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Abstract: Two binuclear coordination compounds of Cu(II) chloride with the bitopic ligand
1,1,2,2-tetrakis(pyrazol-1-yl)ethane (Pz4) of the composition [Cu2(µ2-Pz4)(DMSO)2Cl4]·4H2O and
[Cu2(µ2-Pz4)(DMSO)2Cl4]·2DMSO were prepared and characterized by elemental analysis,
IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder diffraction
analysis. It was shown that in contrast to silver(I) and copper(II) nitrates, copper(II) chloride forms
discrete complexes instead of coordination polymers. The supramolecular structure of the complex
[Cu2(µ2-Pz4)(DMSO)2Cl4]·4H2O with lattice water molecules is formed by OH···Cl and OH···O
hydrogen bonds. Density functional theory (DFT) calculations of vibrational frequencies of the ligand
and its copper(II) complex allowed for assigning IR bands to specific vibrations.

Keywords: 1,1,2,2-tetrakis(pyrazol-1-yl)ethane; copper(II) chloride; bitopic ligand; thermogravimetric
analysis; binuclear complexes; crystal structure

1. Introduction

Multitopic ligands are a class of ligands that nowadays have attracted an increasing amount of
interest in many applications of coordination chemistry. These ligands contain two or more separated
metal-binding sites that allow them to form a wide variety of structures [1–3]. The design of a
linker structure between the binding sites permits tuning the properties of the materials based on
coordination compounds with multitopic ligands [4–7]. Applications of functional materials containing
such ligands include gas storage [8–10], membrane separations [11], electrochemical devices [12],
sensing materials [13,14], drug delivery systems [15,16], enantiomer separations [17], and catalysis in
fine organic synthesis [18,19].

Bitopic bis- and tris(pyrazol-1yl)methanes have served as ligands for the preparation of various
silver coordination polymers of different topologies [20–28]. In our recent work, we synthesized silver
coordination polymers containing the bitopic ligand 1,1,2,2-tetra(pyrazol-1-yl)ethane (Pz4) and showed
that silver-based compounds are more likely to form polymeric rather than discrete structures [29].
For the case of Cu2+ ions, we demonstrated that both molecular copper(II) complexes and coordination
polymers can be prepared [30,31]. Catalytic activity of the binuclear palladium(II) complex of Pz4 [32]
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as well as antibacterial and antifungal activity of the ligand itself [33] were reported recently. In this
work, we focused on the synthesis and crystal structure peculiarities of Cu(II) coordination compounds
containing the Pz4 ligand. Herein, we report the first X-ray crystal structures of the pure ligand and
two new copper(II) coordination compounds and discuss their peculiarities.

2. Materials and Methods

2.1. Instrumental Characterization Methods

Elemental analysis (C, H, N, and S) was carried out on Euro EA 3000 analyzer (Eurovector SPA,
Redavalle, Italy) following the standard procedures.

IR spectra of the complexes as mineral and fluorinated oil mulls or polyethylene pellets were
recorded on Scimitar FTS 2000 (Digilab LLC, Canton, MA, USA) and Vertex 80 (Bruker Corporation,
Billerica, MA, USA) spectrometers in the range of 4000–100 cm−1.

X-ray powder diffraction (XRD) patterns were recorded at room temperature on a DRON-RM4
diffractometer (Burevestnik, Saint Petersburg, Russia) using CuKα irradiation and graphite
monochromator d001 = 3345 Å. The scanning range was 5◦–60◦ (2θ) for complex salts and 5◦–90◦ (2θ)
for products of thermolysis. The experimental diffraction data were processed using the PowderCell
v.2.4 program [34], which allowed a calculation of the quantitative phase composition and the lattice
parameters. Data from the PDF database [35] were used as reference.

Thermogravimetric analysis of coordination compounds was carried out in helium atmosphere
on a NETZSCH thermobalance TG 209 F1 Iris (Erich NETZSCH GmbH & Co. Holding KG, Selb,
Germany) in open Al2O3 crucibles (loads of 5–10 mg, heating rate of 10 K·min−1).

