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Abstract: Two new organic–inorganic hybrid molecular single crystals, 4-Iodoanilinium perchlorate
18-crown-6 (1) and 4-Iodoanilinium borofluorate 18-crown-6 (2), with large sizes and high thermal
stability were successfully synthesized by solution method. Their structures, phase purities, thermal
stability, dielectric, absorption and fluorescence spectra were systematically investigated for potential
applications. Compounds 1 and 2 crystallize in orthorhombic crystal system, in same space group,
namely Pnma. The thermal measurements shown 1 and 2 maintain high thermal stability up to
150 ◦C. The temperature dependency of dielectric constant was studied, and no distinct anomaly was
observed. The band gap were calculated to be 3.38 eV and 3.57 eV for 1 and 2, respectively, slightly
smaller than those of layer perovskite (benzylammonium)2PbCl4 semiconducting materials, which
have potential applications in optoelectronic detection field. The investigations throw light on the
semiconductor properties of organic–inorganic hybrid crown type material and provide two types of
crown compounds with high thermal stability.

Keywords: crystal growth; organic–inorganic hybrid; supramolecular single crystals; optical
properties; high thermal stability

1. Introduction

Recently, much attention has been drawn to organic–inorganic hybrid molecular crystals
materials [1–11]. These materials are frequently characterized by their various physical and chemical
properties, such as structural phase transition, ferroelectric, semiconductor, photovoltaic effect,
nonlinear optical response and pyroelectricity, which have potential applications in molecular sensors,
switches, data storage, electro optical modulators, light emitting, photo-detector, energy-efficient
memories, filtering devices, high-performance insulators and so on [12–22]. Among them, an interesting
class is the organic–inorganic hybrid crown type, owing to their large group of structural diversities
as well as unique properties (such as dielectric anomaly, ferroelectric, second harmonic generation,
nonlinear optical properties, etc.) [23,24].
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A large number of crown type molecular materials have been synthesized in the recent
decades [23–34]. For example, 4-methoxyanilinium tetrafluoroborate-18-crown-6 shows a second-order
ferroelectric phase transition at 127 K, together with an abrupt dielectric anomaly, Debye-type
relaxation behaviour [24]. Methoxyanilinium perrhenate 18-Crown-6 undergoes disorder–order
structural phase transition at about 153 K, with ferroelectric spontaneous polarization was determined
to be 1.2 µC/cm2 [25]. (2,6-diisopropylanilinium)([18]crown-6)](ClO4) underwent a sequence of
phase transitions (Ibam-Pbcn-Pna21) at T1 = 278 K and T2 = 132 K, with a saturation polarization
of 0.35 µC/cm2 obtained at 108 K [26]. [(2,6-diisopropylanilinium)([18]crown-6)]BF4 go through two
phase transitions at T1 = 305 K and T2 = 120 K, and Ps and Pr reaching about 0.3 and 0.25 µC/cm2

at 100K, with a large dielectric anomaly, significant pyroelectricity, and SHG response appeared [27].
Bis(imidazolium hydrochlorate) dehydrate 18-crown-6 displays attractive switching performances
with a superior second-order nonlinear optical switching contrast (calculated by Landau theory) of 12
at about 0 K, and a phase transition occurred at 220 K [28]. (4-HNA)(18-crown-6)(HSO4) underwent
phase transition at about 255 K with space group of P21/c in the high-temperature phase and P21/n
in the low-temperature phase [29]. [(3-nitroanilinium+)(18-crown-6)][IO4](CH3OH) was discovered
displaying dielectric anomalous behaviors at phase temperature of 220 K, with space group of C2/c
both before and after phase transition [30].

