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Abstract: The kinetics of the non-isothermal and isothermal crystallization of the crystalline smectic
B phase (soft crystal B, SmBcr) in 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) was studied by
a combination of differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS)
and polarized optical microscopy (POM). On cooling, part of the SmBcr phase undergoes conversion
to a crystalline phase and the remainder forms a glassy state; after the glass softens, crystallization is
completed during subsequent heating. By analyzing the area of the crystal growing in the texture
of SmBcr as a function of time, the evolution of degree of crystallinity, D(t), was estimated. It
was demonstrated that upon heating, D(t) follows the same Avrami curve as the crystallization
during cooling. Non-isothermal crystallization observed during slow cooling rates (3K/min ≤ φ ≤
5K/min) is a thermodynamically-controlled process with the energy barrier Ea ≈ 175 kJ/mol; however,
the crystallization occurring during fast cooling (5 K/min > φ ≥ 30K/min) is driven by a diffusion
mechanism, and is characterized by Ea ≈ 305 kJ/mol. The isothermal crystallization taking place in
the temperature range 274 K and 281 K is determined by nucleus formation.

Keywords: non-isothermal and isothermal crystallization processes; liquid crystals; differential
scanning calorimetry; broadband dielectric spectroscopy; polarized optical microscopy

1. Introduction

Crystallization is defined as the formation of a solid phase with a long-range order composed
of repeated units called unit cells. This intriguing phenomenon is commonly observed for various
organic [1,2] and inorganic [3–5] systems upon cooling below their melting temperature (melt
crystallization), which is in line with thermodynamics, i.e., Gibbs free energy is higher for the isotropic
liquid than for a crystal. There is also a large group of materials which can be easily supercooled
into a glassy state, from which so-called “cold” crystallization can be observed during heating, after
softening of the glass. Despite intensive research efforts, the process of crystallization is a complex
one and little is understood of its nature and control. Crystallization occurs through two inseparable
steps [6], nucleation and crystal growth, and it is governed by the interplay between thermodynamic
driving force and molecular mobility [7–10]. Transformation into the macroscopic crystal is possible
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only if its constituent nuclei overcome the activation energy associated with their critical size [11].
This can be achieved by maintaining the sample within the optimal temperature range for nucleation
and crystal growth (isothermal crystallization) or cooling it slowly enough to form a new phase
(non-isothermal crystallization). The latter is of great importance in industrial processes, which often
take place under non-isothermal conditions. Investigations of non-isothermal processes allow the
temperature range of studies to be extended beyond that accessible to isothermal measurements. Both
kinds of experiments are necessary to elucidate the full crystallization pattern of a material.

Crystallization is also observed for liquid crystals (LCs), which are characterized by a variety
of mesophases with different degrees of ordering, and some demonstrate rich solid-state
polymorphism [12]. It was found that the crystallization process in LCs is influenced by structure
of the initial phase and thermal history of the sample. Although there are several scientific
studies concerning the formation of three-dimensional (3D) crystalline solids from the nematic
phase (N) [13–18], little attention is paid to crystallization from highly-ordered crystal-like smectic
phases. An interesting example in this regard is the crystallization of the smectic B (SmB) phase
in 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA, also abbreviated as 4O.8). Calorimetric
measurements found BBOA to possess a rich mesomorphism on heating [19]: Cr -310.5K - SmB
-321.1K - SmA -335.3K - N-351.0K-I. Interestingly, upon cooling, an additional phase transition from
the SmBhex to the SmBCr phase (also called “soft crystal” [20]) was observed at 287 K [21]. X-ray
experiments demonstrate that while both phases show a hexagonal arrangement of molecules within
the smectic layer, they differ with regard to their molecular correlation length [22]. Broadband dielectric
spectroscopy (BDS) studies indicate that the SmBhex to the SmBCr transition is also characterized by
retardation of the flip-flop rotation of molecules around their short axis accompanied by an increase of
activation energy. Moreover, the SmBCr phase can vitrified if the substance is quenched or crystallized
during very slow cooling.

