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Abstract: Using the density-matrix renormalization group method and quantum Monte Carlo
simulation, we studied numerically the energy spectrum and thermodynamics of the quantum
Heisenberg spin model for narrow graphene nanoribbons and their derivatives with periodically
embedded heteroatoms. For several nanoribbon structures we found macroscopic ground state spin,
gapless lowest excitation spectra and intermediate magnetization plateaus at low temperatures. We
also studied the lowest energy states of frustrated systems formed by triangular graphitic clusters
connected by bridged ions of transition metals. On the base of many-body perturbation theory and
the exact diagonalization method, we showed the possibility of spin switching for this model due to
the change the corresponding coupling parameters.
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1. Introduction

Finite strips of graphene, usually referred to as graphene nanoribbons, are very interesting
subjects in the context of future spintronic applications of carbon-based materials [1,2] They are also
the components of the numerous carbon allotropes as described in a comprehensive survey [3] and are
shown recently to be an element of a tentative lowest energy carbon allotrope [4]. Although magnetic
properties of carbon allotropes are not covered in the most comprehensive Samara Carbon Allotrope
Database (SACADA) [5], the magnetically-ordered states in carbon-based materials were considered in
the literature [6–8] before the experimental discovery of graphene and its related structures.

One of the most fundamental predictions for graphene nanoribbons is the possibility of
spontaneous edge-state magnetism in the case of the ribbons with zigzag edges. This prediction is
based on different mean field approximations like the unrestricted Hartree–Fock method [9–11] and
density functional theory (DFT) [12]. It is known that these methods overestimate the spin polarization
effects. On the other hand, more correct many-electron treatment of graphene nanoribbons within the
Hubbard model, according to Lieb’s theorem [13], gives singlet ground state and zero spin densities on
the nanoribbon sites. This means that the electron correlation effects are crucial for correct description
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of the magnetic properties of graphene nanoribbons [14]. Unfortunately, many electron studies of the
magnetic structure of pristine graphene nanoribbons require large computational efforts and there are
very few papers devoted to this problem [14–17].

Since the pristine nanoribbons have singlet ground state, the magnetic derivatives of this material
have importance for the practical realization of spin-polarized electronic transport. It is found both
theoretically and experimentally that atoms of transition metals (ATM) may fill carbon vacancies in
graphene clusters to form stable ATM-embedded structures [18,19]. According to Lieb’s theorem,
structures with periodically embedded ATM may have macroscopic values of total spin in ground state
with “ferrimagnetic” spin ordering. Another interesting hypothetic magnetic structure on the base of
zigzag nanoribbons is so-called “carbon chain bridged graphene ribbons” considered in [20]. There
is also theoretical proposal to create nanomagnets on the base of triangular-shaped finite graphene
fragments (graphene nanoflakes) [21,22].

In contrast to pristine graphene nanoribbons, the theoretical description of the magnetic structure
of these materials is based on different variants of DFT only. Therefore, many-electron consideration
of the magnetic properties of above composite nanostructures on the base of graphene fragments is
of interest. In our study for this purpose we used the Heisenberg spin Hamiltonian method [23–26].
This method permits us to treat not only pure π-electron systems like pristine graphene nanoribbons,
but also to take into account interactions with other possible magnetic components e.g., transition
metal ions of arbitrary spin. It also allows one to profit from available exact results concerning the
energy spectrum and the ground state spin structure of bipartite spin systems. We use these results for
the preliminary choice of the model spin structures on the base of graphitic clusters like nanoribbons
and nanoflakes.

Note also, besides the numerous successful applications in solid-state physics, Heisenberg spin
Hamiltonian is also treated as the spin formalism of known valence bond methods of quantum
chemistry [27–29]. Unfortunately, this approach is not programmed in the existing solid-state quantum
chemistry packages. We used idealized geometry for graphene clusters as the finite fragments of
hexagonal lattice, because the main idea of our study is to give common many-electron descriptions of
the low-temperature magnetic properties of the graphene-based nanostructures and compare these
with known theoretical and experimental results.

Due to the exponential growth of the numerical difficulties, the exact diagonalization study of the
Heisenberg spin model on the fragments of hexagonal lattice can be done only for relatively small
lattice clusters. Therefore, for the detailed study of the proposed spin models we use combination of
an approximate analytical approach: linear spin wave approximation (LSWA) and (exact) numerical
methods: infinite and finite scheme of density matrix renormalization group (DMRG) [30] and the
quantum Monte Carlo method (QMC) based on stochastic series expansion approach [31].

