller than those observed in the pillar with the diameter of
D = 22.5 nm. The pillars with the diameters of 90 nm and 135 nm show almost the same response after
the initial dislocation nucleation, as shown in Figure 15c,d. This is in contrast with the experimental
results of size effects for this range of pillar diameters, which shows strong size effects for this region.
It is due to the fact that the strain rate of MD simulation is several orders of magnitude larger than the
quasi-static experiments.

Yaghoobi and Voyiadjis [21] investigated the size effects for larger pillars. Accordingly, the response
of the pillars with the diameter of D = 135 nm and height of H = 75 nm during uniaxial compression is
compared with the response of a pillar with the diameter of D = 0.3 µm and height of H = 0.15 µm, as
shown in Figure 16. The results show that, in spite of the difference in dislocation density, the flow
stress of the two samples are the same. Yaghoobi and Voyiadjis [21] showed that, unlike the quasi-static
experiments, for high rate deformations, there is no size effect during micropillar compression tests
for the pristine pillars larger than the one with D = 135 nm and H = 75 nm. One should note that the
reported difference in dislocation density in Figure 16 is mainly due to the difference in the aspect ratio
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of the two pillars. The obtained results show that increasing the strain-rate decreases the size of pillars
at which there is no more size effects.
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Figure 14. The responses of samples during micropillar compression test in the cases of pillars with
H = 45 nm and different diameters of D = 22.5 nm, 45 nm, 90 nm, and 135 nm (after Yaghoobi and
Voyiadjis [21]).
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Figure 15. The responses of samples during micropillar compression test in the cases of pillars with
H = 45 nm and different diameters of: (a) D = 22.5 nm; (b) D = 45 nm; (c) D = 90 nm; (d) D = 135 nm
(after Yaghoobi and Voyiadjis and [21]).
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Figure 16. The comparison between the responses of the pillar with H = 75 nm and D = 135 nm versus
the pillar with H = 0.3 µm and D = 0.15 µm during micropillar compression test (after Yaghoobi and
Voyiadjis and [21]).

In addition to the pristine pillars, Yaghoobi and Voyiadjis [21] also investigated the size effects
with initial dislocation density through pre-straining. Three different pillars were selected that have
the diameters of 22.5 nm, 135 nm, and 0.15 µm and heights of 45 nm, 45 nm, and 0.3 µm, respectively.
Figure 17 shows the effects of pre-straining on the response of the two smaller samples with the
diameters of 22.5 nm and 135 nm and height of 45 nm. The general trend of the responses does not
change due to pre-straining. Figure 18 shows the effects of pre-straining on the largest pillar with the
height of 0.3 µm and diameter of 0.15 µm. In this case, the pre-straining changes the response of the
samples and increases the sample strength. This is due to the fact that the forest hardening mechanism
becomes activated in this sample, and pre-straining increases the dislocation density and accordingly
the sample strength.

Yaghoobi and Voyiadjis [21] showed that the response of the samples during the micropillar
compression test can be successfully captured by using the evolution of its microstructure. For example,
the compressive response of the pillar with the heights of 30 nm and diameter of 15 nm is shown
in Figure 19. At the same time, the dislocation network of the sample is also represented at various
strains in Figure 20. Initial dislocation nucleation takes place at the free surfaces. The surface cross-slip
is the governing dislocation multiplication mechanism that includes the dislocation nucleation from
the surfaces followed by the cross-slip [69]. The same mechanism was reported by Hussein et al. [70]
using 3D DDD simulation of FCC crystals. In the case of pillar with the heights of 30 nm and diameter
of 15 nm, nucleated dislocations leave the sample before generation of considerable number of pinning
points. Accordingly, the dislocation starvation occurs inside the sample, which leads to a jump in
required stress to sustain the plastic flow. Another dislocation nucleation and elongation lead to a drop
in the required stress. The drop due to nucleation is shown in Figure 20b,c,e,g,i, while the starvations
are shown in Figure 20 d,f,h. These events can be related to the sample response as shown in Figure 19.
Yaghoobi and Voyiadjis [21] also investigated the microstructure of the large sample with the height of
0.3 µm and diameter of 0.15 µm, as shown in Figure 21. They showed that the starvation does not
occur in this sample.
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Figure 18. The responses of pristine and pre-strained samples during micropillar compression test for
the pillar with H = 0.3 µm and D = 0.15 µm (after Yaghoobi and Voyiadjis [21]).
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Figure 19. The response of the pillar with D = 15 nm and H = 30 nm during micropillar compression
test (after Yaghoobi and Voyiadjis [21]).

