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Abstract: An up-to-date review on recent results for self-trapping of free electrons and holes,
as well as excitons, in strontium titanate (STO), which gives rise to small polarons and self-trapped
excitons (STEs) is presented. Special attention is paid to the role of carrier and exciton self-trapping
on the luminescence emissions under a variety of excitation sources with special emphasis on
experiments with laser pulses and energetic ion-beams. In spite of the extensive research effort,
a definitive identification of such localized states, as well as a suitable understanding of their
operative light emission mechanisms, has remained lacking or controversial. However, promising
advances have been recently achieved and are the objective of the present review. In particular,
significant theoretical advances in the understanding of electron and hole self-trapping are discussed.
Also, relevant experimental advances in the kinetics of light emission associated with electron-hole
recombination have been obtained through time-resolved experiments using picosecond (ps) laser
pulses. The luminescence emission mechanisms and the light decay processes from the self-trapped
excitons are also reviewed. Recent results suggest that the blue emission at 2.8 eV, often associated
with oxygen vacancies, is related to a transition from unbound conduction levels to the ground singlet
state of the STE. The stabilization of small electron polarons by oxygen vacancies and its connection
with luminescence emission are discussed in detail. Through ion-beam irradiation experiments, it has
recently been established that the electrons associated with the vacancy constitute electron polaron
states (Ti3+) trapped in the close vicinity of the empty oxygen sites. These experimental results
have allowed for the optical identification of the oxygen vacancy center through a red luminescence
emission centered at 2.0 eV. Ab-initio calculations have provided strong support for those experimental
findings. Finally, the use of Cr-doped STO has offered a way to monitor the interplay between the
chromium centers and oxygen vacancies as trapping sites for the electron and hole partners resulting
from the electronic excitation.

Keywords: wide-bandgap semiconductors; strontium titanate; defects; oxygen vacancies; polarons;
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1. Introduction

Strontium titanate (SrTiO3), designated from here on as STO, is a very useful multifunctional
ceramic material exhibiting remarkable and fascinating physical and chemical properties.
This paradigmatic example of oxide perovskites has a high potential for electrical, optoelectronic,
photocatalytic, and magnetic applications, and constitutes a basis for the so-called complex oxide-based
microelectronics [1–5]. Moreover, STO is a model transition metal oxide material with a simple crystal
structure that serves as a reference to understand the behavior of all other oxide perovskites, such as
BaTiO3, KTaO3, and PbTiO3. To advance the understanding and mastering of all these applications,
it is essential to improve our knowledge on crystal defects and electronic carrier behavior in this
material. In spite of the extensive research work performed during many years and the progress
achieved, there are still many key problems waiting for a solution. The authors of this review, together
with a number of active research groups around the world, have been recently involved in this task,
and a summary of their main achievements in the field appears opportune. The paper focusses on the
use of luminescence experiments to elucidate some of the key challenges, related to the localization of
electronic carriers [6–9] and excitons, as well as the structure of oxygen vacancies and their capabilities
for electron/polaron trapping. A main technique used to address this complex problem is ion beam
induced luminescence or ionoluminescence (IL) that combines the capabilities of ion beams to generate
point defects through elastic atom collisions with the high sensitivity of luminescence spectroscopy to
identify and characterize them. In fact, the identification of oxygen vacancies by their luminescence
emission has been a conflictive issue during all this time [10,11]. It appears now to be definitely
established that these vacancies emit a red luminescence band centered at around 2.0 eV that is
associated with trapped Ti3+ polarons in the close vicinity of the vacancy. Abundant theoretical support
for this model has been also recently achieved [12–15]. Another relevant output of recent research
carried out with both pulsed lasers and ion beams has to do with the self-trapped exciton [16–18].
New results suggest that, aside from the well-known localized green optical transition centered at
2.5 eV, the blue emission at 2.8 eV is associated with transitions from conduction band (CB) states to
the ground STE level. It is expected that those new results could be further investigated and extended
to other perovskite oxides.

