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Abstract: In this work, the effect of cold rolling and heat treatment upon the microstructure and
texture of the surface layer and cross-section of Ni5W alloy substrate was analyzed via the EBSD
technique. A typical copper deformation texture was shown by the cold-rolled Ni5W alloy substrate.
The cube-oriented nuclei were attributed to the rolling direction–transverse direction (RD-TD) plane
due to the presence of copper and S rolling textures. Typical large-shape cold-rolled microstructure
was presented by the RD-ND surface in the cube-oriented area. During the recrystallization process,
the cube-oriented grains did not have a nucleation quantity advantage, but they did have an obvious
growth advantage compared with other orientation grains. They can form a strong cube texture
by absorbing the random orientation and rolling orientation through the migration of large-angle
grain boundaries.
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1. Introduction

YBa2Cu3O7−δ(YBCO) is the second-generation high temperature superconductor exhibiting
superior properties, but its brittleness hinders its application for the preparation of long wires. Based
on epitaxial growth theory, the YBCO layer can be coated on a metal substrate by physical or chemical
methods to obtain a coated conductor with an improved biaxial texture [1–3]. High quality coated
conductor tapes can be prepared via superconducting thin film, and the metal substrate can support
the growth of the epitaxial transition layer. The nickel alloy with 5 at. % tungsten (Ni5W) is widely
used as the substrate for YBCO-coated conductors prepared via a rolling-assisted biaxially textured
substrate (RABiTS) technique [4,5]. Ni5W alloy substrates have the advantages of sharp cube texture,
low magnetic properties, and strong oxidation resistance. Several companies and scientific research
institutes have already produced Ni5W alloy substrate, which fits the criterion of YBCO-coated
conductors. Nickel with high-level fault energy gradually forms a copper-type rolling texture during
rolling, mainly including S, copper, brass, and Goss orientation [6–8]. Low-temperature annealing
was chosen in order to separate the effects of the recrystallization and grain growth of pure nickel;
it was found that the cube orientation grains had a higher growth rate than the other orientation
grains by a factor of ~3 [9]. The cold rolling and recrystallization textures of Ni7W and Ni9.3W
substrates had already been studied by EBSD technology, which revealed that the recrystallization
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cube texture is strongly related to the rolling texture [10]. However, Ni5W still needs to explore the
origin of the recrystallization texture, the formation mechanism of cube texture, and to elaborate on the
micro-deformation texture in Ni5W alloy substrates [11,12].

This work mainly concentrates on the investigation of the microstructure and development of
micro-texture during cold rolling and recrystallization in the formation mechanism of strong cube
texture for Ni5W alloy substrate. Therefore, this paper mainly takes the large deformation Ni5W alloy
substrate as the research object, and uses EBSD technology to visually characterize the microstructure
and texture during cold rolling and recrystallization of alloy substrate, and explore the formation
mechanism of strong cube texture.

2. Experiments

The Ni5W alloy ingot was prepared by vacuum induction melting. The raw materials were 99.95%
pure electrolytic Ni block and 99.99% pure W block. The Ni block and the W block were mixed at an
atomic percentage of 95:5. The initial ingot was obtained after heat treatment for 8 min at a temperature
of 1650 ◦C under flowing Ar gas. After being forged and hot-rolled at a higher temperature, the ingot
was subjected to a descaling treatment to obtain the average thickness of 10 mm for the initial specimen.
After cutting by electron discharge machining (EDM), a size of 20 × 15 × 10 mm was obtained for the
Ni5W alloy specimen. The specimen was then cold-rolled via RABiTS rolling process to obtain a Ni5W
substrate with an average thickness of 75 µm. The amount of deformation at each rolling pass during
cold rolling is 5% and that of the total deformation exceeded 99%. Finally, the as-rolled Ni5W substrate
was isothermally treated in flowing Ar-H 24% gas at 700 ◦C for different times and air-cooled.