Sansoz [14] predicted that both source-limited activation and mobile dislocation exhaustion occur
in all nanopillars in a way that the deformation mechanism changes from the dislocation exhaustion
to the source-limited activation as the strain increases (Sansoz [14]). Furthermore, the dislocation
exhaustion is the deformation mechanism for all nanopillars for the region of small strains [14].
However, Yaghoobi and Voyiadjis [21] showed that the dislocation starvation, i.e., source-limited
activations, is the only deformation mechanism for the smallest simulated pillar at the entire applied
strain range. Furthermore, it was observed that no dislocation starvation occurs for the largest
simulated pillar.

Another important aspect which can be investigated is the coupling effects of strain rate and pillar
size. As mentioned before, the atomistic simulation studies are conducted at strain rates which are
higher than the experimental observations. Accordingly, a systematic study is required to investigate
the coupling effect of sample size and applied strain rate. Voyiadjis and Yaghoobi [16] investigated
this problem in the case of FCC pillars using large scale atomistic simulation. They simulated two
pillars with the heights of 90 nm and 300 nm, and diameters of 45 nm and 150 nm, respectively. They
tested three different strain rates of

.
ε1 = 6.66e× 108 s−1,

.
ε2 = 3.33× 108 s−1, and

.
ε3 = 1.665× 108 s−1.

The response of each sample at different strain rates are shown in Figure 22. In the case of the pillar with
the diameters of 45 nm, although the dislocation density varies by increasing the strain rate, the samples
show almost the same strength. In the case of the larger sample with the diameter of 150 nm, however,
the sample shows higher strengths for higher strain rates. Another way to investigate the presented
results is to show the responses of both pillars at similar strain rates, as shown in Figure 23. The results
show that, as the strain rate decreases, more size effects are observed.
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Figure 20. The dislocation network of the pillar with D = 15 nm and H = 30 nm during micropillar 
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Figure 20. The dislocation network of the pillar with D = 15 nm and H = 30 nm during micropillar
compression test at different strains of: (a) ε = 0.0517; (b) ε = 0.053; (c) ε = 0.055; (d) ε = 0.065;
(e) ε = 0.1117; (f) ε = 0.1233; (g) ε = 0.1733; (h) ε = 0.2133; (i) ε = 0.23 (after Yaghoobi and Voyiadjis [21]).
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Figure 21. The dislocation network of the pillar with D = 0.15 µm and H = 0.3 µm during micropillar
compression test at different strains of: (a) ε = 0.0233; (b) ε = 0.0433; (c) ε = 0.1416 (after Yaghoobi and
Voyiadjis [21]).
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Figure 22. The responses of the samples during micropillar compression test with different strain rates
of

.
ε1 = 6.66 × 108 s−1,

.
ε2 = 3.33 × 108 s−1, and

.
ε3 = 1.665 × 108 s−1 in the cases of pillars with the

diameters of: (a) D = 45 nm; (b) D = 150 nm (after Voyiadjis and Yaghoobi [16]).
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Figure 23. The responses of pillars with D = 45 nm and D = 150 nm during micropillar compression
test with different strain rates of: (a)

.
ε1 = 6.66× 108 s−1; (b)

.
ε2 = 3.33× 108 s−1; (c)