Although the review focuses on the behavior of bulk crystals one should remark that the surfaces
often present very peculiar properties and physical-chemical behavior. In particular, they may show
nontrivial atomic and electronic structures including dangling bonds and incomplete atomic coordination.
If these structures can be controlled, unusual charge states, and electrical and magnetic performances
can be achieved, such as a high-mobility 2-D electron gas [19]. More relevant for our review are the
studies based on the monitoring of oxygen vacancy defects and Ti3+ states at the surfaces and its impact
on the luminescence behavior [20,21]. However, it is important to mention that the luminescence spectra
and behavior observed under different excitation sources from UV light [10,17,22–30] to X-rays [16],
electrons [31], and ion beams [5,32], having very different penetration depths, show a similar pattern
apparently associated to a bulk response. In spite of these considerations, we believe that surface
luminescence is beyond the scope of our review and deserves independent attention.

2. Crystal Structure and Main Properties of STO

Strontium titanate (STO) is an extensively studied oxide with a cubic perovskite structure ABO3

at room temperature (RT) (space group Pm3m) with a lattice parameter of 0.3905 nm and a density
of ρ = 5.12 g/cm3; A is generally a monovalent (Na, K, . . . ) or divalent (Sr, Ba, . . . ) ion, and B is a
tetravalent (Ti, Zr, . . . ) or pentavalent (Nb, Ta, . . . ) ion. The crystal structure, sketched in Figure 1,
is made up of BO6 octahedral units arranged in a cubic pattern and linked together by shared oxygen
ions at the corners. The Ti4+ ions are six-fold coordinated by O2− ions, whereas each of the Sr2+ ions is
surrounded by four TiO6 octahedra. Therefore, each Sr2+ ion is coordinated by 12 O2− ions. Within the
TiO6 octahedra, while a hybridization of the O 2p states with the Ti 3d states leads to a pronounced
covalent bonding [33], Sr2+ and O2− ions exhibit ionic bonding character. Hence, STO has mixed
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ionic-covalent bonding properties. The nature of this chemical bonding leads to a unique structure
that makes it a model electronic material. Table 1 shows the main physical properties of STO.
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Figure 1. Schematics of typical perovskite structure showing strontium titanate (STO) (100) 1 × 1 × 2
cell and the [TiO6] basic octahedral units. The axis containing Ti–O–Ti between both unit cells is
clearly observed.

Table 1. Summary of the main physical properties of STO.

Description Value

Lattice parameter at RT (nm) 0.3905
Density (g/cm3) 5.12

Melting point (◦C) 2080
Mohs hardness 6

Dielectric constant at RT (ε0) 300
Thermal conductivity (W/mK) 12

Coefficient of thermal expansion (Å/◦C) 9.4 × 10−6

Refractive index 2.31–2.38

The stoichiometric composition of STO behaves as a wide-band gap semiconductor.
Detailed measurements of the optical absorption below the fundamental edge shows an indirect transition,
Γ→X, at 3.27 eV; whereas the first direct transition, X→X, is found at 3.47 eV [34]. A large number of
experimental and theoretical studies of the electronic band structure have since been performed [35,36].
The empty conduction band is made up mainly of Ti 3d states; whereas the valence band largely comes
from O 2p states. At RT it presents a high dielectric constant (≈300 at RT and≈20,000 near T = 0 K) [37]
and remains paraelectric at all temperatures due to a frustrated ferroelectric transition as a consequence of
quantum fluctuations [38]. At 105 K, cubic STO undergoes a structural phase transition to a tetragonal
crystal structure (a = b 6= c and cmax = 0.39 nm; space group I4/mcm) due the opposite rotation of
neighboring oxygen octahedra [39]; whereas at lower temperatures (36 K and 65 K), it presents also some
dynamic transitions that are strongly dependent on impurity doping [40,41].