The paper is organized as follows: In the second Section, we give short description of spin lattice
models for graphene nanoribbons with embedded ATM and consider general properties of the energy
spectra and magnetic properties of these nanoribbons on the base of the known exact theorems for
the bipartite Heisenberg spin systems. In the third Section, we present the results of our numerical
and analytical studies of the lowest energy spectra and the field dependencies of magnetization
at low temperatures for the spin lattice structures mentioned above. One of the most interesting
results here is the unusual low-temperature effect: the intermediate plateau in field dependence of
magnetization of narrow pristine zigzag nanoribbons and additional magnetization plateau for similar
doped nanoribbons. We also analyze the possibility of spin switching for frustrated systems formed by
triangular graphene clusters connected by bridged ions of transition metals with the help of many-body
perturbation theory (PT). The details of the analytical spin wave study of the low-energy excitations of
zigzag nanoribbons are given in the Appendix A.
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2. Materials and Methods

All the spin lattice structures are described by the Heisenberg spin Hamiltonian

H =
∑
<i, j>

Ji jSiS j,

where Jij is a coupling constant describing the interaction between spins located on the i-th and j-th
lattice sites; Si is an operator of i-th site spin.

In the present paper we are going to apply the above Heisenberg spin model for description of
the tentative components of quasi-one-dimensional crystalline materials. One of the simplest tentative
components are narrow graphene nanoribbons like polyacene (simplest zigzag-edged nanoribbon)
and polyphenylene (armchair nanoribbon) macromolecules. According to Lieb theorem [32] these
macromolecules have singlet ground state in the framework of Heisenberg. Their possible derivatives
obtainable by a regular embedding of heteroatoms are presented in Figure 1a,b, respectively. Similar
structures with embedded heteroatoms can be easily generated for nanoribbons of arbitrary width.
For example, in the case of so called 3-zigzag graphenic nanoribbon [12] we have the derivative shown
on Figure 1c.
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Figure 1. Fragments of the simplest magnetic nanoribbons with embedded heteroatoms (red balls).
(a) Zigzag polyacene derivative; (b) armchair polyphenylene derivative; (c) 3-zigzag graphenic
nanoribbon derivative.

The nanoribbons addressed in the present study (see Figure 1) are, so called, alternant or bipartite
lattices. This means that the lattice sites can be divided into two subsets so A and B that sites of
one subset have nearest neighbors only from another one (the corresponding coupling constants Jij
are nonvanishing). The ground state spin S0 of alternant spin lattices satisfies the extended Lieb
theorem [33], according to which S0 = |SA − SB|, where SA and SB are the maximal values of total spin
of sublattices A and B, respectively. It can be shown, that all our nanoribbon fragments formed by N
unit cells have the ground state spin S0 = |s′ − 1/2|N with no further degeneracy. Here s′ is the spin of
the embedded heteroatoms (red balls in Figure 1). Obviously, for nanoribbons of infinite length, S0

takes macroscopic value if s′ , 1/2. Moreover, according to the extended Lieb–Shultz–Mattis (LSM)
theorem [34–37], the 1D alternant periodic spin systems with a macroscopic ground state spin which
are similar to the above nanoribbon derivatives have no gap in the exact energy spectra at s′ , 1/2.

In particular, the polyacene derivative (Figure 1a) with s′ = 0 is equivalent to the so-called
polyallyl spin chain [38], having macroscopic value of the ground state spin, gapless energy spectrum
and intermediate plateau in the field dependence of magnetization at low temperature. We may
expect similar properties for other narrow nanoribbons with embedded heteroatoms, but additional
investigation is necessary.
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Interesting possibilities for the design of magnetic materials on the base of nanoribbon fragments
were proposed in [20]. Application of this idea to the nanoribbons decorated by magnetic heteroatoms
leads to the following sandwich structures as shown in Figure 2.Crystals 2019, 9, x FOR PEER REVIEW 4 of 12 
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Figure 2. Composite structures on the base of two zigzag graphitic nanoribbons. The cases (a,b)
correspond to the polyacene and 3-zigzag graphenic nanoribbon, respectively.

It can be easily shown that these structures have similar general characteristics of their exact energy
spectra and the ground state spin structure as the zigzag nanoribbons with the embedded heteroatoms.