The present paper describes a detailed study of the crystallization behaviour of SmBcr of
4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) under isothermal and non-isothermal conditions
using a combination of broadband dielectric spectroscopy (BDS), differential scanning calorimetry
(DSC) and polarized optical microscopy (POM). To determine the mechanism of the crystallization
process, the DSC data were analysed according to approaches proposed by Ozawa and Mo. The findings
for the non-isothermal process were compared with those regarding isothermal crystallization obtained
from BDS studies.

2. Materials and Methods

2.1. Material

The BBOA material was supplied from the Institute of Chemistry, Military University of Technology,
Warsaw, Poland and used as received. The substance was synthesized according to the procedure
outlined elsewhere [23]. The purity was determined to be better than 99.5% using the ASTM E928
Standard Test Method for Determining Purity by differential scanning calorimetry [24]. At the
beginning of every measurement, the substance was heated up above melting temperature and was
kept for 3 min to ensure complete melting.

2.2. Broadband Dielectric Spectroscopy (BDS)

To carry out BDS measurements, BBOA powder was heated to the isotropic phase between two
circular electrodes with a diameter of 10 mm, which were separated by Teflon spacers to avoid a short
circuit. The complex dielectric functions ε∗(ω) = ε′(ω) − iε′′ (ω) were measured at the frequency
range 0.1−107 Hz by means of a high-precision dielectric analyzer (ALPHA analyzer; Novocontrol
Technologies, Montabaur, Germany) at the selected temperatures. The sample temperature was
stabilized with an accuracy better than 0.1 K by a Novocool temperature controller. Pure nitrogen gas
was used as the heating agent.
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2.3. Differential Scanning Calorimetry (DSC)

DSC measurements were performed for several cooling/heating rates for a 7.17 mg sample
using a DSC 2500 Differential Scanning Calorimeter (TA Instruments, New Castle, Delaware, USA).
Temperature modulated DSC (MDSC) measurements were taken with the DSC 2500 under a nitrogen
atmosphere at a heating rate of 3 K min−1 with a temperature modulation amplitude of 0.5 K and
modulation period of 60 s.

2.4. Polarizing Optical Microscopy (POM)

The temperature evolutions of the textures were observed using a Biolar PI polarizing light
microscope (PZO, Warsaw, Poland) in combination with a Linkam THM600 heating stage (Linkam
Scientific Instruments, Tadworth, UK). The temperature of the sample was controlled with a high
degree of accuracy (± 0.1 K) using a flow of liquid nitrogen. The thickness of the layer was about
50 µm. The degree of crystallinity D(t) was determined by the graphical analysis of textures by means
of GIMP graphics application software (open source). The growing crystalline phase regions were
marked in black, whereas the remaining parts of the SmBcr phase were marked in white using the
color curves tool in GIMP. The percentage cover of the whole texture layer by the crystalline area is
provided in a colored histogram. The value of D(t) is given by:

D(t) =
SCr(t)

S
(1)

where SCr(t) is the area of the texture related to the new Cr phase and S is the total surface area of
the texture.

3. Results and Discussion

3.1. Non-Isothermal Crystallization Processes as Followed Using DSC and POM

To elucidate the tendency of BBOA to crystallize upon cooling under various conditions, the study
first examined the kinetics of non-isothermal crystallization by means of DSC measurements at various
cooling rates (see Figure 1a). Upon cooling, BBOA shows four mesophases with increasing degrees of
molecular order: N-SmA-SmBhex-SmBcr as confirmed by the texture analysis (Figure 1). Following this,
the SmBcr phase undergoes partial crystallization while the remaining volume of the sample vitrifies.
Upon subsequent heating at a rate of 5 K/min, a complex cold crystallization consisting of a broad
exothermal peak with three maxima at around 241 K, 249 K and 261 K was observed in the metastable
SmBcr; this shifted towards higher temperatures as the heating rate increased.

