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Abstract: A new homo-trinuclear Ni(II) half-salamo-based complex [Ni3(L)2(µ-
OAc)2(OAc)2(CH3OH)2]·2CH3OH was synthesized via the reaction of a tridentate ligand
HL (2-[O-(1-ethyloxyamide)]oxime-4-bromophenol) and Ni(OAc)2·4H2O, and characterized using
elemental analyses, IR spectra, UV-Vis absorption spectra, X-ray crystallography, and Hirshfeld
analysis. Interestingly, single-crystal X-ray analysis showed that the two acetate molecules were
bonded simultaneously with the Ni(II) atoms by mono-dentate chelating and bidentate bridging
coordination modes, respectively, and the resulting hexa-coordinate geometries were ultimately
formed. Furthermore, the Hirshfeld analysis of the complex was studied. Compared with HL,
the complex fluorescence intensity was significantly lowered, indicating that the Ni(II) ions have
fluorescence quenching characteristics.

Keywords: half-salamo ligand; homo-trinuclear Ni(II) complex; structure; Hirshfeld surface analysis;
fluorescence property

1. Introduction

Salen and its derivatives are usually gained via Schiff-base condensation reaction of a diamine
with an aldehyde, a ketone or its derivative [1–4]. The coordination environment includes two imine
N atoms and two O atoms from the aldehyde or ketone, usually phenolic oxygen atoms. Salamo was
developed on the basis of changing the type of amine of the salen-type compound, and after introducing
an O atom to the N atom of the salen-type compound possessing a –RC=N– group, the salamo-type
compound is more flexible and stable than the salen-type compound [5]. The salamo-type ligands and
their metal complexes, due to their unique physical and chemical properties and potential application
values, have attracted more and more attention from chemical researchers [6–12]. Therefore, the results
of research into these complexes in the fields of catalysts [13–15], biology [16–20], electrochemical
processes [21–27], supramolecular structures [28–33], ion recognitions [34–40], magnetic materials [41–47],
and luminescence [48–56] are remarkable.

A new trinuclear Ni(II) half-salamo complex was designed and synthesized. The complex is a new
symmetric trinuclear Ni(II) structure. Most of the previously reported complexes were coordinated
by one acetate molecule to two metal atoms [57–60]. In this paper, not only were two acetate
molecules coordinated to two Ni(II) atoms, but also by bidentate bridging and monodentate chelating
coordination modes simultaneously connecting two Ni(II) atoms. Most importantly, Hirshfeld surface
analysis was also studied while studying fluorescence properties.
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2. Experimental

2.1. Materials and Measurements

All solvents and chemicals were obtained from commercial sources and used without further
purification. Elemental analyses for nickel(II) were measured by IRIS ER/S-WP-1 ICP atomic emission
spectrometer (Elementar, Berlin, Germany), elemental analyses for carbon, hydrogen, and nitrogen were
conducted using GmbH VariuoEL V3.00 automatic elemental analysis instrument (Elementar, Berlin,
Germany). IR spectra were made via a Bruker VERTEX70 FT-IR spectrophotometer, with samples
prepared as CsI (100–500 cm−1) and KBr (500–4000 cm−1) pellets (Bruker AVANCE, Billerica, MA, USA).
The UV-Vis spectra were obtained by a Shimadzu UV-3900 spectrometer (Shimadzu, Tokyo, Japan). The
1H NMR (nuclear magnetic resonance) spectra were measured by German Bruker AVANCE DRX-400/600
spectroscopy (Bruker AVANCE, Billerica, MA, USA). Fluorescence spectra were measured via a F-7000
FL spectrophotometer (Hitachi, Tokyo, Japan). The X-ray single-crystal structure was measured by a
SuperNova Dual (Cu at zero) four-circle diffractometer.

