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Abstract: Two Zn(II) coordination polymers (CPs) [Zn(L)(pphda)] (1) and [Zn(L)(ophda)]·H2O (2)
were prepared by reactions of ZnSO4·7H2O based on the N-donor 1,4-di(1H-imidazol-4-yl)benzene
(L) ligand and two flexible carboxylic acids isomers of 1,4-phenylenediacetic acid (H2pphda) and
1,2-phenylenediacetic acid (H2ophda) as mixed ligands, respectively. Structures of CPs 1 and 2 were
characterized by elemental analysis, Infrared spectroscopy (IR), thermogravimetric analysis and
single-crystal X-ray diffraction. The CP 1 is a fourfold interpenetrating 66-diamond (dia) architecture,
while 2 is a 2D (4, 4) square lattice (sql) layer based on the Zn2(cis-1,2-ophda2−)2 binuclear Zn(II)
subunits. The luminescent property, including luminescence lifetime and quantum yield (QY), have
been investigated for CPs 1 and 2.

Keywords: assembly; coordination polymers; optical properties

1. Introduction

The deliberate design of coordination polymers (CPs) have recently prevailed due to their intriguing
structure and potential applications [1–6]. Recently, the luminescent CPs are widely employed to detect
guest molecules with high sensitivity and selectivity. For example, Liu et al. has built a microporous
luminescent CP {[Zn5(L)2(DMF)2(µ3-H2O)]·2DMF} (H5L = 3,5-di(3′,5′-dicarboxylphenyl)benzoic acid,
DMF = N,N-Dimethylformamide), which is stable in air as well as in acidic/basic aqueous media at room
temperature. Moreover, the luminescent CP behaves as a luminescent sensor for the highly selective
and sensitive detection of Fe3+, Fe2+, Cu2+ and Ag+ ions and o-nitrophenol (MNP), p-nitrophenol
(PNP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP) and 4-nitrotoluene (4-NT) [7]. However, the
successful assembly of CPs have faced great challenges in crystal engineering, because many factors
have affected the resulting structures, such as rational choice of the bridging ligand and metal centers,
temperature, solvent, pH value and the nature of anions [8–12]. Above all, the reasonable design of
ligands is the most key factor. Generally speaking, the length, rigidity, functional groups, coordination
modes, or substituent groups of organic molecules have great effects on the resulting frameworks of
CPs [13,14]. According to the previous studies, the N-donor and O-donor organic compounds are two
kinds of the most important ligands, which have been widely used to construct various CPs because of their
rich coordination modes, and modifiable backbones [15,16]. Noticeably, rigid rod-type ligands such as
bipyridine (bpy), terephthalic acid or their analogues, often employ as linear pillars to construct entangled
CPs [17,18]. Besides the rigid ligands, the flexible ligands including flexible N-donor (4-pyridyl)ethane
(bpe), (4-pyridyl)propane (bpp), 1,2-bis(4-pyridyl)ethylene (bpee), and O-donor 1,4-phenylenediacetic
acid (H2pphda) and 1,2-phenylenediacetic acid (H2ophda) have different shapes associated with the trans
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or gauche conformation, favoring the formation of interesting topologies [19–22]. In our previous study,
we have synthesized a rigid multi-N-donor 1,4-di(1H-imidazol-4-yl)benzene (L) ligand and employed to
build porous coordination polymer with favorable gas adsorption properties [23]. Moreover, the N-donor
ligand exhibit good compatibility with O-donor carboxylic acids, as a result, a number of diverse CPs
have successfully been built based on the system of imidazole and polycarboxylates [24,25]. As our
continual work, we have chosen the N-donor ligand together with two auxiliary carboxylic acid isomers
(H2pphda and H2ophda) to build two Zn(II) coordination polymers. Obviously, we expect to investigate
the effect for auxiliary carboxylic acid isomers with position isomerism of functional groups. In this
contribution, we report two Zn(II) CPs of [Zn(L)(pphda)] (1) and [Zn(L)(ophda)]·H2O (2), based on the
reactions of ZnSO4·7H2O with mixed ligands of L and H2pphda, H2ophda, respectively.