The microstructure and microscopic texture of the Ni5W alloy substrate were characterized
via scanning electron microscope (SEM) equipped with electron backscattered diffraction (EBSD)
accessory. Since the EBSD is very sensitive to the roughness of the sample surface, high-quality EBSD
samples are necessary in order to obtain the strong Kikuchi pattern and reliable information about
the micro-orientation. However, the presence of internal stress in the Ni5W alloy, due to a large
deformation, hinders the authenticity of the information collected by the EBSD [13–15]. Ion polishing
is used to eliminate internal stresses generated during cold rolling. Polishing techniques can improve
the surface quality of the substrate and make the substrate more suitable for EBSD analysis to obtain a
reliable diffraction pattern. To explore the microstructure and texture evolution during the holding at
700 ◦C, the best method is in-situ EBSD, which needs to heat the sample to 700 ◦C in the SEM and take
the EBSD timely. However, the in-situ EBSD method has a high criterion on both the SEM and the
sample, so a “quasi in-situ EBSD” method was used in our research. During the quasi in-situ EBSD,
we firstly heated the furnace to 700 ◦C. When the temperature was stable, the sample was inserted into
the furnace and kept for a given time. After holding at 700 ◦C, the sample was quenched, and the
traditional EBSD data were collected in the same area. The quick rising and cooling step allowed the
sample to have the most similar condition to the in-situ EBSD. The nanoindentation was used to mark
the selected areas on the surface of the sample. In order to avoid the influence of external stress on the
experimental results, the region next to the marker was selected for EBSD scanning. All heat treatment
experiments used the same sample, and after different holding times, the marked area was scanned
with the same scan step size to obtain the EBSD image. The EBSD data were collected by the EBSD
detector from the EDAX company and treated by the TSL-OIM© software. During the testing process,
the working voltage was 20 kV, the spot size was 6.0 nm, and the work distance was about 15 mm.
The volume distribution of each texture was defined to extend it in specific Euler space at a tolerance
angle of 15◦. The orientation difference greater than 2◦ and 10◦ was defined as grain boundary and
large-angle grain boundary respectively. The RD is defined as the substrate rolling direction, TD is the
transverse direction, perpendicular to the RD, and ND is the normal direction.
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3. Results and Discussion

3.1. The Study on the Microstructure of Cold-Rolled Ni5W Alloy Substrate

The deformed structure of the Ni5W alloy substrate was analyzed and characterized via the
EBSD technique, and the direction distribution patterns of RD-TD (defined as the surface) and RD-ND
(defined as the cross-section) were measured in randomly selected areas, as shown in Figure 1a,b.
The micro-deformation texture was dominated by copper, S and brass textures, indicating a typically
high deformation texture of the face-centered-cubic (FCC) metal. A small volume fraction for cube and
rotated cube textures was also observed to be consistent with the macroscopic textures obtained from
the XRD pattern [16].

Comparing the distribution of deformation textures on the surface and cross-section, we can
see that there is some difference in the distribution of micro-deformation between the surface and
cross-section. Both the surface and cross-section show the strong brass, S and copper orientation
deformation area. However, on the surface, a small amount of Goss, cube and RD-cube deformation
texture exists besides the brass, S and copper orientation deformation tissues, which are different from
the deformation tissues of the surface. This is mainly due to the different forces on the surface and
the core layer. At the same time, the deformation structure of the cross-section surface is the long
thin sheet, and the surface is subjected to a large stress, thus the work hardening phenomenon is
obvious during the deformation process. Some dislocations slip in octahedral mode, resulting in an
irregular distribution of deformation structure. It can also be seen from the orientation distribution of
the cross-section surface that a small amount of cube deformation area exists near the S deformation
area. According to the 40◦-<111> growth relationship, this creates a powerful condition for the rapid
growth of cube-oriented nuclei during recrystallization annealing [12].

To further analyze the microstructure distribution of the cold-rolled Ni5W alloy substrate, its ODF
orientation distribution function is plotted in Figure 2. Figure 2a,b is ODFs of the cold-rolled Ni5W
alloy substrate in the surface and cross-section. It can be seen from these figures that the deformation
orientation of the surface is mainly copper and S orientation, and its intensity maximization is
concentrated around the standard location. At the same time, there is a strong brass orientation near
(Φ1, Φ, Φ2) = (35.3◦, 45◦, 90◦). In addition, only a small amount of Goss orientation is present in the
vicinity of (Φ1, Φ, Φ2) = (0◦, 45◦, 0◦). The cold-rolled texture on the cross-section is dispersed from
its standard position, while Copper and S orientations are also shifted from their standard positions,
in which maximum intensities are not as high as on the surface. The brass orientation has a relatively
large intensity value and a small amount of Goss orientation exists near the positions of (Φ1, Φ, Φ2) =

(0◦, 45◦, 0◦). However, the deformation texture generally shows copper orientation.
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Figure 2. ODF sections of cold-rolled Ni5W alloy substrates: (a) RD-TD, (b) RD-ND.

The variation of each orientation in the surface and cross-section is shown in Figure 3.
The distribution of various textures on the surface and cross-section was different. The fraction
of S and copper texture in the surface is obviously higher, while the fractions of brass, Goss, cube
and RD-cube are lower, indicating that the deformation texture of the surface is a typical copper
deformation texture rather than brass deformation texture according to the formula [17]. Compared to
the surface, the S and cube orientations of the cross sections are lower, which is mainly caused by the
uneven distribution of stress in the thickness of the whole substrate in the rolling process.
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Figure 3. Texture distribution of cold-rolled Ni5W substrates.