However, most of the phase-transition/decomposition temperatures of hybrid molecular
crystals of crown system were reported occurred at low temperatures. From a practical point
of view, such transition take place at low temperature imposes important limitation for potential
applications. Therefore, in this work, two organic–inorganic hybrid supramolecular crystals with high
phase-transition temperatures, 4-Iodoanilinium perchlorate 18-crown-6 (C6H7IN+

·ClO4
−
·C12H24O6)

(1) and 4-Iodoanilinium borofluorate 18-crown-6 (C6H7IN+
·BF4

−
·C12H24O6) (2), were successfully

grown by solution method. Their physical properties, including in structures, phase purities, phase
transitions, dielectric, absorption and fluorescence spectra were firstly systematically investigated for
potential applications.

2. Materials and Methods

Compared with traditional/routine methods (such as Czochralski method, flux method and
Bridgman method), the solution method have many advantages, including low cost, low growth
temperature, easy observations, easy to produce large size crystals and so on. Therefore, in this work,
crystals 1 and 2 were obtained by solution method—that is after the solute were dissolved in solvent,
by naturally volatilizing solvent at room temperature, the solution become oversaturate solution, and
then crystals 1 and 2 could be grown slowly from the above oversaturate solution. All reagents and
solvents in the syntheses were of reagent grade and used without further purification. Stoichiometric
ratio of 18-crown-6, 4-iodoaniline and HClO4/HBF4 were dissolved in acetone solutions to synthesize
crystals 1 and 2. The synthetic process and molecular configurations of the two crystals are shown in
Scheme 1.
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Infrared spectra were obtained using a Nicolet Magna-IR 560 infrared spectrometer and KBr
pellets in the 4000–400 cm−1 region to confirm the phase purity.
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Single-crystal X-ray data of the as-grown crystals were collected on a Bruker SMARTAPEX II CCD
with Mo-Kα radiation (λ = 0.71073 Å) at 153 K. The structures of crystals 1 and 2 were solved by direct
methods and refined by full-matrix method based on F2 by means of SHELXLTL software package.
Besides, phase purities were also checked by powder X-ray diffraction (XRD), using a Bruker-AXS D8
ADVANCE X-Ray diffractometer with Cu-Kα1 radiation (λ = 1.54186 Å) in the ranges of 10◦–50◦ (2θ)
with a time setting of 0.1 s per step and a step length of 0.002◦.

Thermal measurement is commonly used to detect whether a compound displays a phase
transition triggered by temperature. In this work, the Differential Scanning Calorimetry (DSC) and
Thermogravimetric Analysis (TG) data were recorded using a NETZSCH STA 449F3 instrument
from −150 ◦C to 250 ◦C with a heating rate of 10 ◦C/min under nitrogen at atmospheric pressure in
aluminum crucibles.

The variable-temperature dielectric response is another common method for detecting phase
transitions. The complex dielectric permittivity ε (ε = ε′ − iε”) was measured on pressed-powder
pellets that were covered by silver conducting glue. An Impedance E4990A analyzer was used to
record the variability of ε′ of crystals 1 and 2 in the frequency between 1 kHz and 500 kHz from
−175 ◦C to 100 ◦C.

The optical properties, including absorption and fluorescence measurements were carried out at
room temperature. By grinding the air-dried crystals into fine powder, the polycrystalline samples
were prepared to measure the UV-vis absorption spectra on a UV-2700 spectrometer with an integrating
sphere over the spectral ranges of 175–850 nm. The photoluminescence (PL) spectra was performed by
employing an FLSP-920 fluorescence spectroscopy (Edinburgh Instruments) using a Xenon lamp with
300 nm excitation the as-grown single crystals.

3. Results

3.1. Crystal Growth

Large transparent and colorless single crystals of 1 and 2 were obtained by slow evaporation
solution, as shown in the inset of Figure 1. Figure 1 also illustrate the Infrared (IR) spectra of the as
grown crystals 1 and 2: 3432(s), 2913(s), 1352 (s), 1692(s), 1492 (s), 1975(w), 835 (s), 1299(s), 1250(s),
1021(s).
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Figure 1. The as-grown crystals and the Infrared (IR) spectra of (a) C6H7IN+
·ClO4

−
·C12H24O6 and

(b) C6H7IN+
·BF4

−
·C12H24O6.