2. Materials and Methods

2.1. Materials and Physical Techniques

All the reagents were purchased from Jinan Henhua company (Jinan, China), and the N-donor
L organic ligand was prepared on the basis of the reported literature [23]. Infrared spectrum (IR) was
investigated a Bruker Vector 22 fourier transform infrared spectrophotometer (Instrument Inc., Karlsruhe,
Germany). Perkin-Elmer 2400 elemental analyzer was used to complete elemental analyses (PerkinElmer,
Waltham, MA, USA). The UV/vis spectra were recorded using a computer-controlled PE Lambda 900 UV/vis
spectrometer (PerkinElmer, Massachusetts, MA, USA). Thermogravimetric analyses (TGA) were analyzed
by a simultaneous 2960 thermal analyzer (Thermal Analysis Instrument Inc., New Castle, DE, USA)
under nitrogen atomosphere with a heating rate of 5 ◦C min−1. The photoluminescence spectra, decay
lifetimes and quantum yield in solid state were carried out using HORIBA FluoroMax-4 fluorescence
spectrophotometer (Horiba, Kyoto, Japan).

2.2. Synthesis of [Zn(L)(pphda)] (1)

A mixture of ZnSO4·7H2O (28.7 mg, 0.1 mmol), L (21.4 mg, 0.1 mmol), H2pphda (19.4 mg,
0.1 mmol) and H2O (15 mL) was added in the mixed solution of water and N,N-dimethylformamide
(DMF) (10 mL, v:v = 9:1), adjusted to neutral solution with NaOH solution (0.025 mol L−1). The mixture
was then placed in a 25 mL glass tube and reacted at 100 ◦C for 48 hours, and was cooled to ambient
temperature by reducing 10 ◦C/h, colorless block crystals of 1 were obtained (yield: 66%). Analytically
calculated (Anal. Calcd) for C22H18N4O4Zn(%): C, 56.49; H, 3.88; N, 11.98. Found: C, 56.32; H, 3.99; N,
11.82. IR (KBr pellet, cm−1): 3385(m), 3410(m), 3124(m), 2725(m), 1636(m), 1610(vs), 1539(s), 1481(s),
1422(m), 1361(m), 1262(m), 1145(m), 1078(s), 968(m), 951(s), 838(m), 781(m), 692(w), 650(m), 485(s).

2.3. Synthesis of [Zn(L)(ophda)]·H2O (2)

A similar synthesis procedure as 1 was employed to obtain 2, except that the isomer of H2opyda
(19.4 mg, 0.1 mmol) replaced H2ppyda. A new compound of 2 were collected in a 62% yield. Anal.
calcd for C22H20N4O5Zn (%): C, 54.39; H, 4.15; N, 11.53. Found: C, 54.21; H, 4.31; N, 11.69. IR (KBr
pellet, cm−1): 3435(vs), 1648(m), 1577(s), 1395(m), 1378(m), 1283(w), 1176(w), 1138(w), 1078(w), 969(m),
859(w), 844(m), 720(w), 647(w), 628(w), 585(w), 531(w), 489(w), 422(w).

2.4. Crystallographic Data Collection and Refinements

The data collections for CPs 1 and 2 were measured on a Bruker SMART APEX II (Bruker,
Karlsruhe, German) with Mo Kα radiation (λ = 0.71073 Å) at 296(2) K. The diffraction data were
integrated by using the SAINT program [26]. Absorption corrections were performed by multiscan
absorption corrections using the SADABS program [27]. The structure were solved and refined using
the OLEX2 program suite, equipped with ShelXT and ShelXL programs [28]. All non-hydrogen atoms
were located from Fourier map directly by ShelXT and refined anisotropically. Hydrogen atoms on
all non-hydrogen atoms were placed in calculated positions, and their coordinates and displacement
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parameters were constrained to ride on the carrier atoms. Hydrogen atoms of the water molecule were
located from electron density maps. The crystal parameters and relevant bond lengths and angles are
summarized in Table 1 and Table S1. Cambridge Crystallographic Data Centre (CCDC) numbers of
1959066 for 1 and 1959068 for 2. (See Supplementary Materials)

Table 1. Crystallographic data for coordination polymers 1 and 2.