3.2. The Microstructure Orientation Gradient of Cold-Rolled Ni5W Alloy Substrate

It was found that there is a clear orientation gradient in the cube-oriented deformation area.
Figure 4a–f shows the results of the line scan for different orientations in the substrate. The red curve
represents the cumulative orientation difference from the nucleus to the initial point, and the black
curve represents the point-to-point orientation difference distribution curve in the nucleus.

It can be seen from Table 1 that the cube-oriented deformation area has an obvious orientation
gradient in the range of 5 µm, with the maximum value of the intra-crystal orientation difference
reaching 12.1◦. This indicates that the orientation is rotated, changing from cube to rotated-cube
(RD-Cube) in a small distance. At the same time, the cube-oriented deformation area is surrounded by
large-angle grain boundaries. In general, the higher grain boundary energy leads to more unstable
grain boundaries and to a greater migration rate. There is a clear relationship between the grain
boundary energy level and the adjacent crystal orientation. Generally, the energy of large-angle grain
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boundaries is higher than the small-angle grain boundaries or twin boundaries, thus the mobility of
the large-angle boundaries is also high. Therefore, these large-angle grain boundaries can provide a
larger growth rate for recrystallized nuclei during the subsequent recrystallization.

Compared with the cube-oriented deformation area, the orientation gradient in the non-cube
deformation area is small and there is no obvious orientation gradient. Within the analysis range
of the S deformation zone (about 5 µm), the maximum value of the difference in the intragranular
orientation is only 2.8◦. The maximum value of the copper deformation zone (about 4.5 µm) is 3.3◦.
The maximum value of the brass orientation zone (about 7 µm) is 3.7◦. Within the analytical range of
the Goss orientation zone (about 5.5 µm), the maximum value of the internal orientation difference is
only 3.1◦. The random orientation is within the analysis range of 5.5 µm and the maximum value of the
intra-crystal orientation difference is only 2.4◦. According to the literature [18], the high intragranular
orientation gradient creates a strong condition for the nucleation during the later heat treatment. At the
same time, the average intergranular spacing of the large-angle grain boundaries is about 0.57 µm and
its volume fraction is 60.2%, which also provides a strong condition for recrystallized grain growing.

Based on the above analysis, the high orientation gradient in the cube-oriented deformation
area creates a strong condition for the nucleation of cube-oriented nuclei, which are surrounded
by large-angle grain boundaries and provide large growth due to their subsequent recrystallization
driving force [19].
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Figure 4. Orientation distribution map and line scan misorientation of the cold rolling Ni5W substrates:
(a–f) the point-to-point and accumulated misorientation vs. distance plots of a cube, S, copper, brass,
Goss and random.
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Table 1. Misorientations of the rolling band in cold-rolled tapes.

Orientation Point to Origin (◦)

S 2.8
Copper 3.3
Brass 3.7
Goss 3.1

non-Cube 2.4
Cube 12.1

3.3. The Study on the Microstructure and Texture of Ni5W Alloy Substrate during Recrystallization

Quasi-in situ EBSD maps of Ni5W alloy substrate annealed at a temperature of 700 ◦C with
different annealing times are shown in Figure 5. These four maps are from the same location of
the sample and they have the same size. The presence of rolled structures and a few recrystallized
nuclei indicates the starting of recrystallization at a temperature of 700 ◦C during the 20 min period.
The long-shaped rolled structure was continuously coarsened due to the migration of grain boundaries
and contributed towards the equiaxed recrystallized grains [20,21]. However, the cube orientation
did not obtain any significant advantage in nucleation due to the presence of random and rolling
orientations such as S, copper, and brass. The number of cube-oriented grains was increased while the
number of random and rolling orientation grains was reduced significantly with the increase in heat
treatment. The size of cube grains was also significantly changed as compared to other oriented grains
due to rapid growth. During the heat treatment for 60 min, the cube grains were grown to such an
extent that they occupied most of the area. Most of the rolling-oriented grains, especially the randomly
oriented grains, were swollen by the cube-oriented grains.Crystals 2019, 9, x FOR PEER REVIEW 7 of 11 
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During the recrystallization process, recrystallized grains form and grow continuously in the
rolling microstructure through the migration of large-angle grain boundaries, thus the recrystallized
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microstructures include the recrystallized grains, as well as part of the rolling microstructures. The grains
circled in the figure are the rolled oriented and random oriented grains, and the surrounding cube
grains gradually move towards the center and swallow it when kept warm for 50 min. In this process,
the misorientation between grains gradually decreases through the migration of grain boundaries
and finally becomes a low angle grain boundary, tending to a stable state. This is because the grain
boundary structure has a great influence on grain boundary migration [22]. When the rolled oriented
grain is surrounded by cube crystal grain, the misorientation between them is larger, and the larger
the misorientation between grains, the higher the interfacial energy, so the grain boundary structure
is not stable. The grain boundary migration distance and migration rate increase correspondingly,
and the surrounding cube grains begin to move rapidly to the middle to annex the rolled oriented
grain. However, when two cube grains are adjacent to each other, the grain boundary between them
changes into a low angle grain boundary. The grain boundary with a low angle or a special angle, such
as a twin boundary, has a very low migration distance and migration rate and does not even move.
Therefore, when the two cube grains are adjacent, the interface is relatively stable, and it is not easy
to move.

