

Structural Chemistry of Akdalaite, Al₁₀O₁₄(OH)₂, the Isostructural Aluminum Analogue of Ferrihydrite

John B. Parise ^{1,2,3,*}, Bingying Xia ⁴, Jack W. Simonson ⁴, William R. Woerner ⁵, Anna M. Plonka ⁶, Brian L. Phillips ¹ and Lars Ehm ^{1,7}

- ¹ Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA; <u>Brian.phillips@stonybrook.edu</u>
- ² Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- ³ Joint Photon Sciences Institute, Stony Brook University, Stony Brook, NY 11794, USA
- ⁴ Department of Physics, Farmingdale State College, Farmingdale, NY 11735, USA; <u>xiab@farmingdale.edu</u> (B.X.); <u>simonsjw@farmingdale.edu</u> (J.W.S.)
- ⁵ EAG Laboratories, 625-B, Alfred Nobel Dr, Hercules, CA 94547, USA; <u>william.woerner@gmail.com</u>
- ⁶ Department of Materials Science and Chemical Engineering, Stony Brook, NY 11794, USA; <u>Anna.Plonka@stonybrook.edu</u>
- ⁷ Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, USA; <u>Lars.Ehm@stonybrook.edu</u>
- * Correspondence: john.parise@stonybrook.edu

1. Initial Characterization

The synthesized akdalaite samples were first inspected with laboratory PXRD and the crystal morphology was investigated with SEM. Akdalaite synthesized using the Al-floc starting material was nearly pure akdalaite with minor corundum impurity but had a needle morphology (Figure 4). The akdalaite synthesized from nanocrystalline boehmite also had a minor corundum impurity but had a hexagonal plate morphology suitable for SC-XRD (Figure 5). The 1-g sample synthesized from boehmite for NPD utilized a much longer capsule (5.5 cm) and was likely subject to a higher thermal gradient in the cold-seal vessel, which resulted in a higher amount of impurity corundum (Figure 6).

Figure S1. The PXRD pattern (top) and SEM image (bottom) of akdalaite synthesized from Al-floc showing only a minor impurity of corundum (red tick).

Figure S2. The PXRD pattern (top) and SEM image (bottom) of akdalaite synthesized from boehmite in a 2-cm-long capsule showing only a minor impurity of corundum (red tick).

2. Solid State NMR of Natural and Synthetic Akdalaite

For the synthetic sample, the tetrahedral Al gives a signal from +65 to +35 ppm, broadened by second-order quadrupolar effects (Figure S4).

Two Theta (deg)

Figure S3. The XRD pattern of akdalaite synthesized from boehmite in a 5.5-cm-long capsule showing corundum (red tick) present as a minor phase.

The six-coordinate Al yields a complex feature from +20 to -10 ppm. The resonances in the synthetic spectrum display sharp features owing to the high crystallinity and purity of the sample, while the spectrum of the natural sample contains signal in the same shift regions but is less resolved due to contributions from paramagnetic impurity elements in akdalaite as well as the other accessory phases that comprise the sample (σ -Al₂O₃, fluorite, and mica). Additional minor, narrow peaks for four-coordinate Al occur in the spectrum of the synthetic sample at +72 and +67 ppm that likely arise from impurities but which cannot be assigned to any known phase based on literature data.

Figure S4. ²⁷Al MAS NMR spectra of synthetic crystalline akdalaite and natural akdalaite

3. High-Energy Powder X-ray Total Scattering

High-energy X-ray total scattering data were collected at the 11-ID-B beamline at the APS using ~20 mg of synthetic akdalaite in a Kapton capillary. The 2D diffraction data were collected at 58.26 keV ($\lambda = 0.2128$ Å) using a Perking-Elmer XRD 1621 detector. The geometry of the experimental setup was calibrated with a CeO₂ standard (NIST 674a) and the data were integrated into a 1D pattern using the program Fit2D.[1] The total scattering function (*S*(*Q*)) and pair distribution function (PDF, *G*(*r*)) were obtained using a Q_{max} of 25 Å⁻¹ with the program PDFgetX2 with standard and area detector geometry corrections [2,3].