This finding supports those of earlier adiabatic calorimetry studies, which found that two
metastable crystalline phases become transformed to a stable crystalline phase [19]. To obtain data
equivalent to these adiabatic calorimetric findings, BBOA was measured in the modulated DSC mode
(MDSC), which provides more information than conventional DSC experiments [25]. MDSC benefits
from the fact that it calculates the kinetic component from the total heat flow and its heat capacity
component. The total signal is equivalent to standard DSC; the reversing signal provides information
on heat capacity and melting, while the non-reversing signal shows cold crystallization and crystal
perfection. The non-reversing heat flow, illustrated by the green curve in Figure 1c, shows two
well-separated anomalies at 241 K and 273 K, associated with cold crystallization, as well as a complex
melting of the ordered crystal phase at about 310 K. The curve also shows less intense anomalies
describing phase transitions between the SmA, N and I phases.

In contrast to the DSC measurements, the cold crystallization Figure 1b,c is a well-separated
two-step process with a very intense and sharp peak at 241 K and a broader one at 273 K. The latter
peak most likely describes an additional ordering of molecules. The anomaly at about 310 K,
demonstrating an SmB-SmA phase transition, appears to be a separated two-step process (according to
the non-reversing heat flow curve), while DSC measurements indicate an unresolved pair of anomalies
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in the form of a single broad peak. The higher-temperature anomalies associated with the non-reversing
heat flow, i.e., above 310 K, are not very intensive, in contrast to the analogous anomalies observed
on the total heat flow. These anomalies correspond to phase transitions between mesophases with
a characteristic ordering of SmA, N and I phases; the SmA and N phases show lack of any crystal
ordering, i.e., they possess only orientational ordering, while the I phase does not display any ordering.

By integrating the crystallization peak of the DSC thermograms presented in Figure 1a, the relative
degree of the non-isothermal crystallization (D) for each cooling rate can be determined as a temperature
function [26]:

D(T) =

∫ T
T0

(
dH
dT

)
dT∫ T∞

T0

(
dH
dT

)
dT

(2)

Here, T0 and T∞ are temperatures at which the crystallization process respectively begins and
ends, whereas dH/dT represents the heat flow at a given temperature T. To take into account the fact
that only partial crystallization occurs upon cooling, and that the recrystallization of supercooled
SmBcr (cold crystallization) is then observed upon heating, the value determined from Equation (2) was
multiplied by the ratio of the peak area obtained on cooling and heating. The temperature dependences
of D are presented in Figure 2c. The degree of crystallization that was achieved upon cooling decreases
with increasing cooling rate, from D = 89% (φ = 2 K/min) to D = 13% (φ = 30 K/min).

The growth of the crystal Cr from SmBcr upon cooling was also monitored by polarized microscopy
(POM) observations of the texture evolution as described in the experimental section. It is evident in
Figure 2b,d that the crystalline centers grow equally in all directions and their number increases with
decreasing temperature. The crystallization temperature Tc and crystallization characteristic time τcr

determined using POM are in good agreement with the values obtained by DSC (Figure 2c).Crystals 2019, 9, x FOR PEER REVIEW 5 of 13 

 

 
Figure 1. Differential scanning calorimetry (DSC) thermograms of 4-n-butyloxybenzylidene-
4′-n′-octylaniline (BBOA) obtained at various rates of cooling (a) and heating (b). (c) MDSC 
thermogram of BBOA obtained for a heating rate 3 K min−1 with a modulation amplitude of 0.5 K for a period 
of 60 s. (d) Exemplary textures of BBOA in various mesophases as indicated. 

 
Figure 2. (a) Temperature dependences of the crystallization degree D(T) determined from DSC 
measurements with different cooling rates ϕ. (b) Increase of degree of crystallinity with decreasing 
temperature obtained from the graphical analysis of the BBOA textures for various cooling rates. (c) 
Comparison of the crystallization temperature Tc and crystallization characteristic time τcr determined 