Crystal Parameter 1 2

Empirical formula C22H18N4O4Zn C22H20N4O5Zn
Formula weight 467.77 485.81
Temperature / K 296(2) 296(2)
Crystal system Orthorhombic Triclinic

Space group P nna P-1
a /Å 12.3264(11) 10.6434(11)
b /Å 21.1865(17) 10.7143(11)
c /Å 7.7490(6) 11.7601(12)
α /◦ 109.8560(10)
β /◦ 102.1290(10)
γ /◦ 110.4050(10)

Mu (mm−1) 1.252 1.161
V (Å3) 2023.7(3) 1097.0(2)

Z, Dcalc / (Mg/m3) 4, 1.535 2, 1.471
F(000) 960 500
θ range / ◦ 1.92–27.54 1.98–26.00

Reflections collected 113,01 8830
Independent reflections 2324 4685
Goodness-of-fit on F2 1.100 1.056

Rint 0.0145 0.0147
R1 [I > 2σ (I)]a 0.0324 0.0260

wR2 [I > 2σ (I)]b 0.0907 0.0752
a R1 =Σ||Fo | − |Fc ||/Σ|Fo |. b wR2 = |Σw(|Fo |2 − |Fc |

2)|/Σ|w(Fo)2 |1/2, where w = 1/[σ2(Fo
2) + (aP)2+bP]. P = (Fo

2 + 2Fc
2)/3.

3. Results

3.1. Structural Descriptions

3.1.1. Structure of [Zn(L)(pphda)] (1)

The Zn(II) atom lies on a glide and shows a distorted tetrahedral configuration from two O
atoms (O1, O1A) from two pphda2− anions, as well as two N atoms (N1, N1A) from two separate
L ligands (Figure 1a). The Zn–N bond length is 2.009(2) Å and Zn–O bond length is 2.0067(18) Å,
and the coordination angles around Zn1 ranges from 89.98(11) to 121.23(8)◦. The carboxyl groups
from pphda2− anions adopt transconformation to coordinate with two Zn(II) atoms with the angle of
–CH2– of 111.82◦, and this coordination mode is consistent with the reported literature [29]. In 1, each
pphda2− anion acts as a linear ligand to bridge two Zn(II) ions in a bis-µ1-η1:η0-monodentate mode to
give rise to a one-dimensional (1D) chain (Zn(II)/pphda2− chain) with the Zn···Zn distance of 12.12 Å
(Figure 1b). The L ligands also link Zn(II) atoms to form 1D zigzag Zn(II)/L chain with a Zn···Zn
distance of 13.772(8) Å. The combination of the 1D chains of Zn(II)/pphda2− and Zn(II)/L produce
three-dimensional (3D) structure for 1. Notably, each Zn(II) atom is linked by two L ligands and two
pphda2− anions into an adamantanoid cage (Figure 1c). This single large adamantane gives a huge
chamber, which allows another three independent equivalent networks to interpenetrate mutually,
forming a fourfold interpenetrating 3D 66-dia architecture (Figure 1d,e) [30,31].
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3.1.2. Structure of [Zn(L)(ophda)]·H2O (2)

When auxiliary 1,4-phenylenediacetic acid was replaced by its isomer of 1,2-phenylenediacetic acid
in the reaction of 1, compound 2 was produced. The geometric midpoints of the aromatic L-rings lie on
inversion centres. The asymmetric unit contains one Zn(II) atom, two halves of L ligands, one ophda2−

ligand, and one lattice water molecule. As shown in Figure 2a, the central Zn(II) atom coordinates with
two N atoms (N1, N3) from two distinct L ligands and two O atoms (O1, O3A) from cis-ophda2− ligands,
with Zn–N bond lengths of 2.0197(16) and2.0205(16) Å and Zn–O ones of 1.9652(14) and 1.9673(13)
Å (Table S1). Different from the pphda2− ligand, the ophda2− is a flexible ligand and uses its two
carboxylate groups in µ1-η1:η0-monodentate cis-conformation to link two Zn(II) atoms. Two different
cis-1,2-ophda2− ligands utilize four carboxylate groups to link two Zn(II) atoms, forming a binuclear
Zn2(cis-1,2-ophda2−)2 unit with Zn···Zn distance of 5.608(5) Å. In 2, each Zn2(cis-1,2-ophda2−)2 binuclear
unit connects other four same ones by linear L molecules via Zn–N coordination, forming a 2D (4, 4) layer
by taking Zn2(cis-1,2-ophda2−)2 as 4-connectors and the linear L ligands as two-connectors (Figure 2b,c).
The rich intermolecular hydrogen bond pattern includes O–H···O, N–H···O and C–H···O (N(4)–H(4)
0.8600 Å, H(4)···O(2) 1.9000 Å, N(4)···O(2) 2.753(2) Å, N(4)–H(4)···O(2) 170◦; C(8)–H(8) 0.9300 Å, H(8)···O(4)
2.5000 Å, C(8)···O(4) 3.366(3) Å, C(8)–H(8)···O(4) 155◦; C(5)–H(5) 0.9300 Å, H(5)···O(4) 2.5800Å, C(5)···O(4)
3.468(2) Å, C(5)–H(5)···O(4) 159◦; C(12)–H(12) 0.9300 Å, H(12)···O(2) Å 2.3900 Å, C(12)···O(2) 3.162(2) Å,
C(12)–H(12)···O(2) 140◦) (Figure 2d, Table S2).
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3.2. Synthesis, Thermal Analyses and X-ray Powder Diffraction Analyses