Crystalline akdalaite was studied with X-ray total scattering so as to compare the real space PDF to that of 6-line ferrihydrite (6-nm diameter particles) and evaluate the structural relationship between the two compounds. The PDF of two isostructural compounds cannot be compared directly, as the difference in the metal-oxygen (M-O) distances will propagate through the PDF, increasing the off-set of related pairs with distance. The differences in M–O distance can be accounted for in an empirical manner by comparing the PDFs of known crystalline structural analogues. Corundum (Al_2O_3) and hematite (Fe₂O₃) were chosen to determine the shift in pair correlations between aluminum and ferric iron, as the structure has a mix of edge, corner, and face sharing octahedra. There is no ideal Al and Fe analogue that has both octahedral and tetrahedral coordination with only +3 metal oxidation states. The PDFs for corundum and hematite were calculated from structure files using the program PDFgui with a Q_{max} of 25 Å⁻¹ [4–6]. The overlaid PDFs of corundum and hematite are show in Figure 15. While being structurally analogous, the intensity of the related peaks in the PDFs are very different, as the intensity is still a function of the scattering power of the atoms. From the PDFs, the r-shift (Fe–Al Δr) for identical peaks is plotted as a function of average distance of those peaks in r (Figure 16). There is a strong linear correlation between the amount of r-shit between equivalent peaks and distance, so the equation of the trend line in Figure 16 becomes the r-shift equation (Equation S1) to apply to Al compound PDFs to equate to Fe compounds. The new distance (r_n) is determined after applying the trendline equation as a function of original distance (r_o) :

$$r_n = r_o + [(0.0561 * r_o) + 0.0157].$$
(S1)

The PDF of corundum was shifted using Equation S1 and is shown with the PDF of hematite in Figure 17. It now becomes clear that corundum and hematite are isostructural, as the peaks in the PDF now overlay each other. The peak position alignment is not perfect after applying the r-shit to corundum, as it is an empirical correction but nonetheless a powerful approach for comparing structurally analogous compounds.

At a first glance, the PDF patterns of crystalline akdalaite and 6-line (6 nm) ferrihydrite (data from [7]) appear to have nothing in common (Figure 18, top). However, after the akdalaite data are shifted using the empirical Al–Fe r-shift equation (Equation S1) derived from the corundum–hematite data, the peaks in both datasets align (Figure 18, middle). The patterns are easiest to compare when they represent the same size regime as well. The akdalaite data was additionally enveloped to mimic the data of spherical nanoparticles with a diameter (d) of 30 Å using the envelope function (f_e) of Equation S2, which is multiplied to the akdalaite G(r) [8]. The $\Theta(d - r)$ term is a step function that eliminates distances outside the diameter of the particle, as it is 1 when r < d, and 0 otherwise:

$$f_e(r,d) = \left[1 - \frac{3}{2}\frac{r}{d} + \frac{1}{2}\left(\frac{r}{d}\right)^3\right]\Theta(d-r).$$
 (S2)

In comparing the akdalaite data that has been linearly shifted and enveloped to a comparable particle size of ferrihydrite (Figure 18), it becomes obvious that the PDF patterns are extremely similar and share a common structure. These similarities between the adjusted akdalaite and 6-line ferrihydrite PDFs provide new evidence that ferrihydrite and akdalaite are indeed isostructural.

Figure S5. Calculated pair distribution functions (PDFs) of hematite and corundum.

Figure S6. Plot of the r-shift of identical peaks in the calculated PDFs of hematite and corundum.

Figure S7. Calculated PDFs of hematite and corundum after the corundum data has been shifted to account for the different M–O differences with the fitted linear r-shift equation (Equation S1).

Figure S8. (top) Comparison of X-ray PDF data from crystalline akdalaite and 6-line ferrihydrite. (middle) X-ray PDF data from 6-line ferrihydrite and r-shifted akdalaite which has been adjusted to have approximately equivalent M–O distances as Fe–O. (bottom) Same shifted data as middle but the akdalaite data has had a spherical envelope function applied so intensities are representative of a 3-nm spherical particle.