2.2. Synthesis of HL

1,2-Bis(aminooxy)ethane was synthesized via a similar method reported earlier in Reference [61].
5-Bromo-2-hydroxybenzaldehyde (402.04 mg, 0.02 mmol) in ethanol solution (40 mL) was slowly
added to 1,2-bis(aminooxy)ethane (368.4 mg, 0.01 mmol) in ethanol (60 mL) over 1 h. The mixture
was heated at 50–55 ◦C for 5 h. The solution was concentrated by reduced pressure and the residue
was purified via column chromatography with chloroform:ethyl acetate = 20:1 gaining the ligand
HL:2-[O-(1-ethyloxyamide)]oxime-4-bromophenol (Scheme 1). Yield: 62.5%. m.p.: 60−61 ◦C. 1H NMR
(400 MHz, CDCl3) δ 3.95 (t, J = 4.5 Hz, 2H), 4.36 (t, J = 4.5 Hz, 2H), 5.50 (brs, 2H), 6.87 (d, J = 9.0 Hz,
1H), 7.25 (d, J = 2.5 Hz, 1H), 7.37 (dd, J = 9.0, 2.5 Hz, 1H), 8.14 (s, 1H), 9.88 (s, 1H). IR (KBr, cm–1):
3234 (m), 2953 (m), 2895 (m), 1608 (s), 1577 (m), 1475 (s), 1428 (s), 1366 (m), 1261 (s), 1170 (w), 1054 (s),
971 (w), 927 (s), 836 (m), 776 (s), 727 (s), 676 (s), 620 (s), 587 (w), 542 (w). UV-Vis (CH3CH2OH), λmax

(nm) (εmax): 218, 265, and 322 nm (5.0 × 10−5 M). Anal. Calcd for C9H11BrN2O3 (%): C 39.29; H 4.03;
N 10.18. Found: C 39.58; H 4.00; N 10.06.
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2.3. Synthesis of the Ni(II) Complex

A methanol solution (2.0 mL) of nickel(II) acetate tetrahydrate (5.50 mg, 0.02 mmol) was added
to a trichloromethane solution (3.0 mL) of HL (4.98 mg, 0.02 mmol) at room temperature, and the
color of the mixed solution turned light brown immediately. After, the mixed solution was stirred
for 3–5 min and then the mixture was filtered. The resulting filtrate was left undisturbed for about
one week to gain clear light-yellow block-like crystals suitable for X-ray crystallographic analysis
(Scheme 1). Yield: 53.1%. IR (KBr, cm−1): 3402 (m), 2945 (w), 1596 (s), 1561 (m), 1457 (s), 1386 (s), 1290
(s), 1248 (s), 1073 (m), 1032 (m), 967(w), 935 (w), 851 (w), 744 (m), 701 (w), 661 (w), 620 (w), 558 (w), 523
(w), 455 (w). UV-Vis (CH3CH2OH), λmax (nm) (εmax): 226 and 375 nm (5.0 × 10−5 M). Anal. Calcd for
C30H48Br2N4Ni3O18 (%): C 33.10; H 4.44; N 5.15; Ni 16.17. Found: C 33.32; H 4.21; N 5.11; Ni 16.12.

2.4. Crystal Structure Determination for the Ni(II) Complex

X-ray single crystal diffraction data of the Ni(II) complex was measured at 294.78(16) K with
a SuperNova Dual (Cu at zero) using a monochromated Mo-Ka radiation λ = 0.71073 Å. The LP
corrections were used to with SAINT program and semi-empirical correction using the SADABS
program. The structures were solved using direct methods (SHELXS-2015) [62,63]. The highest
difference Fourier map maximum was about 0.7 with a distance of 1.05 A from Br1. All non-hydrogen
atoms were anisotropically refined; all hydrogen atoms were contained at the calculated positions and
constrained to ride on their parent atoms. Details of the data collection and refinements of the Ni(II)
complex are summarized in Table 1. CCDC (1889237) contain the supplementary crystallographic data
for this paper. The date can be obtained free of charge from the Cambridge Crystallographic Data
Centre and www.ccdc.cam.ac.uk/conts/retrieving.html.

Table 1. Crystal data and refinement parameters for the Ni(II) complex.

Compound Ni(II) Complex

Formula C30H48Br2N4Ni3O18
Formula weight 1088.67
Temperature (K) 294.78(16)
Wavelength (Å) 0.71073
Crystal system orthorhombic

Space group P b c n
a (Å) 17.886(2)
b (Å) 9.3664(14)
c (Å) 24.954(4)
α (◦) 90.00
β (◦) 90.00
γ (◦) 90.00

V (Å3) 4180.5(10)
Z 4

Dcalc (g·cm−3) 1.730
µ (mm−1) 3.325

F (000) 2216
Crystal size (mm) 0.17 × 0.15 × 0.14

θ Range (◦) 3.9870–18.3900

Index Ranges
−21 ≤ h ≤ 19
−11 ≤ k ≤ 8
−22 ≤ l ≤ 29

Reflections collected 13,630
Independent reflections 1967

Rint 0.1191
Completeness to θ 99.8% (θ = 24.997)

Data/restraints/parameters 3670/0/263
GOF 1.070

www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 1. Cont.