3. Luminescence Experiments

Although many different techniques have been used to advance the understanding of the
electronic structure in STO, we will focus here on luminescence experiments that have played a
major role for the main achievements discussed in the present review. In particular, they have provided
valuable information about the occurrence of in-gap levels for self-trapped carriers and excitons, as well
as for key impurities and defects (e.g., oxygen vacancies). A variety of excitation sources, including
X-rays, electrons and ion-beams have been used for comparison (see Table 1 in [32]). Depending on
sample, excitation conditions, and measuring temperature, several overlapped Gaussian emissions
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centered at 2.0 eV, 2.5 eV, and 2.8 eV are generally distinguished [32]. Remarkably, the (red) 2.0 eV band
has only been clearly observed for heavily strained and amorphous samples suggesting that it is closely
related to structural disorder [31,42,43]. Another band at 3.2 eV has been identified at low temperatures
(below 100 K) but it has not been much investigated. The interpretation of the main bands at 2.5 eV
and 2.8 eV in terms of in-gap levels associated to definite electronic centers, such as self-trapped
carriers or lattice defects, has been the object of extensive research during recent years. The most used
technique is photoluminescence (PL), which has been crucial in the study of self-trapped carriers and
excitons. As to light excitation, continuous UV lasers [10], as well as pulsed laser of ns [22,23] and
ps [24,25,28,30] duration having energies slightly above the STO band gap, have been used and have
provided a substantial amount of information. The power excitation densities in the ps experiments
are quite high (0.01–10 mJ/cm2), which has relevant consequences on the results. PL experiments have
allowed reliable information to be obtained on key parameters of the investigated centers, such as
lifetimes, electron–phonon coupling and so on, which will be discussed in the following sections.

More recently, ion-beam excitation to detect the emitted ionoluminescence (IL) has been more
extensively used. It presents a number of advantages over PL using continuous or pulsed lasers,
such as the very large range of electronic excitation allowing for the simultaneous observation of
all emission bands. In particular, this feature permits the real-time study of the interplay among all
emitting centers during irradiation. The main shortcoming is the need for sophisticated installations
not always available. Fortunately, reliable electrostatic accelerators in the MV range are now dedicated
to this topic [44,45]. The proper choice of ions with different masses and energies allows controlling
the relative strength of electronic excitation and atomic collision processes, as well as the penetration
depth of the excitation and structural damage [46–48]. As an example, a diagram of the installation
available in the Ion Beam Materials Laboratory (IBML) at the University of Tennessee, Knoxville,
TN, USA [45,49,50] is shown in Figure 2.
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Figure 2. Schematic of the experimental setup for in-situ ionoluminescence (IL) measurements reprinted
from Crespillo et al. [50], Copyright (2016), with permission from Elsevier.

4. In-Gap Levels Associated to Self-Trapped Carriers (Small Polarons)

Strontium titanate and other perovskites can exhibit very high electrical conductivities and carrier
mobilities. The largest mobilities can be achieved in epitaxial thin films produced by molecular
beam epitaxy, which allows for precise control of structural perfection and doping concentration.
In fact, electron mobilities exceeding 30,000 cm2·V−1·s−1 have been obtained for epitaxial STO films
at low temperatures [51]. Furthermore, superconductivity below 1 K has been observed in STO [52].
However, electronic transport is strongly affected by the high dielectric constant of STO and the
subsequent coupling (interaction) of electronic carriers with polar phonons. The dragging of the
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coupled phonon cloud generally limits the mobility, turning the free carriers into the so-called large
polarons with larger effective masses. Under strong electron–phonon coupling, the carriers may
become localized at the atomic level and form small radius defects in accordance with the early
prediction in the seminal paper by Landau [53]. This self-trapping process is determined by a
competition between the energy loss due to localization and the energy gain associated with the
electron-phonon interaction and associated polarization energy [6]. Experimental evidence for the
existence of small polarons in some perovskites, such as potassium tantalate (KTaO3) crystals, is already
available, mostly through electron paramagnetic resonance spectroscopy (EPR) experiments [54].
For electrons in STO, there is no experimental evidence for isolated small polaron states, although it
has been suggested [6,17,55,56] that electron–polarons may be coupled to impurities or lattice defects.
A density functional theory (DFT) approach to investigate the competition between large and small
polarons has been reported [8]. Those authors claim that for a density of electronic carriers above≈ 1020

cm−3 the excess electrons tend to form small polarons; whereas smaller densities lead to delocalized
electrons or large polarons. In many cases, these polaron states are expected to introduce energy
levels in the forbidden gap that should be responsible for luminescence emissions. The experimental
information is very extensive, although the situation is, in many cases, quite controversial and unclear.
However, it seems, as described in Section 6, that electron self-trapping at oxygen vacancies is firmly
established on experimental and theoretical grounds.