4. CIFs

4.1 Akdalaite Single Crystal X-ray Diffraction

#======================================	
data_global	
_audit_update_record	
2019-04-14 # Formatted by publCIF	
; _publcif_datablock.id '{4462011d-d757-4896 audit_creation_method	e-b5e4-26a3042b1191}' 'Japa2006 Version : 09/06/2017'
_addit_creation_method	

1. PROCESSING SUMMARY (Crystals Office Use Only)

_journal_date_recd_electronic	?
_journal_date_to_coeditor	?
_journal_date_from_coeditor	?
_journal_date_accepted	?
_journal_date_printers_first	?
_journal_date_printers_final	?
_journal_date_proofs_out	?
_journal_date_proofs_in	?
_journal_coeditor_name	?
_journal_coeditor_code	?
_journal_coeditor_notes	
?	
_journal_techeditor_code	?
_journal_paper_category	?
_journal_techeditor_notes	
?	

_journal_coden_ASTM	?
_journal_name_full	'Crystals'
_journal_year	?
_journal_volume	?
_journal_issue	?
_journal_page_first	?
_journal_page_last	?
_journal_suppl_publ_number	?
_journal_suppl_publ_pages	?

2. SUBMISSION DETAILS

#:

#:

_publ_requested_journal	Crystals
_publ_contact_author_name	'Dr. John B. Parise'
_publ_contact_author_email	john.parise@stonybrook.edu
_publ_contact_author_phone	'(631) 632-8196'
_publ_contact_author_address	'Department of Geosciences, Stony Brook University, NY-
11790, USA'	

3. TITLE AND AUTHOR LIST

loop_ _publ_author_name _publ_author_address 'Parise, John B.'" 'Xia, Bingying' " 'Simonson, Jack W.'" 'Woerner, William R.'" 'Plonka, Anna M.'" 'Phillips, Brian L.'" 'Ehm, Lars' "

4. TEXT

_publ_section_references ; Petricek, V., Dusek, M. & Palatinus, L. (2006). Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.

Palatinus, L. & Chapuis, G. (2007). <i>J. Appl. Cryst.</i> 40, 786--790.

Brown, I. D. (1996). <i>J. Appl. Cryst.</i> 29, 479--480.

data_I

#==

#=====

5. CHEMICAL DATA

_chemical_formula_moiety	'Al5 H1 O8'
_chemical_formula_sum	'Al5 H1 O8'
_chemical_formula_weight	263.9

6. CRYSTAL DATA

_symmetry_cell_setting	hexagonal
_symmetry_space_group_name_H-M	'P 63 m c'
_symmetry_space_group_name_Hall	'P 6c -2c'
_symmetry_Int_Tables_number	186

loop_

#=

_space_group_symop_id _space_group_symop_operation_xyz

- 1 x,y,z
- 2 -y,x-y,z
- 3 -x+y,-x,z
- 4 -x,-y,z+1/2
- 5 y,-x+y,z+1/2
- 6 x-y,x,z+1/2
- 7 -y,-x,z
- 8 -x+y,y,z
- 9 x,x-y,z
- 10 y,x,z+1/2
- 11 x-y,-y,z+1/2
- 12 -x,-x+y,z+1/2

_cell_length_a	5.6244(3)
_cell_length_b	5.6244(3)
_cell_length_c	8.8417(3)
_cell_angle_alpha	90.000(4)
_cell_angle_beta	90.000(4)
_cell_angle_gamma	120.000(6)
_cell_volume	242.22(2)

2

_cell_formula_units_Z

_cell_measurement_reflns_used	4264
_cell_measurement_theta_min	2.42
_cell_measurement_theta_max	23.83
_cell_measurement_temperature	100
_cell_special_details	
?	