Figure 6 shows the variation in the length of high-angle grain boundaries (HABs), low-angle
grain boundaries (LABs) and Σ3 grain boundaries during recrystallization. It can be seen that the
length of high-angle grain boundaries and low-angle grain boundaries is significantly decreased,
among which the length of high-angle grain boundaries decreased by 2.93 mm, and the length of
low-angle grain boundaries decreased by 0.37 mm, while the length of twin boundaries did not change
significantly. This indicates that the fraction and size of the twins did not change obviously during the
initial recrystallization, and the twin boundaries have high thermal stability. However, cube grains
can encroach on rolling-oriented and randomly-oriented grains through the migration of large-angle
grain boundaries, resulting in the size of cube grain increasing and the number of rolled and randomly
oriented grains decreasing, thus the length of large-angle grain boundaries and low-angle grain
boundaries decrease.

It can be seen from Figure 5 that during recrystallization, the texture of the Ni5W alloy substrate
gradually changes from rolling texture at the initial stage of recrystallization to recrystallization texture
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of copper rolling texture and cube texture, and finally to a sharp cube texture. The transformation of
texture type indicates that a strong cube texture will be formed after recrystallization, and the formation
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The curve of the fraction of different recrystallized grains during heat treatment is shown in
Figure 8. It can be seen that in the initial stage of recrystallization, the fraction of random oriented
recrystallized nuclei is the highest, followed by S and Goss oriented recrystallized nuclei. However,
the cube-oriented recrystallized nuclei is least, which means the nucleation rate of cube orientation is
lower than other orientations, because the recrystallized nuclei are produced from the recrystallized
microstructure and the shear microstructure in the rolling microstructure is beneficial to the formation
of the recrystallized nucleus [23]. However, there are fewer cube orientations in the rolling and
recovery microstructures of Ni5W alloy substrate. Most recrystallization nuclei are rolling and random
orientation grains, so the cube orientation grains do not have an obvious quantitative advantage
in nucleation. However, during the process of recrystallization, it is seen that the fraction of cube
orientation increased by 53.2%, while the fraction of random orientation decreased rapidly by 49.1%,
and the fraction of rolling orientations only reduced a little, which indicates that a large number of
random orientations and a small amount of rolling orientations are consumed by cube orientation
during recrystallization.Crystals 2019, 9, x FOR PEER REVIEW 9 of 11 
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In the recrystallization process, not only the cubic orientation grains grow up gradually, but also
the rolling orientations and random orientations grains grow up. Figure 9 shows the variation of
average grain size of different recrystallized grains during heat treatment. It can be seen that the size
of cubic grains increases rapidly in the middle and later stages of recrystallization, and the growth rate
is much higher than that of other size grains, the cubic grains have an obvious size advantage [18].
Therefore, cubic grains will annex the non-cubic structure through the migration of large angle grain
boundaries to form recrystallized cubic texture in this process, and after initial recrystallization,
the content of cubic texture reached 53.9%.
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4. Summary

The texture type of cold-rolled Ni5W alloy substrate is a typical copper deformation texture.
Copper orientation and S orientation on the TD-RD surface of Ni5W alloy substrate are higher, reaching
21.4% and 43.5% respectively, while Copper orientation and S orientation on the ND-RD surface are
11.2% and 26.3%, respectively. The microstructures of cold-rolled Ni5W alloy substrate are long thin
sheet structures with an average spacing of 0.57 µm. The cube-oriented deformation area has a clear
orientation gradient, which creates strong conditions for its nucleation. The cube-oriented deformation
area is surrounded by the large-angle grain boundaries and provides a larger growth driving force
for its growth during subsequent recrystallization. In the recrystallization process, the average grain
boundary spacing increases with the holding time, reaching 2.5 µm, and the grains gradually change
from long thin sheets to equiaxed. The number of cube-oriented grains in the initial recrystallization
is less, and they do not have the quantitative advantage, but their growth rate is higher than other
oriented grains, and they have a significant size advantage. It can form the strong cube texture by
swallowing up the random orientation and rolling orientation through the migration of large-angle
grain boundaries.
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