3.2. Crystal Structure and XRD

Crystallographic data and structure refinements of crystals 1 and 2 are listed in Table 1. Both
the two crystals crystallized in orthorhombic with space group of Pnma. The lattice parameters a, b,
c and cell volume V were calculated to be 15.975(3) Å, 11.418(2) Å, 12.743(3) Å and 2324.4(8) Å3 for
compound 1, and 15.901(3) Å, 11.289(2) Å, 12.735(3) Å and 2286.0(8) Å3 for compound 2, respectively.
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Table 1. Summary of crystallographic data for crystals 1 and 2 at 150 K.

Empirical Formula C18H31ClINO10 C18H31BF4INO6

formula weight/g·mol−1 583.79 571.15
temperature/K 153 153
wavelength/Å 0.71073 0.71073
crystal colour Colourless Colourless
crystal system Orthorhombic Orthorhombic
space group Pnma Pnma

a/Å 15.975(3) 15.901(3)
b/Å 11.418(2) 11.289(2)
c/Å 12.743(3) 12.735(3)
α/◦ 90 90
β/◦ 90 90
γ/◦ 90 90

volume/Å3 2324.4(8) 2286.0(8)
Z 4 4

density/mg·m−3 1.668 1.660
Absorption coefficient (mm−1) 1.545 1.467

F(000) 1184 1152
Measured theta range (o) 3.01~27.45 3.02~27.48

Absorption correction Semi-empirical from equivalents
Data/restraints/parameters 2787/0/154 2753/0/155

GOF on F2 1.004 1.012
R, wR [I > 2sigma(I)] 0.0380, 0.1025 0.0268, 0.0804

R, wR [all data] 0.0400, 0.1042 0.0287, 0.0818
CCDC 1883445 1883437

The crystal structure of compound 1 was described as a representative. As depicted in Figure 2a,
the asymmetric unit consists of one [(4-Iodoanilinium)(18-crown-6)]+ cation and one ClO4

− anion.
The 4-Iodoanilinium+ cations were connected to the 18-crown-6 rings with 1:1 ratio by the N–H . . . O
hydrogen bonds. The N–H . . . O hydrogen bonds show the N-O distance of 2.872–2.935 Å and N-H . . . O
angle of 101.3–177.6◦, respectively (Table 2), are in the normal ranges of typical N–H . . . O hydrogen
bonds. The ClO4

− anions in 1 display almost ordered and ideal tetrahedral geometry. The packing
diagram for crystal 1 along b + c axis is exhibited in Figure 2b, the perchlorate anions locate in the
cavity of four adjacent [(4-Iodoanilinium)(18-crown-6)]+ cations and link them with C-H . . . Operchlorate

hydrogen bonds (C6-H6B . . . O5, C7-H7A . . . O5, C8-H8B . . . O7 and C10-H10A . . . O7, Table 2), which
further stabilizes the supramolecular structure of crystal 1. Furthermore, as checked by PLATON
software, no C-H . . . π and π . . . π interactions existed in the supramolecular structure.
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Table 2. Hydrogen bond lengths (Å) and bond angles (◦) of 1 and 2.

D–H···A d(D–H) d(H···A) d(D···A) ∠(D–H···A)

1

N1–H1B···O1 0.890 1.98 2.872 177.6
N1–H1A···O2 0.890 2.56 2.9354 106.1
N1–H1A···O3 0.890 1.99 2.872 174.5
N1–H1A···O4 0.890 2.56 2.872 101.3