	_exptl_crystal_density_diffrn	3.6184
	_exptl_crystal_density_meas	?
	_exptl_crystal_density_method	?
	exptl crystal F 000	260
	_exptl_absorpt_coefficient_mu	0.265
	_exptl_crystal_description	'plate'
	_exptl_crystal_size_max	0.02
	_exptl_crystal_size_mid	0.005
	_exptl_crystal_size_min	0.005
	_exptl_crystal_size_rad	?
	_exptl_crystal_colour	'colorless'
	_exptl_absorpt_correction_type	analytical
	_exptl_absorpt_process_details	
	;	
	CrysAlisPro 1.171.38.46 (Rigaku Oxford	l Diffraction, 2015)
	Analytical numeric absorption correction	on using a multifaceted crystal
	model based on expression	ons derived by R.C. Clark & J.S. Reid.
(Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)		
	Empirical absorption correction using s	pherical harmonics,
	implemented in SCALE3 ABSPACK so	caling algorithm.
	;	0 0
	exptl absorpt correction T min	0.995

_exptl_absorpt_correction_T_min	0.995
_exptl_absorpt_correction_T_max	0.999

7. EXPERIMENTAL DATA

#=

_diffrn_ambient_temperature	100
_diffrn_source	'synchrotron'
_diffrn_source_power	?
_diffrn_source_voltage	?
_diffrn_source_current	?
_diffrn_radiation_type	synchrotron
_diffrn_radiation_source	?
_diffrn_radiation_wavelength	0.41328
_diffrn_radiation_monochromator	'synchrotron'
_diffrn_measurement_device	'four-circle diffractometer'
_diffrn_measurement_device_type	'Saxi-CrysAlisPro-abstract goniometer imported
SAXI images'	
_diffrn_detector	'CCD plate'
_diffrn_detector_area_resol_mean	?
_diffrn_measurement_method	'\f scans'
_diffrn_measurement_specimen_suppo	ort ?
_diffrn_reflns_number	5136
_diffrn_reflns_theta_min	2.43
_diffrn_reflns_theta_max	23.77
_diffrn_reflns_theta_full	23.13
_diffrn_measured_fraction_theta_max	0.96

_diffrn_measured_fraction_theta_full	0.98	
_diffrn_reflns_av_R_equivalents	0.0471	
_diffrn_reflns_av_unetI/netI	0.0063	
_diffrn_reflns_limit_h_min	-10	
_diffrn_reflns_limit_h_max	10	
_diffrn_reflns_limit_k_min	-10	
_diffrn_reflns_limit_k_max	6	
_diffrn_reflns_limit_l_min	-16	
_diffrn_reflns_limit_l_max	17	
_diffrn_radiation_probe	x-ray	
#		

8. REFINEMENT DATA

_reflns_number_total	712
_reflns_number_gt	669
_reflns_threshold_expression	'I>3\s(I)'
_iucr_refine_instructions_details	
;	
JANA .m50 file contents	
Version Jana2006	
title	
cell 5.6244 5.6244 8.8417 90 90 120	
esdcell 0.0003 0.0003 0.0003 0.004 0.004 0.0	06
spgroup P63mc 186 6	
lattice P	
symmetry x y z	
symmetry -y x-y z	
symmetry -x+y -x z	
symmetry -x -y z+1/2	
symmetry y -x+y z+1/2	
symmetry x-y x z+1/2	
symmetry -y -x z	
symmetry -x+y y z	
symmetry x x-y z	
symmetry y x z+1/2	
symmetry x-y -y z+1/2	
symmetry -x -x+y z+1/2	
unitsnumb 2	
chemform Al5 O8 H	
formtab -62	
atom Al atradius 1.43 color 129178214	
atom O atradius 0.74 color 254003000	
atom H atradius 0.46 color 255204204	
roundmethod 1	
end	
*****	***************************************
contour	
end contour	
dıst	

```
angles 1 lsttype 1 dmax 3.4
bondval Al O 1.644 0.38
bondval H O 0.569 0.94
end dist
fourier
addbord 0 maptype 6 intmethod 2 intrad 1.6
end fourier
refine
fsquare 1
distfix 0.9655 0.001 O1 H1;
keep ADP riding O1 1.2 H1
```

```
end refine
```