On the other hand, the question of hole self-trapping in STO looks similar to the case for electrons,
i.e. no definitive experimental proof is available. However, the existence of a certain in-gap level
associated with self-trapped holes (hole-polaron, h+) has been theoretically predicted [57]. In fact,
it has been calculated that holes become localized on an individual O− atom with an energy decrease
of 13 meV (hole self-trapping energy, EST) with respect to a free (delocalized) hole residing at the
valence-band maximum (VBM) (see Figure 3). On the other side, the activation energy for hole hopping
has been estimated to be 66 meV [57,58]. This makes the mobility of the hole at RT, derived from an
adiabatic hopping approach, around three orders of magnitude lower compared to that for electrons
(5 × 10−3 cm2·V−1·s−1 for the hole mobility, versus 10 cm2·V−1·s−1 for the electron mobility [59,60]).
Finally, it has been established that, despite the large local distortion of the lattice, the formation of a
O2−

2 peroxide anion, coming from two paired neighboring O− anions, is energetically more favorable
than two separated O− ions, by ~496 meV [57].
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Figure 3. (a) Charge densities for the localized in-gap hole state. (Ti–O bond lengths are shown in Å).
A lattice distortion accompanies the hole localization (hole–polaron formation) due to trapping by the
potential well produced by the lattice distortion, (b) Configuration coordinate diagram based on the
Franck–Condon principle. (e− (CBM) denotes a delocalized electron at the conduction-band minimum
(CBM), h+ (VBM) and h+ (polaron) denote a delocalized hole at the valence-band maximum (VBM)
and a localized hole, respectively). The figures comprising this composition have been reprinted with
permission from [57] Copyright (2014) by the American Physical Society.
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Aside from those calculations, the research on the topic of carrier self-trapping has focused on the
role of the intrinsic in-gap levels to account for the luminescence emissions [8]. Interesting results have
been obtained on undoped and electron-doped STO by time-resolved spectroscopy using ps pulsed
lasers at several temperatures from 10 K to 700 K [24,25,27,28,30]. They have shown that for excitation
with energies slightly above the band gap, the wavelength spectra are strongly dependent on the time
elapsed after the light pulse. As shown in Figure 4, the emission during the first few nanoseconds
occurs mostly in the blue region and shows a broad band centered at around 2.8 eV. At longer times,
it shifts to the green region and gives rise to a broad emission PL peaked at 2.5 eV, suggesting an
interplay between two trap levels at different depths after excitation. In fact, the kinetics of the emission
has been described in terms of a parallel contribution of monomolecular (linear in the carrier density)
and bimolecular (quadratic in the carrier density) recombination processes. A cubic process associated
with non-radiative Auger transitions has been also proposed [28], and its contribution to the kinetics of
the emission yield has been quantitatively analyzed. However, this assignment has been also refuted
by Rubano et al. [27] with a quite through data analysis. It is worth mentioning that the analysis
of the experiments is difficult due to the heavy overlapping between the two contributing emission
bands. Therefore, the origin of the Auger processes, and their unambiguous correlation with the
corresponding photon transitions, has not been possible. In summary, in accordance with previous
work [28], the data [28] point to a trapped hole, either self-trapped or trapped at certain defects, as one
of the recombining species for the 2.8 eV emission. All those experiments [24,25,27,28,30], indeed,
confirm time-resolved PL spectroscopy as an efficient route to clarify the origin of the emissions.
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Figure 4. (a) Time-gated (0–8 ns) and time integrated photoluminescence (PL) spectra at 10 and
300 K, (b) PL decay curves at 10, 100, 200, and 400 K. The inset shows a more detail of PL decay
profiles in the sub-nanosecond region at 10 and 400 K, (c) PL decay dynamics at different excitation
densities. Solid lines fit to the data using Equation (1) from [24]. The inset shows the PL spectrum
under 0.02 mJ/cm2 laser irradiation (solid line) and the absorption spectrum (dashed line). In (a,b) PL
spectra were acquired under an excitation density of 8.9 mJ/cm2. In the ordinate axis, a.u. stands
for “arbitrary units”. Figure 4a,b are reprinted with permission from [28] Copyright (2009) by the
American Physical Society. Figure 4c is reprinted with permission from [24] Copyright (2008) by the
American Physical Society.