Figure 1. Differential scanning calorimetry (DSC) thermograms of 4-n-butyloxybenzylidene-4′-n′-
octylaniline (BBOA) obtained at various rates of cooling (a) and heating (b). (c) MDSC thermogram of
BBOA obtained for a heating rate 3 K min−1 with a modulation amplitude of 0.5 K for a period of 60 s.
(d) Exemplary textures of BBOA in various mesophases as indicated.
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Figure 2. (a) Temperature dependences of the crystallization degree D(T) determined from DSC
measurements with different cooling rates φ. (b) Increase of degree of crystallinity with decreasing
temperature obtained from the graphical analysis of the BBOA textures for various cooling rates.
(c) Comparison of the crystallization temperature Tc and crystallization characteristic time τcr

determined by DSC and polarized optical microscopy (POM) studies. τcr was assumed as time
needed to achieve 63% of maximal crystallinity degree that was found upon cooling. (d) Evolution
of textures during non-isothermal crystallization of the sample cooled down with the rate 5 K/min.
The error bars are smaller than the symbols, if not explicitly stated otherwise.

Polarized microscopy was also used to study how the crystallization process is completed upon
heating. The crystalline fraction can be seen to increase during cooling and then on subsequent heating
(Figure 3). Interestingly, the change in the degree of crystallinity observed over time during heating
follows the same Avrami curve as for the crystallization process occurring during cooling. It follows that
total crystallization, not being restricted by the partial vitrification of the sample, would take the same
time as the incomplete crystallization during cooling. Then, further changes in microscopic textures of
the crystalline phase were observed, which indicated a transformation to a better ordered phase.
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3.2. Analysis of Non-Isothermal Melt Crystallization Kinetics Observed by DSC

Activation energy Ec for the non-isothermal crystallization process was estimated using an equation
proposed by Kissinger [27]:

ln
φ

T2
p
= C−

Ec

RTp
(3)

and by Augis and Bennett [28]:

ln
φ

Tp − T0
= CAB −

Ec

RTp
(4)

where C and CAB are fitting parameters, φ means a cooling/heating rate, Tp indicates the maximum
crystallization peak and T0 is the onset temperature of crystallization. Two different linear dependences
were found for 3 K/min ≤ φ ≤ 5 K/min and 5 K/min > φ ≥ 30 K/min, indicating two different
mechanisms of crystallization for slow and fast cooling (see Figure 4). The values of Ec estimated using
both methods coincide and are approximately equal to 175 kJ/mol and 305 kJ/mol for the slow and fast
cooling, respectively.Crystals 2019, 9, x FOR PEER REVIEW 7 of 13 
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Figure 4. Kissinger (empty symbols) and Augiss and Bennett (solid symbols) plots for the crystallization
process observed for BBOA upon cooling.

In the first step, the mechanism of non-isothermal crystallization is studied according to Ozawa [29].
Assuming that the non-isothermal crystallization process consists of infinitesimally small isothermal
crystallization steps, the time variable t in the Avrami model can be replaced with the quotient of
temperature and heating rate T/φ, resulting in the following equation:

log(− ln(1−D)) = log Z(T) − nO log(φ) (5)

where D is the relative degree of non-isothermal crystallization, nO is the Ozawa exponent depending
on the dimensionality of the crystal and Z(T) is the Ozawa crystallization rate. It is evident in Figure 5
that the Ozawa analysis provides a good description of the non-isothermal crystallization of the BBOA
SmBcr phase only during cooling, with φ ≥ 10 K/min. For fast cooling the plots of log(−ln(1−D))
versus log(φ) yield a straight line with nO being the slope and log(Z(T)) the intercept with the y-axis.
The value of log(Z(T)) decreases with increasing temperature (Table 1), indicating that non-isothermal
crystallization for fast cooling occurs in the diffusion-controlled region.
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Table 1. Parameters of non-isothermal melt crystallization kinetics of BBOA obtained from the
Ozawa analyses.