O3

JANA .m40 file contents 8 0 0 1 100000 0.000000 0.000000 00 000000 000000 0.500000 0.834322 0.668644 0.977450 Al1 1 2 0.001949 0.001604 0.002127 0.000802 0.000150 0.000301 0101111010 Al2 1 2 0.166667 0.333333 0.6666667 0.769781 0.001700 0.001700 0.001520 0.000850 0.000000 0.000000 0001101000 Al3 1 2 0.166667 0.333333 0.6666667 0.160387 $0.001535\ 0.001535\ 0.001810\ 0.000768\ 0.000000\ 0.000000$ 0001101000 O1 2 2 0.166667 0.000000 0.000000 0.097059 0.002204 0.002204 0.000928 0.001102 0.000000 0.000000 0001101000 $0.500000\ 0.971877\ 0.485938\ 0.112879$ O2 2 2 0.001681 0.001987 0.002184 0.000841-0.000354-0.000177 0101111010 0.500000 0.165937 0.834063 0.873912 O3 2 2 0.001375 0.001375 0.002381 0.000303 0.000503-0.000503 0101101110 0.166667 0.666667 0.333333 0.866656 O4 2 2 $0.001903\ 0.001903\ 0.000749\ 0.000951\ 0.000000\ 0.000000$ 0001101000 H1 3 1 0.166667 0.000000 0.000000 0.206196 0001000000 s.u. block 0.000000 0.000000 $0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000\ 0.000000$ 0.000000 0.000029 0.000058 0.000406 Al1 $0.000109\ 0.000129\ 0.000164\ 0.000064\ 0.000048\ 0.000095$ 0.000000 0.000000 0.000000 0.000409 A12 0.000154 0.000154 0.000292 0.000077 0.000000 0.000000 Al3 0.000000 0.000000 0.000000 0.000409 0.000145 0.000145 0.000276 0.000072 0.000000 0.000000 O1 $0.000000 \ 0.000000 \ 0.000000 \ 0.000444$ 0.000281 0.000281 0.000468 0.000141 0.000000 0.000000 O2 0.000000 0.000143 0.000072 0.000414 0.000234 0.000193 0.000281 0.000117 0.000228 0.000114

0.000000 0.000088 0.000088 0.000415

0.000250	0.0	00250	0.000349 0.000258 0.000089 0.000089					
O4			0.000000 0.000000 0.000000 0.000434					
0.000333	0.0	00333	0.000531 0.000166 0.000000 0.000000					
H1	H1 0.000000 0.000000 0.000000 0.000519							
0.000000	0.0	00000	0.000000 0.000000 0.000000 0.000000					
			- Saved points					
0			-					
			- Fourier maxima	-				
1 1		1						
max1	1	1	$1.000000\ 0.322195\ 0.160714\ 0.065852$	000	0	0	0	
0.90		0.27						
max2	1	1	$1.000000\ 0.359965\ 0.178571\ 0.473271$	000	0	0	0	
0.65		0.20						
max3	1	1	$1.000000\ 0.289340\ 0.142857\ 0.442000$	000	0	0	0	
0.53		0.17						
max4	1	1	$1.000000\ 0.517857\ 0.040437\ 0.211264$	000	0	0	0	
0.49		0.11						
max5	1	1	1.000000 0.669643 0.330357 0.364701	000	0	0	0	
0.63		0.10						
max6	1	1	1.000000 0.330357 0.669643 0.057162	000	0	0	0	
1.02		0.09						
max7	1	1	1.000000 0.051945 0.026786 0.736595	000	0	0	0	
0.43		0.09						
max8	1	1	1.000000 0.595630 0.068857 0.690769	000	0	0	0	
0.47		0.08						
max9	1	1	1.000000 0.044643 0.088834 0.193203	000	0	0	0	
0.32		0.08						
max10	1	1	1.000000 0.330357 0.669643 0.454532	000	0	0	0	
0.83		0.07			-	-	-	
			- Fourier minima	-				
1 1		1						
min1	1	1	1.000000 0.160714 0.321277 0.448063	000	0	0	0	
0.49		0.10						
min2	1	1	1.000000 0.500000 0.003803 0.015336	000	0	0	0	
0.56		0.09						
min3	1	1	1.000000 0.169643 0.337088 0.090665	000	0	0	0	
0.45		0.09						
min4	1	1	$1.000000\ 0.302633\ 0.151786\ 0.168497$	000	0	0	0	
0.54		0.08			-	-	-	
min5	1	1	1.000000 0.553571 0.106412 0.037598	000	0	0	0	
0.35	-	0.07		000	U	U	U	
min6	1	1	1 000000 0 316398 0 160714 0 316943	000	0	0	0	
0.31	-	0.07	1.000000 0.010070 0.1007 11 0.0107 10	000	U	U	U	
min7	1	1	1 000000 0 824503 0 166046 0 762748	000	0	0	0	
0.71	-	0.07	1.000000 0.021000 0.100010 0 02. 10	000	U	U	U	
min8	1	1	1 000000 0 356934 0 178571 0 376536	000	0	0	0	
0.38	1	0.07	1.0000000.0000040.1700710.0700000	000	U	0	0	
min9	1	1	1 000000 0 633929 0 265238 0 111670	000	0	0	0	
0 43	T	0.07	1.0000000.0007270.2002000.111070	000	0	0	0	
min10	1	1	1 000000 0 000000 0 000000 0 33370/	000	0	0	0	
0.59	•	$\frac{1}{0.07}$	1.0000000.00000000000000000000000	500	0	0	0	
0.07								