.
ε3 = 1.665× 108 s−1

(after Voyiadjis and Yaghoobi [16]).
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Voyiadjis and Yaghoobi [16] investigated the dislocation network to address the observed results.
Accordingly, they studied the dislocation length distributions for both pillars at all simulated strain rates.
In order to present the dislocation length distribution in each sample, the corresponding distribution is
averaged at five strains values of 0.1, 0.125, 0.15, 0.175, and 0.2. The probability density function (PDF)
of the pillar at simulated strain rates is presented in Figure 24. The maximum PDF of bulk sample
belongs to the some dislocation lengths at the middle of the distribution, and the distribution can be
described by a Weibull distribution function, as described by El-Awady et al. [71]. Figure 24, however,
shows that most of the dislocation lengths are populated in the first length bean with the smallest
length, and the maximum PDF belongs to the bean with the smallest dislocation length. This can be
attributed to the cross-slip mechanism which is significant in samples with confined volumes. In order
to further investigate the results, the dislocation networks of the pillars with D = 45 nm and D = 150
are presented in Figure 25 at the strain of 0.2 and strain rate of

.
ε2. The dislocation network shows that

the cross-slip is the dominant deformation mechanism, which is in line with the results presented in
Figure 24. Hussein et al. [70] reported a similar pattern by using the DDD simulation.

Voyiadjis and Yaghoobi [16] successfully captured the observed coupling effects between the pillar
diameter and applied strain rate by studying the largest dislocation length Lmax. They obtained the
Lmax as an average of largest dislocation lengths at five strain values of 0.1, 0.125, 0.15, 0.175, and 0.2 for
each pillar size and strain rate. In the case of small pillar with diameter of 22.5 nm, the values of Lmax

subjected to different strain rates of
.
ε1 = 6.66× 108 s−1,

.
ε2 = 3.33× 108 s−1, and

.
ε3 = 1.665× 108 s−1

are 377.9 A, 415 A, and 432.9 A, respectively. Lmax values for largest pillar with the diameter of 0.15 µm
subjected to different strain rates of

.
ε1 = 6.66× 108 s−1,

.
ε2 = 3.33× 108 s−1, and

.
ε3 = 1.665× 108 s−1

are 605.8 A, 783.4 A, and 1095.6 A, respectively. The ratio of Lmax in the larger sample comparted to

the one in the small sample, i.e.,
(Lmax)D=0.15 µm
(Lmax)D=22.5 nm

, is evaluated for different rates of
.
ε1 = 6.66× 108 s−1,

.
ε2 = 3.33× 108 s−1, and

.
ε3 = 1.665× 108 s−1 are 1.6, 1.89, and 2.53, respectively. It shows that, as the

strain rates increases, the value of
(Lmax)D=0.15 µm
(Lmax)D=22.5 nm

decreases. This can elaborate the observed behavior in
Figure 23, i.e., higher strain rates lead to smaller size effects.

Crystals 2019, 9, 591 21 of 27 

 

Figure 23. The responses of pillars with D = 45 nm and D = 150 nm during micropillar compression 
test with different strain rates of: (a) 𝜀ሶଵ ൌ 6.66 ൈ 10଼ sିଵ ; (b) 𝜀ሶଶ ൌ 3.33 ൈ 10଼ sିଵ ; (c) 𝜀ሶଷ ൌ1.665 ൈ 10଼ sିଵ (after Voyiadjis and Yaghoobi [16]). 

 

(a) D = 45 nm (b) D = 150 nm 

Figure 24. Probability distribution function of dislocation length at different strain rates and pillars 
with the diameters of: (a) D = 45 nm; (b) D = 150 nm (after Voyiadjis and Yaghoobi [16]). 

 

 

 

(a) D = 150 nm (b) D = 45 nm 

0.001

0.01

0.1

1

0 100 200 300 400 500

Lo
g 

( P
D

F 
)

Dislocation length (Å)

D=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nmD=45 nm

0.00001

0.0001

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200

Lo
g 

( P
D

F 
)

Dislocation length (Å)

Figure 24. Probability distribution function of dislocation length at different strain rates and pillars
with the diameters of: (a) D = 45 nm; (b) D = 150 nm (after Voyiadjis and Yaghoobi [16]).
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Figure 25. The dislocation network at the strain of ε = 0.2 subjected to the strain rate of
.
ε2 = 3.33× 108 s−1 and pillar diameters of: (a) D = 150 nm; (b) D = 45 nm (after Voyiadjis and
Yaghoobi [16]).