The dependence of the PL emission spectra induced by above-gap excitation on excitation rate
has provided a relevant piece of information [30]. UV pulses with a duration of 25 ps (full width at half
maximum, FWHM) and photon energy of 3.49 eV have been used for exciting well above the optical
direct absorption edge (about 3.4 eV) of STO [34,61]. The excitation rates varied from 50 µJ/pulse to
near 1000 µJ/pulse. For pure stoichiometric STO, the clear evolution of the PL spectra shape is shown
in Figure 5 for irradiations at different temperatures and excitation rates. At RT, a large enhancement
in the emission centered at 2.8 eV, in comparison to that at 2.5 eV, is observed for increases in pulse
energy from 50 to 500 µJ per pulse: a 40% enhancement for pure STO and a 25% enhancement for
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Nb-doped STO. Moreover, at any of the pulse energies, the ratio between the two intensities at 2.8 eV
and 2.5 eV is clearly enhanced for STO:Nb samples as well, where an excess of free electrons in the
conduction band (CB) has been introduced. All these PL data have found strong support in the new IL
experiments described in Section 5, which also add new insights on a definite interpretation for the
green and blue emission mechanisms.
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To finish up this topic, one may briefly comment on the possible origin of the luminescence
emission at 3.2 eV [10,29,62]. This asymmetric non-Gaussian UV band has been reported for low
temperatures (<100 K) and very high excitation rates, as well as for electron-doped samples. In both
cases, the key point is the generation of high populations of excited electrons and holes. Consequently,
it is reasonable to consider that the corresponding optical transition connects conduction band (CB)
states and a possible in-gap level for the self-trapped hole. In fact, theoretical estimates for the
self-trapping energy of a hole yield 13 meV [57], which may explain the very close value of the
transition energy (3.2 eV) to the STO band gap energy (3.27 eV) as well as the strong reduction of the
emission yield with increasing temperature.

5. Self-Trapped Excitons (STEs): Structure and Luminescence Emission

Initially, electronic excitations with energies above the band gap generate free electrons and
holes. The experimental results on the time evolution of the visible and ultraviolet (VIS-UV) PL
emission indicate that these free carriers very rapidly become bound into e–h pairs localized in the
lattice, forming a self-trapped exciton (STE). The trapping time to form STE bound states is in the
sub-nanosecond time scale [30]. This self-trapping effect seems dominant in pure samples over extrinsic
electron or hole trapping at impurities, particularly at high excitation rates, such as those achieved
under ps laser or ion-beam excitation. One may think of the STE as an electron orbiting around a
self-trapped hole (or vice-versa). It has been generally accepted that the e–h radiative recombination of
the STE gives rise to a broad green emission at around 2.5 eV accompanied by strong lattice relaxation,
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associated with a triplet–singlet transition of the center (Ti3+ −O−–) inside a regular octahedron [16].
The main reason is due to the large Stokes shift between the excitation (energy above the band gap)
and the emission wavelengths. A similar broad green emission has been also reported for other
perovskites and also assigned to STEs. A very detailed study of such emissions in STO was carried out
by Leonelli and Brebner [17]. They accounted for some spectroscopic parameters, such as band width,
in terms of electron–phonon interaction for a localized center. The mean lifetime is quite constant,
around 1 ms below 30 K, in accordance with the spin-forbidden character of the transition [17,22,62].
It strongly decreases upon increasing temperature with an activation energy of 70 meV. More recently,
rather similar results, plotted in Figure 6, were obtained by Hasegawa et al. [22,23], suggesting a
non-radiative recombination channel having a thermal activation energy of 43 meV [22]. The measured
activation energy values could be possibly related to electron–phonon interactions since they are not
far from the vibronic level separation h̄Ω = (88 ± 4) meV in the Huang–Rhys model for the localized
center [17]. Nonetheless, the thermal decay of the STE is not simple and cannot be described by a
single exponential kinetics. In fact, researchers [22,23] have reported decay kinetics following a power
law time dependence t−η (see Figure 6), suggesting that the process may be governed by random
tunneling. However, the specific physical mechanism and the involved centers in the tunneling and
recombination process are not clear yet. One should remark that, assuming the adiabatic small-polaron
hopping mechanism, the hole-polaron mobility has an activation energy of 66 meV [57]. Therefore,
one might think of the hopping process as hole migration to the STEs, followed by charge and energy
transfer between the STE and the hole. In our opinion this problem is still waiting for a solution.
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dependence are drawn. Time resolved PL spectra observed at 4.5 K are shown as inset, (b) Temperature
dependence of weighted mean lifetimes <τ> deduced from Equation (4) in [22], (c) Temperature dependence
of the integrated PL intensity. Solid line represents fitting curve according to Equation (5) in [22] with
activation energy ∆E = 43 meV. (a.u. stands for “arbitrary units”). The figures in this composition have been
reprinted from Hasegawa et al. [22], Copyright (2000), with permission from Elsevier.