2.2. X-ray Structure Determination

The single crystals of compounds Pz4, 1, and 2 were selected directly from the mother liquors
and mounted on glass fibers using epoxy resin. Single-crystal X-ray diffraction data were collected
on a Bruker-Nonius X8 APEX CCD diffractometer (graphite monochromatized Mo Kα radiation,
λ = 0.71073 Å, ϕ and ω scans of narrow frames (Bruker Corporation, Billerica, MA, USA), equipped
with a 4K CCD area detector (Table 1). Absorption corrections were applied using the SADABS
program [36]. The crystal structures were solved by direct methods and refined by full-matrix
least-squares techniques with the use of the SHELXTL package [37] and Olex2 GUI [38]. Atomic
thermal displacement parameters for nonhydrogen atoms were refined anisotropically. The positions
of H atoms were calculated corresponding to their geometrical conditions and refined using the
riding model.

2.3. Computational Chemistry

Experimental X-Ray structures of the ligand Pz4 and complex 1 (without uncoordinated dimethyl
sulfoxide (DMSO) molecules) were used as starting points for density functional theory (DFT) geometry
optimizations. Singlet- (for Pz4) or triplet-state (for complex 1) gas-phase geometry optimizations were
carried out at the DFT level of theory employing the three-parameter hybrid B3LYP functional [39–42]
and 6-31+G(d) basis set [43] in the Gaussian 09 package [44]. Frequency calculations were performed
for both molecules in order to ensure the lack of imaginary vibration frequencies, which indicates that
the optimized structures correspond to minima on the potential energy surfaces. Cartesian atomic
coordinates for all of the optimized structures are provided in Supplementary Tables S1 and S2.

Hirshfeld promolecular surfaces mapped over dnorm plots of the complexes were built using the
Crystal Explorer (version 17.5) program [45].
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2.4. Synthesis of Compounds

Analysis-grade copper(II) chloride dihydrate was used for the synthesis of the complexes. Pz4

was prepared as described previously [46]. Solvents were of reagent-grade purity and were used
as received.

2.4.1. Synthesis of [Cu2(µ2–Pz4)(DMSO)2Cl4]·4H2O (1)

A hot suspension containing Pz4 (0.3 mmol, 0.09 g) in 5 ml of DMSO was added with stirring to
an ethanol solution (7 ml) of CuCl2·2H2O (1.5 mmol, 0.25 g). Green crystals of 1 suitable for X-ray
diffraction analysis were obtained by slow crystallization over the course of 24 h. The light-green
precipitate formed from the solution was filtered, washed with ethanol, and then dried in the air.
The yield of the product was 0.13 g (55%). Elemental analysis: found, %: C 27.6; H 4.2; N 14.4; S 8.0; for
C18H34Cl4Cu2N8O6S2 calculated, %: C 27.3; H 4.3; N 14.2; S 8.1. IR bands, cm−1: 3513, 3424 (νOH
(H2O)), 3125, 3101, 2987 (νCH (Pz)), 1630 (δOH (H2O)), 1513 (νCH (Pz)), 467 (ν(Cu–O)), 295 (ν(Cu–N)),
254 (ν(Cu–Cl)).

Table 1. Crystallographic data of the compounds 1,1,2,2-tetra(pyrazol-1-yl)ethane (Pz4), 1, and 2.

Identification Code Pz4 1 2

Empirical formula C14H14N8 C18H34Cl4Cu2N8O6S2 C22H38Cl4Cu2N8O4S4
Formula weight 294.33 791.53 875.72
Temperature/K 150(2) 296(2) 150(2)
Crystalsystem monoclinic triclinic monoclinic

Spacegroup C2/c P-1 P21/c
a/Å 15.0087(9) 7.959(3) 8.7218(4)
b/Å 5.4385(3) 8.885(3) 18.2205(7)
c/Å 17.3736(11) 12.269(5) 11.9231(5)
α/◦ 90 73.239(16) 90
β/◦ 92.435(2) 72.615(16) 107.0408(16)
γ/◦ 90 83.178(18) 90