----- Atom objects ------

;

_refine_ls_structure_factor_coef	Fsqd				
_refine_ls_R_factor_gt	0.0255				
_refine_ls_wR_factor_gt	0.0618				
_refine_ls_R_factor_all	0.0275				
_refine_ls_wR_factor_ref	0.0621				
_refine_ls_goodness_of_fit_ref	2.33				
_refine_ls_goodness_of_fit_gt	2.39				
_refine_ls_number_reflns	712				
_refine_ls_number_parameters	32				
_refine_ls_number_restraints	1				
_refine_ls_number_constraints	2				
_refine_ls_weighting_scheme	sigma				
_refine_ls_weighting_details	'w=1/(\s^2^(I)+0.0004I^2^)'				
_refine_ls_hydrogen_treatment	refall				
_refine_ls_shift/su_max	0.0146				
_refine_ls_shift/su_mean	0.0060				
_refine_diff_density_max	1.00				
_refine_diff_density_min	-0.70				
_refine_ls_extinction_method	'none'				
_atom_sites_solution_primary	iterative				
_atom_sites_solution_secondary	difmap				
_refine_ls_abs_structure_details	-				
; 331 of Friedel pairs used in the refine	ement				
loop_					
_atom_type_symbol					
_atom_type_scat_dispersion_real					
_atom_type_scat_dispersion_imag					
_atom_type_scat_source					
Al 0.0201 0.0167					
'International Tables Vol C tables 4.2.6	.8 and 6.1.1.1'				
Н 0.0000 0.0000					
'International Tables Vol C tables 4.2.6.8 and 6.1.1.1'					
O 0.0018 0.0018					
'International Tables Vol C tables 4.2.6	.8 and 6.1.1.1'				
_computing_data_collection					
'CrysAlisPro 1.171.38.46 (Rigaku OD, 2	2015)'				
_computing_cell_refinement					
'CrysAlisPro 1.171.38.46 (Rigaku OD, 2015)'					
_computing_data_reduction					
'CrysAlisPro 1.171.38.46 (Rigaku OD, 2015)'					

loop_

 $_restr_distance_atom_site_label_1$

9. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS

loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_adp_type _atom_site_U_iso_or_equiv _atom_site_site_symmetry_multiplicity _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.83432(3) 0.66864(6) 0.9775(4) Uani 0.00193(10) 6 1 d . . . Al2 Al 0.333333 0.6666667 0.7698(4) Uani 0.00164(14) 2 1 d . . . Al3 Al 0.333333 0.6666667 0.1604(4) Uani 0.00163(13) 2 1 d . . . O1 O 0 0 0.0971(4) Uani 0.0018(2) 2 1 d . . . O2 O 0.97188(14) 0.48594(7) 0.1129(4) Uani 0.00198(17) 6 1 d . . . O3 O 0.16594(9) 0.83406(9) 0.8739(4) Uani 0.0019(2) 6 1 d . . . O4 O 0.666667 0.333333 0.8667(4) Uani 0.0015(3) 2 1 d . . . H1 H 0 0 0.2062(5) Uiso 0.0021 2 1 d . . .