Compound Ni(II) Complex

R [I > 2σ(I)] R1 = 0.0721, wR2 = 0.1663
Largest differences peak and hole (e Å−3) 0.738/−0.613

R1 = Σ‖Fo| − |Fc‖/Σ|Fo|; wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2, w = [σ2(Fo

2) + (0.0475P)2 + 1.7291P]−1, where P
= (Fo

2 + 2Fc
2)/3; GOF = [Σw(Fo

2 − Fc
2)2/nobs − nparam)]1/2.

3. Results and Discussion

3.1. IR Spectra

In the IR spectra (Table 2), HL and its complex show different peaks in the 500–4000 cm−1 region.
The ν(O-H) frequency of HL appeared at 3234 cm−1. This peak disappeared in the Ni(II) complex,
while a new peak appeared at 3402 cm−1 which was assigned to the vibration of methanol molecules.
The ligand HL showed a ν(C=N) band at 1608 cm−1, while that of the Ni(II) complex appeared at 1596
cm−1. For the ligand HL, the ν(Ar-O) band appeared at 1261 cm−1, and that of the Ni(II) complex
was observed at 1248 cm−1 [64]. It can be observed from the data that the characteristic ν(C=N) and
ν(Ar-O) frequencies moved to lower frequencies, showing the formation of Ni–N and Ni–O bonds.
The far-infrared spectrum of the Ni(II) complex also gained in the 500–100 cm−1 region in order to
distinguish frequencies owing to the Ni–O and Ni–N bonds, and ν(Ni–O) and ν(Ni–N) frequencies were
found as new peaks at 455 and 532 cm−1 [65], respectively.

Table 2. The major IR spectra of HL and its Ni(II) complex (cm−1).

Compound ν(O–H) ν(C=N) ν(Ar–O) ν(Ni–O) ν(Ni–N)

HL 3234 1608 1261 - -
Complex 3402 1596 1248 455 523

3.2. UV-Vis Absorption Spectra

The UV-Vis titration of the Ni(II) complex is depicted in Figure 1. During the UV-Vis titration, we
can easily observe that the HL shows three typical absorption peaks at 218, 265, and 322 nm, which can
be assigned to the π–π* transition [66]. With the increase of concentration of Ni(II) ions, the three typical
peaks of HL changed, the peaks at 265 and 322 nm disappeared. Meanwhile, a new peak appeared
at 375 nm, and attributed to HL to metal LMCT [67–69], which is characteristic of the transition metal
salen-type complexes. In addition, when the ratio of HL to metal ions is lower than 2:3, the absorption
intensity increases linearly with the concentration of Ni(II) ions, and when it reaches 3:2, the absorption
spectrum no longer changes with the increase of concentration of Ni(II) ions, indicating that the titration
reaches the end point. In the UV-Vis titration, we formulated the ligand HL to a concentration of
5.0 × 10−5 M, and the Ni(OAc)2·4H2O was formulated to a concentration of 1.0 × 10−3 M.

3.3. The Crystal Structure Description

The crystal structure of the homo-trinuclear Ni(II) complex is given in Figure 2, and bond lengths
and angles are given in Table 3. X-ray crystallographical analysis revealed that the Ni(II) complex
crystallizes in the orthorhombic, space group P b c n, Z = 4, all bond lengths are in normal ranges [22,41].
The complex [Ni3(L)2(µ2-OAc)2(OAc)2(CH3OH)2]·2CH3OH is formed by coordination of HL with
Ni(OAc)2·4H2O, the Ni(II) complex includes three Ni(II) atoms and two completely deprotonated
ligand (L)− units. The complex presents a centrally symmetric structure, the central Ni(II) atom (Ni2)
is hexacoordinated, consists of six O atoms (O1, O4, O26 and O1#, O4#, O26#) from the two fully
deprotonated ligand (L)− units and four acetate molecules with two kinds of coordination modes,
together formed an octahedral coordination geometry. Then, the coordination spheres of the two
terminal Ni(II) atoms (Ni1 and Ni1#) are both surrounded by two imine N atoms (N9 and N20),
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one phenol O atom (O4), one O atom (O3) from the coordinated methanol molecule, and two N atoms
(O1 and O2) from two acetate molecules with two kinds of coordination modes to complete together
their slightly distorted octahedral geometries.Crystals 2018, 8, x FOR PEER REVIEW  5 of 13 
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Table 3. Bond lengths (Å) and angles (◦) of the Ni(II) complex.