Volume/Å3 1416.84(15) 792.3(5) 1811.58(13)
Z 4 1 2

ρcalcg/cm3 1.380 1.659 1.605
µ/mm−1 0.092 1.857 1.740
F(000) 616.0 404.0 896.0

Crystalsize/mm3 0.35 × 0.1 × 0.09 0.25 × 0.15 × 0.1 0.2 × 0.12 × 0.1
2Θ range for data collection/◦ 4.694–55.148 4.792–55.588 4.214–52.818

Index ranges
−19 ≤ h ≤ 14,
−7 ≤ k ≤ 4,
−20 ≤ l ≤ 22

−9 ≤ h ≤ 10,
−11 ≤ k ≤ 11,
−14 ≤ l ≤ 15

−10 ≤ h ≤ 10,
−22 ≤ k ≤ 22,
−14 ≤ l ≤ 14

Reflections collected 3290 6095 24618

Independent reflections
1628 [Rint = 0.0167,

Rsigma = 0.0257]
3598 [Rint = 0.0391,

Rsigma = 0.0579]
3715 [Rint = 0.0328,

Rsigma = 0.0217]
Restraints/parameters 0/100 0/189 0/203
Goodness-of-fit on F2 1.053 1.044 1.035

Final R indexes [I ≥ 2σ (I)] R1 = 0.0386, wR2 = 0.0964 R1 = 0.0424, wR2 = 0.1092 R1 = 0.0252, wR2 = 0.0556
Final R indexes [all data] R1 = 0.0494, wR2 = 0.1029 R1 = 0.0584, wR2 = 0.1153 R1 = 0.0313, wR2 = 0.0580

Largest diff. peak/hole / e Å−3 0.31/−0.23 0.70/−0.47 0.74/−0.30

2.4.2. Synthesis of [Cu2(µ2–Pz4)(DMSO)2Cl4]·2DMSO (2).

A suspension of 26.0 mg Pz4 (0.09 mmol) in 1 ml of DMSO was added to 34.0 mg of CuCl2·2H2O
(0.2 mmol) in a glass vial. The mixture was stirred for 10 min at room temperature. During the stirring
process, a light-green precipitate formed. The vial with the formed powder was placed into an oven
at 95 ◦C. After 18 h of heating, the vial was allowed to cool to room temperature. After one day, the
crystals initially formed on the bottom of the vial were filtered and washed once with 1 ml of DMSO
and then air-dried for a few days. The yield of the product was 39.9 mg (52%). Elemental analysis:
found, %: C 29.6; H 4.0; N 12.9; S 14.3; for C22H38Cl4Cu2N8O4S4 calculated, %: C 30.2; H 4.4; N 12.8;
S 14.6. IR bands, cm−1: 3141, 3094, 3000 (νCH (Pz)), 1513 (νCH (Pz)), 481 (ν(Cu–O)), 294 (ν(Cu–N)),
260 (ν(Cu–Cl)).
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3. Results and Discussion

3.1. Synthesis of the Complexes

The two copper(II) chloride complexes with ligand Pz4 were synthesized by the reaction of the
ethanol solution of the CuCl2·2H2O (for 1) or solid copper salt (for 2) with the DMSO suspension of
1,1,2,2-tetrakis(pyrazol-1-yl)ethane according to Scheme 1.
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Scheme 1. Synthesis route of copper chloride complexes 1 and 2. i: DMSO-EtOH, 25 ◦C (for complex
1); ii: DMSO, 95 ◦C (for complex 2).

The synthesis of complex 1 was carried out with stirring at room temperature followed by
slow crystallization from solution over the course of 24 h. Complex 1 was synthesized at the ratio
Cu2+:Pz4 = 5:1. Complex 2 was obtained after 18 h of heating at 95 ◦C of the reaction mixture using
solid copper salt at the Cu2+:Pz4 ratio of 2.2:1. Although complexes 1 and 2 differed only in outer-sphere
solvate molecules, they demonstrated different crystal packing and different thermal behavior.