loop_

_atom_site_aniso_label _atom_site_aniso_type_symbol _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23 Al1 Al 0.00195(11) 0.00160(13) 0.00213(16) 0.00080(6) 0.00015(5) 0.00030(10) Al2 Al 0.00170(15) 0.00170(15) 0.0015(3) 0.00085(8) 0 0 Al3 Al 0.00154(15) 0.00154(15) 0.0018(3) 0.00077(7) 0 0 O1 O 0.0022(3) 0.0022(3) 0.0009(5) 0.00110(14) 0 0 O2 O 0.0017(2) 0.00199(19) 0.0022(3) 0.00084(12) -0.0004(2) -0.00018(11) O3 O 0.0014(3) 0.0014(3) 0.0024(3) 0.0003(3) 0.00050(9) -0.00050(9) O4 O 0.0019(3) 0.0019(3) 0.0007(5) 0.00095(17) 0 0 4.1 Akdalaite Powder Neutron Diffraction

data_AKDALAITE-ISO-H-ANIS_publ _audit_creation_method "from EXP file using GSAS2CIF" audit creation date 2019-04-14T07:36 _audit_author_name Bill _audit_update_record ; 2019-04-14T07:36 Initial CIF as created by GSAS2CIF ; _publ_requested_journal Crystals _publ_contact_author_name 'Dr. John B. Parise' _publ_contact_author_email john.parise@stonybrook.edu '(631) 632-8196' _publ_contact_author_phone loop_ _publ_author_name _publ_author_address 'Parise, John B.' " 'Xia, Bingying' " 'Simonson, Jack W.' " 'Woerner, William R.' " 'Plonka, Anna M.' " 'Phillips, Brian L.' " 'Ehm, Lars' " _cell_length_a 5.576099(17) _cell_length_b 5.5761 _cell_length_c 8.77247(6) _cell_angle_alpha 90.0 90.0 _cell_angle_beta _cell_angle_gamma 120.0 _cell_volume 236.2180(20) _symmetry_cell_setting hexagonal _symmetry_space_group_name_H-M "P 63 m c" 'Al5 H1 O8' _chemical_formula_sum _chemical_formula_weight 263.9 _cell_formula_units_Z 2 loop__symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 2 x-y,+x,+z+1/2 3 -y,x-y,+z 4 -x,-y,+z+1/2 5 y-x,-x,+z6 + y, y - x, +z + 1/27 y-x,+y,+z 8 - x, y - x, +z + 1/2 $9 - y_{,-x_{,+z}}$ 10 x-y,-y,+z+1/2