Recently, some novel ionoluminescence experiments have been performed by the authors at
University of Tennessee, Knoxville, TN, USA [45] on stoichiometric STO. The still unpublished results
have shown that the emission yields for the green (YG) and blue (YB) bands, centered at 2.5 eV and
2.8 eV respectively, evolve in parallel during ion irradiation, and suggest that the two emission bands
may originate from optical transitions from the same center, namely the STE. This scheme is reinforced
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by the comparison of the luminescence emissions obtained by using ions with different masses and
energies, i.e., varying the electronic excitation rate. Whereas irradiations with 3 MeV H, or 8 MeV O
(low electronic excitation) show a comparable contribution to the 2.8 eV and 2.5 eV emissions, the blue
band is very strongly enhanced when irradiating with more energetic and heavier ions, presenting a
higher electronic excitation rate. These results indeed support the models [10,11,27,30] attributing the
blue emission to recombination of conduction band electrons with self-trapped holes, and establish
an interesting connection between this recombination and the localized e–h transitions for the STE.
Moreover, the ion-beam results on using different ion energies, closely resemble those obtained under
ps pulsed laser excitation by Rubano et al. [27,30], and previously shown in Figure 5. The role of the
time elapsed after a laser pulse on the emission spectra [24,28] can be understood as the result of the
competition between the lifetimes for the green and blue overlapped bands. The long decay time
of milliseconds (long lifetime) for the 2.5 eV band in comparison with the very short lifetime (a few
nanoseconds) for the 2.8 eV band, explains the initial dominance of this latter emission immediately
after the laser pulse excitation (see Figure 4).

6. Point Defects in Bulk STO: Oxygen Vacancies

The oxygen vacancy is possibly the most conspicuous point defect in STO, as well as in many
oxides. Many of the outstanding properties of these materials are not yet fully understood, but
critically rely on the role of oxygen vacancy disorder and its effect on the electronic structure. Therefore,
identification and characterization of this disorder has been a critical objective of materials scientists in
order to achieve a wide range of functional applications, including manufacturing novel devices and
engineering nanoscale structures.

Although oxygen vacancies can be produced by different methods, such as chemical doping,
thermal treatments and irradiation with particles (electrons, ions, and neutrons), their identification
in STO has remained elusive from optical and EPR characterization methods. Recently, a detailed
kinetic study using ion beams has allowed unambiguously assigning a red emission band centered
at 2.0 eV to oxygen vacancies. The experiments [9] have used a variety of ion beams and energies to
tailor the electronic excitation rate and introduce controlled amounts of lattice defects, mainly oxygen
vacancies. Furthermore, the penetration depth can be varied from less than one micron to tens of
microns, so that surface effects can be minimized, in contrast to low energy cathodoluminescence
(CL) or UV light excitation [46–48]. The initial rate for the yield of the luminescence emission,
was linearly correlated with the rate of oxygen vacancy generation calculated through SRIM 2012
simulations [63,64], as depicted in Figure 7. The lower abscissa axis uses the total number of vacancies
produced along the entire projected range of the incident ion as an alternative measurement for the
irradiation fluence.