3.2. Crystal Structures of the Complexes

The compounds [Cu2(Pz4)(DMSO)2Cl4]·4H2O (1) and [Cu2(Pz4)(DMSO)2Cl4]·2DMSO (2) include
water and DMSO solvate molecules, respectively, and are not isostructural. Both complexes are
centrosymmetric binuclear (Figure 1) and reveal very similar molecular geometries. Cu atoms
coordinate two Cl− ligands, one O atom of DMSO ligand, and two N atoms of Pz4. Addison’s τ5

criterion [47] was used to determine the geometry of coordination polyhedra of copper(II) ions in
complexes 1 and 2 (Table 2). As suggested by the τ5 criterion, the environment of the central atom in
complex 1 is a slightly distorted trigonal bipyramid with O and N atoms located in axial positions,
while in complex 2, the arrangement is more distorted toward square pyramidal. In previously reported
structures of two binuclear copper(II) nitrate polymorphs [Cu2(Pz4)(H2O)2(NO3)4] [30,31], the τ5

criterion had values in the range of 0.01–0.19, indicative of a square planar geometry of coordination
sphere comprising two monodentate nitrate ions, two nitrogen atoms of the ligand, and one water
molecule. Thus, the Pz4 ligand shields the central atom in a chelate mode, leaving enough space
for three more ligands (chloride/nitrate and solvent molecules). However, it can provide space
even for four ligands, as shown by the example of polymeric nitrate complexes [Cu(Pz4)(NO3)2]n

and [{Cu(Pz4)(H2O)(NO3)2}2]n [31], which reveal a highly distorted (4+2) octahedral environment.
Copper–donor-atom bond lengths and bond angles are very similar in both complexes 1 and 2, with the
exception of the Cu–Cl distance being larger by 0.10 Å for complex 2 in respect to 1. The metallocycles
in 1, 2, and known copper(II) complexes with Pz4 have similar geometries, implying their inflexibility
(Supplementary Materials Figure S1). The relative positions of one pyrazole unit and DMSO ligand are
slightly different for 1 and 2 (Supplementary Materials Figure S2), which is likely due to intermolecular
interactions with the solvent molecules and/or packing effects. Analysis of normalized contact distance
(dnorm) mapping on the promolecular Hirshfeld surface of the Pz4 ligand revealed intramolecular
C–H···Cl contacts between the ethane unit of Pz4 and chloride in both compounds 1 and 2 (Figure 2),
being noticeably shorter for the latter. The same type of C–H···O contacts with nitrates in place of
chlorides has been observed in known complexes [Cu(Pz4)(NO3)2]n and [{Cu(Pz4)(H2O)(NO3)2}2]n [31].
In other words, Cl− and NO3

− are inclined to C–H of the ethane unit. However, two polymorphs
[Cu2(Pz4)(H2O)2(NO3)4] [30,31] show different arrangement of nitrates, which lie on both sides of the
corresponding C–H line. In this way, they are inclined to C–H of the pyrazole unit. Considering the



Crystals 2019, 9, 222 5 of 12

large distance between C–H and the donor atoms as well as the very low polarity of the C–H bonds,
these types of contacts are likely to have a steric nature.
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Figure 1. Atomic displacement ellipsoid plot of the complexes [Cu2(Pz4)(DMSO)2Cl4]·4H2O (1) and
[Cu2(Pz4)(DMSO)2Cl4]·2DMSO (2) on the example of the latter. Uncoordinated solvent molecules and
hydrogen atoms are omitted for clarity.

Table 2. Addison’s τ5 criterion for coordination centers in the complexes in copper(II) complexes with
Pz4 ligand.

Parameter α β τ5 = (β−α)/60 References

[Cu2(Pz4)(DMSO)2Cl4]·4H2O (1) 129.0 171.7 0.71 This paper
[Cu2(Pz4)(DMSO)2Cl4]·2DMSO (2) 153.1 168.7 0.26 This paper

[Cu2(Pz4)(H2O)2(NO3)4] 176.0, 178.3 168.1, 172.2 0.06, 0.17 [30]
[Cu2(Pz4)(H2O)2(NO3)4] 179.3, 176.1, 177.2, 179.5 170.2, 175.4, 173.1, 168.2 0.15, 0.01, 0.07, 0.19 [31]