11 +x,x-y,+z 12 +y,+x,+z+1/2

ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS

1	oop_	

• -	_atom_site_typ	e_symbol						
	_atom_site_label							
	_atom_site_tract_x							
	_atom_site_fract_y							
	_atom_site_fract_z							
	_atom_site_occupancy							
	_atom_site_thermal_displace_type							
	_atom_site_U_	iso_or_equiv						
	_atom_site_syr	nmetry_mult	iplicity					
Al	0.00(10)	0.6600(4)		1.0		0.00505		
AII	0.83409(19)	0.6683(4)	0.97855(33)	1.0	Uani	0.00505	6	
AI	0.00000	0.4447		1.0		0.00047	•	
AI2	0.33333	0.66667	0.7690(7)	1.0	Uani	0.00946	2	
AI	0.0000	0.(((7	0.1(00(4)	1.0	T T •	0.00505	2	
AI3	0.3333	0.6667	0.1609(4)	1.0	Uani	0.00595	2	
O_1	0.0	0.0	0.0070(4)	1.0	I I arei	0.00507	2	
	0.0	0.0	0.0970(4)	1.0	Uani	0.00507	2	
	0.07780(18)	0 48647(9)	0 11/22(27)	1.0	Uani	0.00588	6	
02	0.97200(10)	0.40042(9)	0.11433(27)	1.0	Uan	0.00388	0	
03	0 16458(25)	0 83542(25)	0 87450(31)	1.0	Hani	0.00636	6	
0	0.10400(20)	0.00042(20)	0.07400(01)	1.0	Can	0.00050	0	
04	0 66667	0.33333	0 86817	10	Uani	0 00548	2	
H	0.00007	0.00000	0.00017	1.0	oun	0.00010	-	
H1	0.0423(12)	0.0212(6)	0.2134(7)	0.33333	Uiso	0.0152(12)	6	
loop_	_atom_site_ani	iso_label						
	_atom_site_ani	iso_U_11						
	_atom_site_ani	iso_U_12						
	_atom_site_ani	iso_U_13						
	_atom_site_ani	iso_U_22						
	_atom_site_ani	iso_U_23						
	_atom_site_ani	iso_U_33						
Al1	0.00350(34	0.00201(24 0	0.00168(25 0	.0040(5)	0.0034(5	6) 0.0078(6)		
Al2	0.0103(8)	0.0052(4) 0.	0 0.0	103(8)	0.0	0.0078(14)		
Al3	0.0039(4) (0.00196(19 0	.0 0.0	0039(4)	0.0	0.0100(13)		
O1	0.0047(4)	0.00236(20 0	0.0 0.	0047(4)	0.0	0.0057(8)		
O2	0.00475(29	0.00238(14 -0	0.0014(4) 0.0	00505(25 -	-0.00068(1	.9 0.0077(4)		
O3	0.00586(34	0.0037(5) 0	0.00210(16 0	.00586(34	-0.00210(16 0.0084(4)		
O4	0.0060(5)	0.00298(27 0	0.0 0.1	0060(5)	0.0	0.0045(10)		
loop_	_atom_type_sy	vmbol						
	_atom_type_ni	umber_in_cel	1					
	O 16.0							
	Al 10.0							

H 2.0

References

- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. *High Pressure Res* 1996, 14, 235-248.
- 2. Qiu, X.; Thompson, J.W.; Billinge, S.J.L. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. *Journal of Applied Crystallography* **2004**, *37*, 678.
- 3. Chupas, P.J.; Qiu, X.Y.; Hanson, J.C.; Lee, P.L.; Grey, C.P.; Billinge, S.J.L. Rapid-acquisition pair distribution function (RA-PDF) analysis. *Journal of Applied Crystallography* **2003**, *36*, 1342-1347.
- 4. Farrow, C.L.; Juhas, P.; Liu, J.W.; Bryndin, D.; Bozin, E.S.; Bloch, J.; Proffen, T.; Billinge, S.J.L. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. *J Phys-Condens Mat* **2007**, *19*.
- 5. Maslen, E.N.; Streltsov, V.A.; Streltsova, N.R.; Ishizawa, N.; Satow, Y. Synchrotron X-Ray Study of the Electron-Density in Alpha-Al2o3. *Acta Crystallogr B* **1993**, *49*, 973-980.
- 6. Maslen, E.N.; Streltsov, V.A.; Streltsova, N.R.; Ishizawa, N. Synchrotron X-Ray Study of the Electron-Density in Alpha-Fe2o3. *Acta Crystallogr B* **1994**, *50*, 435-441.
- Michel, F.M.; Ehm, L.; Liu, G.; Han, W.Q.; Antao, S.M.; Chupas, P.J.; Lee, P.L.; Knorr, K.; Eulert, H.; Kim, J., et al. Similarities in 2-and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering. *Chem Mater* 2007, *19*, 1489-1496.
- Neder, R.B.; Proffen, T. Diffuse Scattering and Defect Structure Simulations: a cook book using the program DISCUS; Oxford University Press: Oxford, 2008; Vol. 11, pp. 228.