The specific model for the structure of the oxygen vacancy center has been derived from detailed
theoretical DFT calculations [12], which suggests the electronic structure schematically depicted
in Figure 8. It corresponds to a peculiar-type of F-type center, consisting of electrons trapped at
host Ti4+ ions adjacent to an oxygen vacancy [9,32], which can be designated as Ti3+ − VO − Ti3+.
Other calculations using slightly different ab-initio methods [13–15] confirm this basic structure,
although the results present somewhat different electronic features. In this model, the red luminescence
transition at 2.0 eV (also depicted in the diagram of Figure 9) essentially corresponds to the t2g → eg

optical transition between the two split states of the 3d1 electronic configuration of the Ti3+ ion in
octahedral symmetry. In fact, the observation of the red 2.0 eV emission in heavily strained and
amorphous STO samples [31,42,43], where the translational symmetry of the lattice is broken, provided
key evidence that prompted the model proposed [9].
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Figure 8. (a) Schematic for possible mechanism of the electronic processes involved in the red
luminescence band for STO associated with the oxygen vacancy. The conduction band (CB) is mainly
composed of 3d(t2g) and 3d(eg) orbitals of Ti, and the upper valence band (VB) is associated with O
2p states, hybridized with Ti and Sr states. The well-defined 2.0 eV emission band observed at LT is
attributed to d–d transitions (inside TiO6 octahedron) from electrons that are self-trapped as relaxed Ti3+

centers adjacent to oxygen vacancies [9]. A density functional theory (DFT) calculation of the electronic
density of states (DOS), similar to that calculated by Ricci et al. [12], showing the doubly occupied
impurity state in the gap associated with the oxygen vacancy in the axis containing Ti3+ −VO − Ti3+,
is included next to the schematics. (b) Ab-initio calculation in the local density approximation (LDA) of
total and site projected DOS for oxygen, titanium, and strontium, respectively. (a) has been adapted
from Crespillo et al. [9], Copyright (2018), with permission from Elsevier, and (b) has been reproduced
from [35], with the permission of AIP Publishing.
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Figure 9. Electronic processes proposed to describe the interplay between the emission kinetics of the
1.55 eV emission of Cr3+ (a) and the 2.0 eV band of oxygen vacancies (b), during 3 MeV H irradiation
at 100 K. The plot in (c) evidences a clear correlation between the square of the yield at 2.0 eV and the
inverse of the yield at 1.55 eV as a function of fluence [5]. This figure has been reprinted from Crespillo
et al. [9], Copyright (2018), with permission from Elsevier.

A relevant point, which still needs to be clearly assessed, concerns the relative location of the
3d levels of the impurity within the band scheme levels of STO and, particularly, the location of the
ground 3d(eg) level in relation to the minimum of the conduction band (CBM). In relation to this point,
various theoretical approaches yield different results, which depend on the charge state of the vacancy
center [15], so that it remains an open issue. As an illustrative example, theoretical calculations [14]
have yielded a value of 0.7 eV below the minimum of the conduction band (CBM). As to the location
of the higher level of the 2.0 eV transition, photoemission experiments, as well as calculations, locate
the Ti 3d levels at 1.5–2.5 eV above such a minimum level [35], as illustrated in Figure 8b. Moreover,
it is clear that a realistic atomistic structure around the oxygen vacancy is a key feature for the correct
analysis of the problem. This is exemplified by the anti-ferrodistortive (AFD) octahedron rotation
found by Choi et al. [65] associated with the electronic structure of the vacancy.