In complex 1, both crystallographically independent Cl atoms form weak intermolecular hydrogen
bonds with two water molecules (Figure 3) (O···Cl distances are 3.21 and 3.35 Å). Hydrogen bonds
between water molecules were also observed (O···O distances are 2.78 and 2.80 Å), revealing a layered
supramolecular structure. Analysis of the Hirshfeld surface revealed intermolecular contacts C–H···D
(D = Cl, O) between molecules of the complexes and solvates in 1 and 2 (Supplementary Materials
Figure S3) as well as in known copper(II) complexes [30,31], but they are likely to have a steric
nature due to the low polarity of the C–H bonds. Overall crystal packing of 1 and 2 is somewhat
close: one can distinguish chains built from the molecules, which are arranged along Cu··· (center of
Pz4)···Cu mean line (Supplementary Materials Figure S4). The same type of chain was observed in
the coordination polymers [Cu(Pz4)(NO3)2]n [31], [Ag(Pz4)(NO3)]n, and {[Ag(Pz4)(NO3)]DMF}n [29].
In 1 and 2, the Cu···Cu distances within the molecule were 6.78 and 6.81 Å, while those between
neighboring molecules in the chain were 7.14 and 7.94 Å, correspondingly.

3.3. Crystal Structure of the Ligand Pz4

Conformation of the Pz4 molecule in the solid state differs from that in the complexes. In free Pz4,
the C1–C1′–N11–N12 torsion angle (of 130.1◦) characteristic for the rotation of one of the pyrazole rings
around the C1′–N11 bond is obtuse (Figure 4). In contrast, all known complexes revealed acute torsion
angles for both pyrazole rings due to chelate coordination of the ligand (Table 3). Note that the angle in
copper(II) complexes falls within the 59◦–72◦ range, while that in silver(I) compounds lies in the range
of 50◦–58◦, which is in accordance with the increased ionic radius of Ag+ as compared with Cu2+.
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Figure 2. The dnorm Hirshfeld surface of Pz4 ligand in the copper(II) complexes showing intramolecular
C–H···D (D = Cl, O) contacts (marked dashed green). Area with intermolecular contacts closer than
the sum of the atoms’ van der Waals radii are red, longer contacts are blue, and the contacts around
the sum of van der Waals radii are white. For polymeric complexes, only the ligand and coordination
environment of the central atom are shown. For [Cu2(Pz4)(H2O)2(NO3)4] (Refcode XUDWUQ01),
only one of two crystallographically independent molecules is shown.
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Figure 4. Structure of Pz4, showing the C1–C1′–Nn1–Nn2 (n = 1, 2) torsion angle. Hydrogen atoms are
omitted for clarity.

Table 3. Torsion angles of Pz4 in solid state and in copper(II) and silver(I) complexes.

Compound C1–C1′–Nn1–Nn2 (n = 1, 2) Torsion Angle,◦ References

Pz4 ±130.1, ±50.9 This paper
[Cu2(Pz4)(DMSO)2Cl4]·4H2O (1) ±71,8; ±59.5 This paper

[Cu2(Pz4)(DMSO)2Cl4]·2DMSO (2) ±69,6; ±64.4 This paper

[Cu2(Pz4)(H2O)2(NO3)4]
60.8; −70.4; 69.1; −61.7
70.4; −61.5; 63.2; −67.0 [30]

[Cu2(Pz4)(H2O)2(NO3)4] 59.5; −74.9; 67.7; −61.0. [31]
[Cu(Pz4)(NO3)2]n ±72.2; ±61.5; [31]

[{Cu(Pz4)(H2O)(NO3)2}2]n ±70.0; ±72.5 [31]
{[Ag(Pz4)(NO3)]DMF}n ±57.9; ±53.8; ±50.4; ±54.8 [29]

[{Ag(Pz4)(NO3)}n] ±57.6; ±58.1; ±50.5; ±58.2 [29]

3.4. IR Spectroscopy and DFT Calculations

For more accurate interpretation of IR spectra of the Pz4 ligand and its copper(II) chloride
complexes, DFT calculations of geometries of isolated molecules and normal mode vibration frequencies
were carried out.

Calculated and experimental (from X-Ray single-crystal structural analysis) geometrical parameters
are listed in Table 4. In most cases, deviations of calculated parameters from the experimental are
rather small and probably due to crystal packing effects.