In this study, hydro/solvothermal reaction is employed to synthesize coordination polymers.
The hydro/solvothermal reaction can facilitate crystal growth under the spontaneous reaction system,
benefit for the system of mixed carboxylate and N-donored ligands that easily form precipitate when
react with metal ions. The stability of two CPs was evaluated by the TGA, and the analysis results are
listed in Figure S1. The results of TGA for compound 1 showed that no weight loss appeared until the
frameworks collapse at about 355 ◦C, which is consistent with its structure, since the frameworks of
compound 1 contains no guest molecules. For 2, a weight loss of 3.58% ranges from 95 to 130 ◦C with
the liberation of the free H2O molecules (calc. 3.70%), and the collapse of the framework happened at
about 385 ◦C. The diffraction peaks of as-synthesized CPs 1 and 2 are consistent with the simulated
ones. The result confirms that the as-synthesized crystalline materials of 1 and 2 are phase purities, as
shown in Figure S2.

3.3. Diffuse Reflectance Spectra

The UV-vis absorption spectra were recorded for the two crystalline materials (Figure 3a).
The UV−vis show absorption bands ranging from 250 to 300 nm in the UV region, which belongs to n
→ π* and π→ π* intraligand transitions arising from the ligand [32]. The weak absorption of CP 1
are observed around 550 nm, which is probably a result of the d–d spin-allowed transition of the d10

(Zn2+) ion [33]. The description and literature have been supplemented in the revised manuscript.
Furthermore, the values of band gaps (Eg), which was determined as the intersection point between
the energy axis (hν) and the line derived from the linear portion of the absorption edge in a plot of
the K-M (Kubelka–Munk) theory F vs the incident photon energy hν [34], are estimated as 3.56 eV
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for 1 and 3.55 eV for 2 (Figure 3b), indicating that the as-synthesized crystalline materials are optical
semiconductors [35,36].Crystals 2019, 9, x FOR PEER REVIEW 6 of 10 
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3.4. Photoluminescent Property

Coordination polymers comprising of d10 metal centers and π-conjugated organic ligands have
potential photoluminescent property [37–39]. The fluorescence properties of CPs 1 and 2, together with
the L ligand have been tested (Figure 4). As illustrated in Figure 4, organic L molecules exhibit emission
band at 445 nm (λex = 370 nm), belonging to π*→ π intraligands transition [40,41]. CPs 1 and 2 show
emission maxima at 427, and 439 nm upon excitation at 368, and 367 nm. In comparison with the free
L ligand, the emission bands of CPs 1 and 2 are 18, 6-nm blue-shifted. The emissions of these CPs 1
and 2 may belong to the intraligand fluorescence because of their similarity between their emission of
CPs and the free L ligand [42,43]. Furthermore, the study of decay lifetimes and quantum yield (QY)
will be further investigated (Figure 5). The luminescence lifetimes based on exponential function as
I(t) = A exp(−t/τ) for 1 and 2 are 14.09, and 15.11 ns (Figure 5b,d) [44], and the shorter luminescence
lifetimes are attributable to the characteristic of a singlet state, rather than a triplet state (>10−3 s) [45].
Moreover, the corresponding QY values of CPs 1 and 2 are 2.42% and 3.23% (Figure 5a,c), respectively.
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4. Conclusions 

CPs 1 and 2 were prepared by the reaction of mixed N-donor L molecules and O-donor two 
isomeric dicarboxylates with Zn(II) salts. This study reveals that differently oriented carboxyl groups 
of auxiliary ligands are key factors affecting architectures of CPs. The CPs 1 is a fourfold 
interpenetrating 66-dia architecture, while the topology for 2 is (4, 4) different from the dia structure 
of 1 because of positional isomers of carboxyl groups from pphda2- and opyda2- ligand. The UV-vis 
spectra as well as luminescent properties are discussed. The results have further confirmed that the 
mixed system of N-/O-donor ligands are constructive units to assemble diverse CPs.  
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