7. Interplay between Oxygen Vacancies and Impurity Centers (Chromium)

Ionoluminescence from STO samples showing a well-resolved extrinsic emission associated
with chromium impurities [5] has been obtained at 100 K under 3 MeV H irradiation. The impurity
initially presenting the +4 valence state captures electrons during irradiation and converts to Cr3+,
yielding a well-known and intense emission band with a vibronic structure centered at around 1.55 eV
(zero-phonon line). The experiments support the new red emission model for the oxygen vacancy
centers [9]. Moreover, they have provided useful information on the carrier dynamics and their
operative trapping and recombination routes. The luminescence experiments show that during
irradiation a decrease in the yield intensity of the 1.55 eV band is accompanied with an increase of the
2.0 eV emission band. These processes are consistent with charge interplay between oxygen vacancies
and Cr impurities, as illustrated in Figure 9. This correlation can be interpreted as a balance between
the concentration of electron-polarons (Ti3+) trapped at the oxygen vacancies, responsible for the red
emission, and the decrease of the Cr3+ population associated with the trapping of the hole partners by
the Cr4+ [5].

8. Summary and Outlook

The results and analysis presented in this review show that considerable progress has been
obtained recently in the fundamental comprehension of the electronic structure of STO, including
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self-trapping and transport processes for electronic carriers, i.e., electrons, holes and excitons.
In particular, their role on the various luminescent emissions under a variety of excitation sources,
with special emphasis on experiments with laser pulses and energetic ion-beams, is now starting to be
clarified. The main focus of the present review has been placed on the role of the oxygen vacancy in the
stabilization of small electron-polarons and its connection with luminescence emission. It has recently
been established that the electrons associated with the vacancy constitute electron-polaron states as
Ti3+ trapped in the close vicinity of the empty oxygen site, and allow for its optical identification.
A red luminescence emission centered at 2.0 eV has been unambiguously associated with polaron d–d
transitions of the Ti3+ close to the vacancy center, as inferred from ionoluminescence (IL) experiments.
These IL experiments have provided the two main requirements for the analysis and interpretation:
a vacancy production mechanism through elastic ion-atom collisions and a high electronic excitation
rate to induce the luminescence emission. The luminescence emission mechanisms and the light
decay processes from the self-trapped excitons (STEs), are also discussed. Electrons and holes
produced by irradiation very rapidly (in the sub-nanosecond time scale) form bound pairs that
become self-trapped in the STO lattice. The green emission centered at 2.5 eV can be definitively
attributed to the singlet-triplet transition between localized states of the STE. Recent results suggest
that the blue emission at 2.8 eV, often associated with oxygen vacancies, is related to a transition from
unbound conduction levels to the ground singlet state of the STE. This novel finding establishes that
both the green (2.5 eV) and blue (2.8 eV) emissions result from STE transitions and rules out previous
proposals assigning the 2.8 eV emission to oxygen vacancies. Results for the kinetics of those emissions
can be satisfactorily discussed in terms of the simultaneous contribution of electron-hole (bimolecular)
recombination processes (2.5 eV emission), together with a monomolecular recombination process for
free carriers (2.8 eV). These new findings have clarified the variety of intrinsic emissions of STO and
opened the path to look for similar effects in other oxide perovskites.

It is worth noting that there are several attractive routes to be carried out to achieve further
progress in this field. Some complementary techniques, such as optical absorption and EPR, should be
used in connection with the luminescence studies to get a further insight on the structure of the
emitting centers. In relation to the STE center, it would be very useful to reach a better understanding
of the detailed mechanisms of its migration and its activation energy. For the case of the oxygen
vacancy, it would be relevant to conclusively assess the location of the energy levels corresponding to
occupancy by one or two electrons. Moreover, it would be very useful to extend these results obtained
for STO to other perovskites in order to have a more complete picture on the electronic structure
and behavior of these fascinating materials, to benefit from the similarities and differences among
them. These challenging questions in solid-state physics will resonate with a broad audience working
on technological disciplines such as electronics, optoelectronics, photovoltaics, and photochemistry.
They are, indeed, essential to design novel materials with enhanced functionalities.
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