Ozawa Model

T (K) no log (Z (K/min)n
o)

236 2.24 ± 0.12 0.77 ± 0.16
238 2.56 ± 0.14 0.69 ± 0.17
240 2.98 ± 0.19 0.34 ± 0.24
243 2.67 ± 0.28 −0.82 ± 0.35

Additionally, the non-isothermal crystallization process was analyzed by the approach proposed
by Mo et al. [30,31], which combines the Ozawa and Avrami equations as below:

log Z(t) − no logφ = log k + nA log t (6)

logφ = log F− a log t (7)

where a is the ratio of the Avrami exponent nA (providing information on the type of nucleation
and the dimensionality of crystal growth during isothermal experiment) to the Ozawa nO exponent,

F = (Z/k)
1

nO is related to the cooling/heating rate. Figure 6 presents the relationship between cooling
rate and crystallization time for the fixed degree of crystallinity D. The dependence of logt (logϕ) below
5 K/min is different to that above, as indicated by the slope. The log Z values increase as the fraction of
the new phase (D) grows. Together, these findings support the idea that slow and fast cooling rates are
associated with different mechanisms of crystallization; a similar pattern was previously observed for
the crystallization of the nematic phase of 4-Cyano-3-fluorophenyl 4-Butylbenzoate (4CFPB) [15].
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3.3. Isothermal Melt Crystallization Kinetics of SmBcr Studied by BDS

BDS is primarily intended to probe the response of polar substances to an external variable electric
field. During the crystallization process, the number of fluctuating dipoles in a substance is gradually
reduced, which is reflected as a decrease of the amplitude of the dielectric loss spectra ε”(f) (see
Figure 7a) and the dielectric strength (∆ε = εs − ε∞, where εs and ε∞ are values of the real part ε’ in
the limit of low and high frequency, respectively). The evolution of the degree of crystallinity with
time can be related to the change in normalized dielectric strength ∆εN as follows:

εN =
∆ε(0) − ∆ε(t)

∆ε(0) − ∆ε(∞)
(8)

where ∆ε(0), ∆ε(t) and ∆ε(∞) are the values of the dielectric strength at, respectively, the beginning,
the time t and at the end of the observation. The increase of a new crystalline fraction during the
crystallization process can be described by Avrami model:

∆εN(t) = 1− exp
(
−K(t− t0)

nA
)

(9)

where K = knA is a constant depending on the crystallization temperature and geometry of the sample,
t0 is the induction time, and nA is the Avrami exponent. To determine the characteristic time of
crystallization τcryst = K−1/n, defined as the time needed to achieve 63 % of the final crystallinity,
Equation (9) was presented in the logarithmic form i.e., ln[−ln(1−∆εN)] versus ln(t); the result yielded
a straight line, with nA being the slope and lnK the intercept with the y-axis (Figure 7). The values of
τcryst was designated from ln[−ln(1−∆εN)] = 0 (see Figure 7c). The characteristic crystallization time
(τcryst) increases with rising temperature (Figure 8), which suggests that the crystallization process is
limited by the formation of nuclei. The activation energy (Ea ≈ 205 kJ/mol) obtained for the isothermal
experiment is consistent with that observed for a non-isothermal process with φ ≤ 5, accounting for
experimental error; this suggests a continuous nucleation mechanism [10], which was also confirmed
by POM studies. Hence, both isothermal crystallization in the temperature range 274 K to 281 K and
non-isothermal process for ϕ ≤ 5 K/min is underpinned by a thermodynamic driving force. The nA
parameter (see Table 2), ranging from 2.8 to 2.3 with decreasing temperature, is reduced with respect
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to the value expected for the homogeneous growth of the spherulitic nuclei (n = 3). Presumably,
the reduction of crystal growth dimensionality observed for the non-isothermal experiment (2.24 ≤ no ≤