Experimental and calculated IR bands are listed in Table 5. Experimental and simulated IR spectra
are shown in Figures S5 and S6. As one can see form Table 5 and Figures S5 and S6, calculated vibration
frequencies are in good agreement with experimental values and can thus be used for band assignments.
In the spectrum of the ligand, bands at 1520 and 1437 cm−1 were associated with asymmetrical pyrazole
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ring stretching vibrations, while the band at 1311 cm−1 corresponded to symmetrical pyrazole stretching
vibrations. Upon coordination to copper(II), one of the pyrazole stretching bands shifted to a lower
frequency region (1404 and 1405 cm−1), while two others remained at essentially the same positions.
Bands of in-plane C–H vibrations (βCH) also underwent a coordination-induced low-frequency shift.
It is interesting to note that the band assigned to aliphatic CCH bending vibrations demonstrated a
considerable high-frequency shift from 1293 to 1471 cm−1, which can be associated with the change of
molecular symmetry that takes place upon coordination. Low-frequency bands at 254 and 260 cm−1 in
the spectra of complexes 1 and 2 were assigned to Cu–Cl stretching vibrations.

Table 4. Calculated and experimental geometrical parameters of Pz4 and complexes.

Parameter Experimental Calculated Parameter Experimental Calculated

Pz4 Complex 1

d(C7-N3), Å 1.450(1) 1.452 d(Cu1-Cl1), Å 2.436(1) 2.426
d(N3-N4), Å 1.355(1) 1.359 d(Cu1-Cl2), Å 2.314(1) 2.323
d(N4-C4), Å 1.329(2) 1.330 d(Cu1-O1), Å 1.940(3) 2.012
d(C4-C5), Å 1.392(2) 1.416 d(Cu1-N1), Å 2.074(3) 2.212
d(C5-C6), Å 1.368(2) 1.380 d(Cu1-N3), Å 2.009(3) 2.067
d(C6-N3), Å 1.357(1) 1.366 d(S1=O1), Å 1.533(2) 1.556
d(C7-C7′), Å 1.541(1) 1.558 d(N3-N4), Å 1.363(3) 1.365

d(C7-C7′), Å 1.551(3) 1.564
ϕ(O1-Cu1-N3), ◦ 171.7(1) 168.7
ϕ(O1-Cu1-N1), ◦ 83.7(1) 83.4
ϕ(O1-Cu1-Cl2), ◦ 94.09(9) 90.3
ϕ(Cl2-Cu1-Cl1), ◦ 116.67(3) 126.0
ϕ(S1=O1-Cu1), ◦ 121.0(2) 132.5

Table 5. Calculated (scaled) and experimental vibration frequencies for Pz4 and complex.

Vibration

Pz4 [Cu2(Pz4)(DMSO)2Cl4]
~
νcalc., cm−1 ~

νexp., cm−1 ~
νcalc., cm−1

1

~
νexp., cm−1

1

~
νexp., cm−1

2

νCH (Pz) 3173 3137 3139 3125 3128
νCH (Pz) 3156 3130 - - -
νCH (Pz) 3142 3115 - - -

νCH (DMSO) - - 3065 2987 3000
νCH 3054 3018 2952 2946 2943
νCH 3042 2994 - - -
νPzasym 1509 1520 1509 1513 1513
δCCH - - 1458 1471 1469
νPzasym 1420 1437 1400 1404 1405
νPzsym 1292 1311 1291 1304 1302
βCH (Pz) 1380 1391 1240 1251 1254
βCH (Pz) 1203 1216 1192 1199 1200
βCH (Pz) 1154 1172 1086 1095 1095
βCH (Pz) 1073 1092 1078 1067 1068
βCH (Pz) 1029 1053 1048 1035 1032
βCH (Pz) 947 968 - - -
δCCH 1273 1293 - - -
βCH (Pz) 899 918 - - -
γCH 859 890 - - -
γCH 812 857 - - -
γCH 740 771 747 769 768
γCH 725 754 - - -
δNCH 759 783 768 780 789

νSO (DMSO) - - 1003 988 991
νSO (DMSO) - - 899 944 944

γCH 606 616 603 610 612
δCCH 569 585 548 550 549
δNCC 348 357 - - -
δNCC 302 319 - - -
δNCC 230 245 - - -
δNCC 106 134 - - -
νCu-Cl - - 244 254 260