Bond Lengths Bond Lengths

Ni1–O1 2.111(5) Ni2–O1 2.076(5)
Ni–O2 2.009(5) Ni2–O4 2.082(5)

Ni1–O3 2.091(6) Ni2–O26 2.078(6)
Ni1–O4 2.018(5) Ni2–O1 #1 2.076(5)
Ni1–N9 2.036(6) Ni2–O4 #1 2.082(5)

Ni1–N20 2.065(8) Ni2–O26 #1 2.078(6)

Bond Angles Bond Angles

O1–Ni1–O2 93.0(2) O1–Ni2–O4 77.2(2)
O1–Ni1–O3 86.8(2) O1–Ni2–O26 89.1(2)
O1–Ni1–O4 77.8(2) O1–Ni2–O1 #1 180.00
O1–Ni1–N9 94.0(3) O1–Ni2–O4 #1 102.8(2)

O1–Ni1–N20 166.0(3) O1–Ni2–O26 #1 91.0(2)
O2–Ni1–O3 175.0(3) O4–Ni2–O26 91.8(2)
O2–Ni1–O4 93.0(2) O1 #1–Ni2–O4 102.8(2)
O2–Ni1–N9 87.5(3) O4–Ni2–O4 #1 180.00

O2–Ni1–N20 92.1(3) O4–Ni2–O26 #1 88.2(2)
O3–Ni1–O4 91.8(2) O1 #1–Ni2–O26 91.0(2)
O3–Ni1–N9 87.6(3) O4 #1–Ni2–O26 88.2(2)

O3–Ni1–N20 89.3(3) O26–Ni2–O26 #1 180.00
O4–Ni1–N9 171.9(3) O1 #1–Ni2–O4 #1 77.2(2)

O4–Ni1–N20 88.8(3) O1 #1–Ni2–O26 #1 89.1(2)
N9–Ni1–N20 99.3(3) O4 #1–Ni2–O26 #1 91.8(2)

Symmetry transformations used to generate equivalent atoms: #1 −x, 1 − y, −z.

3.4. Supra-Molecular Interactions

As illustrated in Figure 3a, there are five pairs of different intra-molecular hydrogen bond
interactions [70,71], which are N9–H9B· · ·O7, C6–H6· · ·O26, C17–H17A· · ·O2, C24–H24A· · ·O4, and
C25–H25A· · ·O22 intra-molecular interactions, and inter-molecular hydrogen bonding interactions
(N9–H9A· · ·O7 and C28–H28B· · ·O7) shown in Figure 3b, except for the hydrogen bonding formed,
other hydrogen atoms were omitted. Hydrogen bonding interactions of the Ni(II) complex are summed
in Table 4. The hydrogen bond interactions play a major role in the building of the Ni(II) complex.
Through this inter-molecular hydrogen bonding inter-action, each molecule of the Ni(II) complex is
connected to each other to gain a two-dimensional supra-molecular network along the ab plane. At the
same time, in Figure 3c, through the inter-molecular hydrogen bonding interactions, this network
structure is connected to each other to gain an infinite three-dimensional supra-molecular structure.

Table 4. Hydrogen bonding interactions (Å, ◦) of the Ni(II) complex.

D–H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) ∠∠∠D–H· · ·A

N9–H9B· · ·O7 0.90 2.00 2.808(10) 149
C6–H6· · ·O26 0.93 2.52 3.202(10) 131

C17–H17A· · ·O2 0.97 2.48 3.372(11) 153
C24–H24A· · ·O4 0.96 2.57 3.438(11) 150

C25–H25A· · ·O22 0.96 2.48 3.178(13) 130
N9–H9A· · ·O7 0.90 2.12 2.967(10) 156

C28–H28A· · ·O7 0.97 2.50 3.182(12) 128
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3.5. Fluorescence Titration Spectra

As shown in the Figure 4, the fluorescence properties of HL and its Ni(II) complex in ethanol
solvent were studied. The concentration of the ligand HL was 5.0 × 10−5 M, the concentration of the
Ni(II) ions was 1.0 × 10−3 M, and the maximum excitation wavelength was about 315 nm.