2.67) is caused by a confinement effect, which is related to fact that the factions of the layered SmBcr are
restricted by crystalline domains [21]. This effect was also found for crystallization of other materials
in nanopores (two-dimensional confinement) [32] and for thin polymeric films (one-dimensional
confinement) [33].
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Figure 7. (a) The imaginary parts of the complex dielectric functions obtained upon isothermal
crystallization of BBOA at 278 K. The arrow indicates the direction of changes in the loss spectra during
the crystallization process. (b) Time evolution of the normalized dielectric strength (∆εN) during
isothermal crystallization of BBOA at 274 K, 276 K, 278 K and 276 K. (c) Avrami plot of ∆εN(t) for the
data presented in the panel (b).
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melt crystallization form (SmBcryt) of BBOA. The inset presents the Avrami exponent nA versus 
temperature. 
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crystallization processes of SmBcr in 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) by 
broadband dielectric spectroscopy, differential scanning calorimetry and polarized optical 
microscopy. Upon cooling, the SmBcr phase of BBOA partially crystallizes and partially vitrifies; upon 
subsequent heating, the crystallization process is completed by cold crystallization. POM studies 
revealed that on heating, the degree of crystallinity changes according to the same Avrami curve 
observed for crystallization on cooling. Two crystallization mechanisms were revealed: (i) one based 
on thermodynamic forces at lower cooling rates (3 K/min ≤ 𝜙 ≤ 5 K/min), with the energy barrier Ea 

≈ 175 kJ/mol and (ii) another controlled by diffusion which is associated with higher cooling rates 
(5 K/min > 𝜙 ≥ 30 K/min), with Ea ≈ 305 kJ/mol.  

This statement is supported by the results of analyses based on the Ozawa model and the 
approach proposed by Mo, which identified different parameters for the low and high cooling rates. 
The isothermal crystallization studied in the temperature range 274 K to 281 K is limited by the 
formation of nuclei. The activation energy (Ea ≈ 205 kJ/mol) calculated for isothermal crystallization 
is comparable with that determined for the non-isothermal process taking place at ϕ ≤ 5 K/min, which 
suggests that both processes share the same mechanism. The parameters of crystal growth observed 
under isothermal (2.3 ≤ nA ≤ 2.8) and non-isothermal conditions (2.24 ≤ no ≤ 2.67) show less 

Figure 8. Temperature dependence of the characteristic crystallization time (τcryt) for the isothermal melt
crystallization form (SmBcryt) of BBOA. The inset presents the Avrami exponent nA versus temperature.

Table 2. Parameters of isothermal melt crystallization kinetics of BBOA estimated by the Avrami model
at different temperatures.

T (K) nA lnK lnτcr

274 2.3 ± 0.1 −12.5 ± 0.2 5.5 ± 0.2
276 2.8 ± 0.1 −17.3 ± 0.2 6.1 ± 0.2
278 2.5 ± 0.1 −18.0 ± 0.2 6.9 ± 0.2
281 2.6 ± 0.2 −19.7 ± 0.2 7.7 ± 0.2

4. Conclusions

The present study examined the kinetics of the non-isothermal and isothermal melt crystallization
processes of SmBcr in 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) by broadband dielectric
spectroscopy, differential scanning calorimetry and polarized optical microscopy. Upon cooling,
the SmBcr phase of BBOA partially crystallizes and partially vitrifies; upon subsequent heating,
the crystallization process is completed by cold crystallization. POM studies revealed that on heating,
the degree of crystallinity changes according to the same Avrami curve observed for crystallization on
cooling. Two crystallization mechanisms were revealed: (i) one based on thermodynamic forces at
lower cooling rates (3 K/min ≤ φ ≤ 5 K/min), with the energy barrier Ea ≈ 175 kJ/mol and (ii) another
controlled by diffusion which is associated with higher cooling rates (5 K/min > φ ≥ 30 K/min), with
Ea ≈ 305 kJ/mol.

This statement is supported by the results of analyses based on the Ozawa model and the
approach proposed by Mo, which identified different parameters for the low and high cooling rates.
The isothermal crystallization studied in the temperature range 274 K to 281 K is limited by the
formation of nuclei. The activation energy (Ea ≈ 205 kJ/mol) calculated for isothermal crystallization
is comparable with that determined for the non-isothermal process taking place at φ ≤ 5 K/min,
which suggests that both processes share the same mechanism. The parameters of crystal growth
observed under isothermal (2.3 ≤ nA ≤ 2.8) and non-isothermal conditions (2.24 ≤ no ≤ 2.67) show less
dimensionality than that of the three-dimensional process. This is caused by the confinement of SmBcr

fractions in the layered sample by crystalline domains.
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