5. Conclusions

The size effect in crystalline metals during micropillar compression tests is reviewed in the current
work. The focus of this work is to investigate the governing mechanisms of size effects during the
micropillar compression test. The micropillar compression test is a novel approach to study the
size effects in metallic samples of confined volumes. Both experimental and atomistic simulation
study of size effects during micropillar compression have been reviewed. In the case of experimental
investigation of the micropillar compression test:

• The size effects in crystalline metals can be successfully captured using the following power
law equation:

CRSS
µ

= A
(D

b

)−n
.

The constants in this equation depend on the crystalline structure.
• In the case of FCC metals, the value of n = ∼ 0.64 is obtained for the data available in the literature.
• In the case of BCC metals, the value of n varies for different materials. Many factors including the

residual Peierls barrier, temperature, and applied strain rate may influence the size effects in BCC
pillars. For example, a higher residual Peierls stress leads to a lower power law exponent.

• In the case of HCP metals, the observed size effects depend on the activated deformation
mechanism, which can be basal, prismatic, and pyramidal slip systems or twinning. For example,
in the case of basal slip mode, the slope is close to FCC metals, i.e., n = ∼ 0.6; however, for the
prismatic slip mode, the power law exponent is about 0.44.
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• Three mechanisms of source truncation, source exhaustion hardening, and weakest link theory
are introduced to describe the observed size effects during micropillar compression tests.

In the case of atomistic simulation of a micropillar compression test:

• For very small samples, dislocation starvation becomes the dominant mechanism of size effect, in
a way that all of the dislocations leave the sample, which leads to an elastic response until another
set of dislocations are generated from the pillar surface.

• Increasing the sample length, all of the dislocations cannot escape from the sample surface and no
more starvation is observed. However, general source exhaustion mechanism can still be observed
in a way that, although the dislocation starvation does not occur, the dislocations are still escaping
from the sample surface. If the remaining dislocation density cannot sustain the applied plastic
flow, the stress should be increased, which leads to the observed size effects.

• The results show that, due to the high strain rate of atomistic simulation, the critical pillar diameter
at which there is no more size effects for pillars with a larger diameter is smaller than that of
the quasi-static experiment. Accordingly, the results show that higher strain rate leads to less
size effects.

• The coupling effects of pillar diameter and applied strain rate are presented. The results show
that, as the strain rate increases, less size effects will be observed. This can be explained using the
dislocation length distribution in a way that, as the strain rate increases, the size of the maximum
dislocation length decreases, irrespective of the sample size. Accordingly, the responses of the
samples with different diameters will converge, and there will be no more size effects. Ultimately,
in the case of quasi-static experiments with very low strain rate, the size of maximum dislocation
length can be scaled by the diameter of the pillar, while, at very high strain rates, the maximum
dislocation length will be almost independent of the pillar size.
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Nomenclature

σ The measured yield or flow stress
ε Strain
.
ε Strain rate
D Pillar diameter
n Power law exponent
FCC Face Centered Cubic
BCC Body Centered Cubic
HCP Hexagonal close packed
CRSS Critical resolved shear stress
µ Shear modulus
b Burgers vector
n Number of pins inside a pillar
λmax The maximum distance of a pin from the free surface
R Pillar radius
b Major axis of the elliptical glide plane
β Angle between the primary slip plane and the loading axis
λmax Mean effective dislocation source length
τ0 Friction stress
ρ Dislocation density
Lmobile Total length of mobile dislocations
Lave Average length of dislocation segments
H Pillar height
γ Stacking fault energy
dρloss Dislocation loss rate
ρmob Density of mobile dislocations
L Dislocation mean free path
ρ0 Initial dislocation content
M Schmid factor
v Velocity of dislocation
εp Plastic strain induced by the movement of mobile dislocations
ks Source hardening constant
λ Average dislocation source length
k f Average strength of the forest dislocations
ρ f Scalar density of the forest dislocations
ξ∗ Mean-field limit
PDF Probability density function
Lmax Largest dislocation length
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