C6-H6B . . . O5 0.990 2.65 3.449 137.73
C7-H7A . . . O5 0.990 2.58 3.469 149.16
C8-H8B . . . O7 0.990 2.67 3.603 156.76

C10-H10A . . . O7 0.990 2.71 3.691 172.15

2

N1–H1B···O1 0.890 1.98 2.864 176.7
N1–H1B···O2 0.890 2.58 2.9336 104.5
N1–H1A···O3 0.890 1.99 2.8724 174.2
N1–H1A···O4 0.890 2.57 2.878 101.4
C6-H6B . . . F1 0.990 2.609 3.395 136.38
C7-H7A . . . F1 0.990 2.530 3.408 147.54
C8-H8B . . . F3 0.990 2.606 3.533 155.85

Besides, phase purities of the as-grown crystals were also checked by powder X-ray diffraction
(XRD), as shown in Figure 3. The XRD patterns of crystals 1 and 2 at room temperature (298 K) matches
well with the patterns simulated from the single-crystal structures measured at 153 K, except the
peaks positions at 153 K were found to shift downward than those measured at room temperature,
which compositing the regularity that the lattice parameters increased with the temperature increasing.
In addition, the good matching of XRD patterns at the two temperatures, also confirm the thermal
stability of crystals 1 and 2 in the temperature ranges of 153 K and 298 K. It is notable that at room
temperature, the peaks intensities of crystal 2 are much stronger than those of crystal 1, indicating the
crystallinity of crystal 2 is better than crystal 1 at room temperature.
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3.3. Thermal Measurements

As depicted in Figure 4, the DSC and TG curves do not show any peak anomaly over the
temperature ranges from −150 ◦C to 150 ◦C, indicating no phase transition was detected by thermal
measurements in this temperature ranges, shown high thermal stability. To be precise, the phase
decomposition temperatures are detected to be larger than 150 ◦C and 175 ◦C for 1 and 2, respectively.
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Figure 4. DSC and TG curves of (a) crystal 1 and (b) crystal 2.

In addition, the phase transition temperatures and characteristics of a series of crown-ether-organic
compounds are listed in Table 3. From Table 3, with the same organic amine and crown ether, the phase
transition temperatures of tetrafluoroborate compounds demonstrated higher values than those of
perchlorate compounds, which is likely related to the high boiling point of inorganic acid. It should
be pointed out that although some possible factors, such as the boiling point of reactants, strength of
electron absorption/ pushing effect of different substituents of organic amine, molecular weight and so
on were compared, it is still difficult to estimate the thermal stability (phase transition temperature)
or characteristic of crown-ether-organic compounds, due to there are so many numerous derivatives
of organic amine (aniline, cyclamine and chain amine; and for same aniline and cyclamine, different
quantities, kinds and positions of substituents). For example, the ferroelectric property was observed in
4-methoxyanilinium perrhenate 18-crown-6 [25] but was not detected in 4-ethoxyanilinium perchlorate
18-crown-6present [32], although the difference (methoxyl or ethyoxyl) of the two amine derivatives is
very small.

Table 3. Phase transition temperatures and characteristics of a series of crown–ether–organic compounds.

Crystals Phase Transition
Temperature (K) Characteristic

4-iodoanilinium perchlorate 18-crown-6 this work 423 High thermal stability;
Narrow band gap (3.38 eV)

4-iodoanilinium borofluorate 18-crown-6 this work 448 High thermal stability;
Narrow band gap (3.57 eV)

Cyclohexyl ammonium 18-crown-6 tetrafluoroborate [31] 397 Ferroelectric
Ps = 3.27 µC/cm2

Cyclohexyl ammonium 18-crown-6 perchlorate [31] 390 Ferroelectric
Ps = 3.78 µC/cm2

[(2,6-diisopropylanilinium)([18]crown-6)]BF4] [27] T1 = 305
T2 = 120

Ferroelectric
Ps = 0.3 µC/cm2

(2,6-diisopropylanilinium)([18]crown-6)](ClO4) [26] T1 = 278
T2 = 132

Ferroelectric
Ps = 0.35 µC/cm2

(4-nitroanilinium)2(18-crown-6)2(PF6)2(CH3OH) [29] 265 - - - - -
(4-nitroanilinium)(18-crown-6)(HSO4 [29] 255 - - - - -