Abbreviations: νCH (Pz)—stretching vibrations of C–H bonds in pyrazole rings; νCH (DMSO)—stretching
vibrations of C–H bonds in DMSO molecules; νCH—stretching vibrations of aliphatic C–H bonds; νPzasym,
νPzsym—asymmetrical and symmetrical pyrazole ring stretching vibrations; δCCH—bending vibrations of aliphatic
C–C–H bonds; βCH (Pz)—in-plane bending vibrations of C–H bonds in pyrazole rings; γCH—out-of-plane
bending vibrations of C–H bonds in pyrazole rings; δNCH—bending vibrations of aliphatic N–C–H bonds; νSO
(DMSO)—stretching vibrations of S=O bonds in DMSO molecules; δNCC—bending vibrations of aliphatic N–C–C
bonds; νCu-Cl—stretching vibrations of Cu–Cl bonds.
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3.5. Thermal and XRD Analyses

The curves of thermal analysis for compounds 1 and 2 are shown in Figure 5. Investigation of
thermal properties in helium atmosphere revealed that the first step of thermolysis for both compounds
is associated with the removal of solvated molecules in the range of 40–150 ◦C for 1 and 100–200 ◦C for 2.
The XRD pattern for thermolysis products of 1 at 150 ◦C differs from the pattern of the initial compound
(Figure 6), suggesting a structural rearrangement. Further decomposition leads to formation of Cu
and CuCl and amorphous products of ligand degradation at 350 ◦C, and the final step corresponds to
partial sublimation of CuCl and formation of amorphous carbon. Formation of cubic CuCl and copper
phases at thermolysis temperature 350 ◦C was observed previously [48].
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It should be noted that dehydration process of 1 proceeds in two separate steps, and it is thus
possible to obtain an anhydrous compound with composition [Cu2(Pz4)(DMSO)2Cl4]. Thermal
decomposition of 2 runs in a more complex manner with a simultaneous loss of outer- and inner-sphere
dimethyl sulfoxide molecules in one step (Figure 5). Concurrent loss of both outer- and inner-sphere
DMSO molecules can be explained by the absence of intermolecular interactions between solvent
molecules in complex 2 in contrast to the hydrogen-bonded network in complex 1.
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4. Conclusions

Two binuclear coordination compounds of Cu(II) chloride with 1,1,2,2-tetrakis(pyrazol-1-yl)ethane
(Pz4) of the composition [Cu2(µ2-Pz4)(DMSO)2Cl4]·4H2O and [Cu2(µ2-Pz4)(DMSO)2Cl4]·2DMSO have
been synthesized and fully characterized by elemental analysis, IR spectroscopy, thermogravimetric
analysis, single-crystal X-ray diffraction, and powder diffraction analysis. Crystal structure analysis of
the compound [Cu2(µ2-Pz4)(DMSO)2Cl4]·4H2O revealed a layered supramolecular structure formed
by OH···Cl and OH···O (dashed red lines) hydrogen bonds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/4/222/s1,
Table S1: Atomic coordinates for optimized geometry of complex 1, Table S2: Atomic coordinates for
optimized geometry of ligand Pz4, Figure S1: Overlay of the metallocycles of 1 and 2, [Cu2(Pz4)(H2O)2(NO3)4]
(refcode XUDWUQ), [{Cu(Pz4)(H2O)(NO3)2}2]n (refcode PUZSAG), [Cu(Pz4)(NO3)2]n (refcode PUZSEK) and
[Cu2(Pz4)(H2O)2(NO3)4] (refcode XUDWUQ01), Figure S2: Overlay of the molecules 1 and 2, Figure S3: The dnorm
Hirshfeld surface of the molecules 1 and 2 showing intermolecular C–H···D and O–H···D (D = Cl, O) contacts,
Figure S4: Crystal packing of 1 and 2 with a view along the chains built from the molecules, Figure S5: Calculated
and experimental IR spectra of the ligand Pz4 in the characteristic 1600–500 cm−1 range, Figure S6: Calculated
and experimental IR spectra of compound 1 in the characteristic 1600–500 cm−1 range. CCDC 1900906–1900908
contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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