Crystals 2018, 8, x FOR PEER REVIEW  8 of 13 

 

N9–H9B···O7 0.90 2.00 2.808(10) 149 
C6–H6···O26 0.93 2.52 3.202(10) 131 

C17–H17A···O2 0.97 2.48 3.372(11) 153 
C24–H24A···O4 0.96 2.57 3.438(11) 150 

C25–H25A···O22 
N9–H9A···O7 

C28–H28A···O7 

0.96 
0.90 
0.97 

2.48 
2.12 
2.50 

3.178(13) 
2.967(10) 
3.182(12) 

130 
156 
128 

3.5. Fluorescence Titration Spectra  

As shown in the Figure 4, the fluorescence properties of HL and its Ni(II) complex in ethanol 
solvent were studied. The concentration of the ligand HL was 5.0 × 10−5 M, the concentration of the 
Ni(II) ions was 1.0 × 10−3 M, and the maximum excitation wavelength was about 315 nm.  

 
Figure 4. Fluorescence spectra of HL and its Ni(II) complex in ethanol upon excitation at 315 nm. 

When the excitation wavelength is 315 nm, the ligand HL exhibits a strong absorption peak at 
365 nm, which is attributed to the π–π* transition. During the fluorescence titration experiment, the 
fluorescence intensity decreases as the concentration of the metal(II) ions increases. The decrease in 
fluorescence intensity was mainly owing to the bonding of the (L)− ligand with the Ni(II) ions. 
Compared with the emission spectrum of HL, the decrease in the fluorescence intensity of the 
complex was obtained, showing that the fluorescence was quenched due to the introduction of the 
Ni(II) atoms. 

3.6. Hirshfeld Surface Analysis  

Figure 5 shows the Hirshfeld surface distribution of the complex through dnorm, di, and de 
mapping [72]. It can be clearly seen from the figure that the red region represents the O–H between 
the O and H atoms in the Ni(II) complex. Inter-action intensity map, the heavier the color of the red 
region, the stronger the O–H interactions, and the other shallower regions are mainly the 
distribution of short-range effects such as C–H and H–H. From this figure, the distribution of the 
approximate hydrogen bondings in the complex can be analyzed, which is helpful to further explore 
the intrinsic factors of the stable existence of the complex. 

Figure 4. Fluorescence spectra of HL and its Ni(II) complex in ethanol upon excitation at 315 nm.

When the excitation wavelength is 315 nm, the ligand HL exhibits a strong absorption peak
at 365 nm, which is attributed to the π–π* transition. During the fluorescence titration experiment,
the fluorescence intensity decreases as the concentration of the metal(II) ions increases. The decrease
in fluorescence intensity was mainly owing to the bonding of the (L)− ligand with the Ni(II) ions.
Compared with the emission spectrum of HL, the decrease in the fluorescence intensity of the complex
was obtained, showing that the fluorescence was quenched due to the introduction of the Ni(II) atoms.

3.6. Hirshfeld Surface Analysis

Figure 5 shows the Hirshfeld surface distribution of the complex through dnorm, di, and de

mapping [72]. It can be clearly seen from the figure that the red region represents the O–H between
the O and H atoms in the Ni(II) complex. Inter-action intensity map, the heavier the color of the red
region, the stronger the O–H interactions, and the other shallower regions are mainly the distribution
of short-range effects such as C–H and H–H. From this figure, the distribution of the approximate
hydrogen bondings in the complex can be analyzed, which is helpful to further explore the intrinsic
factors of the stable existence of the complex.Crystals 2018, 8, x FOR PEER REVIEW  9 of 13 
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In addition, the proportion of C–H/H–C, O–H/H–O, and H–H/H–H in the complex can also
be gained by Hirshfeld surface analysis. Here, we theoretically calculate the short-range action
distribution inside the complex. As depicted in Figure 6, in this two-dimensional Hirshfeld surface
generation map, the blue region represents the distribution of different interactions. For the entire
Ni(II) complex molecule, the ratio of C–H/H–C, O–H/H–O, and H–H/H–H in the surface of Hirshfeld
was calculated to be 5.5%, 9.9%, and 55.9%, respectively. In fact, a complex can exist stably, and the
short-range effects in these structures are indispensable.
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4. Conclusions

In summary, a new homo-trinuclear Ni(II) complex was designed and synthesized. X-ray
crystallography reveals that the Ni(II) atoms in the complex are coordinated to two acetate molecules
by two kinds of bidentate bridging and mono-dentate chelating coordination modes, which is a very
rare phenomenon. The UV-Vis titration experiment clearly shows the ligand to Ni(II) ions has a
stoichiometry of 2:3. Compared with HL, the fluorescence intensity of the complex was significantly
lowered, indicating that the Ni(II) ions have fluorescence quenching characteristics. In addition,
Hirshfeld surface analysis indicates that the Ni(II) complex can be stable owing to intra-molecular and
inter-molecular hydrogen bonding interactions.
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