Bis(imidazolium hydrochlorate) dehydrate 18-crown-6 [28] 220

Superior nonlinear optical
switchingcontrast (~12);

High laser-induced damage
threshold (∼8.9 GW/cm2)

[(3-nitroanilinium+)(18-crown-6)][IO4](CH3OH) [30] 220 - - - - -
4-ethoxyanilinium perchlorate 18-crown-6 [32] 163 - - - - -

Methoxyanilinium perrhenate 18-Crown-6 [25] 153 Ferroelectric
Ps = 1.2 µC/cm2

4-methoxyanilinium tetrafluoroborate-18-crown-6 [24] 127 Ferroelectric
Ps = 0.54 µC/cm2

- - - - -except phase transition, no characteristic was observed or reported.
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3.4. Dielectric Properties

The temperature dependence ε’ of crystals 1 and 2 taken at 1, 10, 100 and 500 kHz were illustrated
in Figure 5. As can be seen, ε’ were found to decrease with increasing frequency, especially at
relative high temperatures, and no observable dielectric anomaly was observed in their measured
temperature ranges.
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3.5. Optical Properties

The optical ultraviolet-visible absorption spectra were carefully performed to understand the
optical and semiconducting properties, as shown in Figure 6. The absorption edges of compounds
1 and 2 located in ultraviolet ranges are assigned to 335 nm and 325 nm, respectively. The energy
band gap Eg can be calculated by fitting the Tauc equation, and determined to be 3.38 eV and 3.57 eV,
respectively, slightly smaller than those of layer perovskite (benzylammonium)2PbCl4 (3.65 eV) [3]
and its analogues with the general formula (R-NH3)2PbCl4 (3.64 eV) [35], and comparable to 3.20 eV
for anatase-TiO2 and 3.29 eV for ZnO. As it is known, a narrow energy band gap will be an advantage
in optoelectronic application due to the expansion of active wavelength band.
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As illustrated in Figure 7a,b, the emission peaks appear at about 525 nm for compound 1,
and 425 nm and 550 nm for compound 2. The intensities of emission peaks of 2 are slightly larger than
that of 1. The broad emission spectra (from 400 nm to 650 nm for both 1 and 2) suggest that near-edge
defect levels related to surface states take important part in the emission process [36].

Fitted by biexponential decay, the time-resolved PL decay curves of compounds 1 and 2 were
calculated, as presented in Figure 7c,d. The faster decay time (τ1) and slower decay time (τ2) correspond
to trap-assisted recombination on surface and free carrier recombination in bulk, respectively. From
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decay curves, both faster and slower decay times of compound 1 were slightly longer than those of
compound 2.
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4. Discussion

Two organic–inorganic hybrid molecular crystals, C6H7IN+
·ClO4

−
·C12H24O6 and

C6H7IN+
·BF4

−
·C12H24O6 were successfully grown by solution method. Their physical properties,

including in structures, phase purities, thermal stability, absorption and fluorescence properties
were systematically investigated for potential applications. Crystal structure analyses and thermal
measurements showed compounds 1 and 2 exhibited similar crystal packings and maintain high
thermal stability to 150 ◦C. The dielectric constants as a function of temperature were investigated,
with no distinct dielectric constant anomaly were observed. For compounds 1 and 2, the absorption
edges located in ultraviolet ranges are assigned to 335 nm and 325 nm; the Eg were calculated
to be 3.38 eV and 3.57 eV, respectively, slightly smaller than the data 3.65 eV of layer perovskite
(benzylammonium)2PbCl4, indicating their potential applications in optoelectronic detection field.
All the results throw light on the semiconductor properties of crown type compounds and provide two
crown compounds with high thermal stability.

Author Contributions: L.Z. and T.K. are both the first authors, and they performed the experiments; F.Z.
contributed in analysis of structures; D.W. and C.S. conceived and designed the experiments; C.S. wrote the paper;
J.W. contributed in discussion of the results.
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