There is also a big family of magnetic structures on the base of small graphenic clusters (nanoflakes)
connected by bridge magnetic atoms. Probably, one of the simplest representations of this type of
structure is the high spin hydrocarbon m-polydiphenilcarbene [39] (see Figure 3 where the red balls
represent carbon atoms in carbenic state, featuring s′ = 1).
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3. Results 

Figure 3. m-polydiphenilcarbene magnetic sublattice.

According to the extended Lieb theorem, substitution of the bridge carbon atoms by transition
metal atoms with nonzero spins s′,0 yields a bipartite spin chain system with macroscopic ground
state spin.

There is an interesting possibility for the design of new magnetic materials on the base of triangular
graphene clusters [21,22,24]. To combine this idea with the structural motif of polyphenilencarbene
(Figure 3) we propose the frustrated spin chain system shown in Figure 4.
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Figure 4. Model frustrated chain on the base of triangular graphitic clusters formed by 13 carbon atoms.

Additional nearest neighbor interactions should be taken into account in such a system since they
can be relatively large due to multiple exchange paths [40] involving transition metals ions. On the
other hand, the bridge between neighboring triangular clusters may have a more complicated structure
(some additional ancillary ligands may be present at metal atoms, forming coordination compounds
with nonzero spin).
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3. Results

In order to predict magnetic properties of the tentative quasi-one-dimensional materials featuring
the graphene-like components which may have different ground state spin depending on the spin of
the embedded atoms (see previous section), we studied the spectra of their lowest energy excitations by
linear spin wave (LSW) approximation for different values of s′ (see Appendix A for technical details).

For big finite fragments of the zigzag nanoribbons formed by N unit cells (Figure 1a,c) with
periodic boundaries and s′ , 1/2 LSW gives the estimations for the lowest excitation energies ε ∼ N−2

(the details of the analytical calculations are given in Appendix A). This means, in the limit N→∞ these
nanoribbons have a gapless excitation energy spectrum that is in agreement with the extended LSM
theorem. For s′ = 1/2 the LSW approximation yields the estimation ε ∼ N−1 (gapless energy spectrum
for infinite nanoribbons). However, the case s′ = 1/2 (including the ribbon of pristine polyacene itself)
corresponds to zero value of ground state total spin of isolated unit cell. Therefore, it does not satisfy
the conditions of the extended LSM theorem and additional studies are necessary.

In order to perform this, we used finite and infinite numerical schemes of the DMRG. Both
demonstrate small finite energy gap ∆E in the lowest energy excitation spectrum (triplet excitations).
This means that the LSW approach does not work properly for pristine polyacene. For s′ = 1 the
DMRG calculations gives gapless low-energy branches of the excitations that are in agreement with
the LSM theorem and the LSW analytical estimation. To estimate ∆E more precisely we used a
finite DMRG scheme and performed linear extrapolation of the energy gap value using the scaling
law: ∆EN = ∆E + a/N, where N is the number of optimized states (Figure 5a). We also used the
QMC method to determine ∆E (Figure 5b). Within this approach, the gap is derived by numerically
estimating the width of zero magnetization plateau then extrapolated to zero external magnetic field.
The field dependencies of the magnetization at zero and low temperatures were very informative of
characteristics of energy spectra structure [41]. This is why we paid special attention to studying these
dependencies of the nanoribbons.
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Figure 5. The estimations for the energy gap ∆E for pristine polyacene. Finite size DMRG method was
used for the cluster of 400 spins (a) and QMC at temperature T = 0.005 J-for a cluster of 320 spins (b)
were used.

In all our numerical calculations we put equal exchange constant between carbon spins Jij = J = 1.
The other quantities, such as J′ (exchange constant between carbon spin and embedded spin s′),
temperature T and external magnetic field h are measured in units of J.

For polyacene derivative with s′ = 1 our DMRG calculations showed intermediate plateau of
magnetization at m = 0.125 which agrees with the existence of gapped excitations of the total spin
S ≥ S0 similar to the case of embedded spins with s′ = 0 considered above. The presence of an
additional intermediate plateau at m = 0.25 is even more intriguing. According to our DMRG and
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QMC calculations for a cluster of 320 spins, the second plateau is also present in the pristine polyacene
(Figure 6).
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Figure 6. Intermediate plateau in the field dependence of the magnetization per spin m for the system
Figure 1a for s′ = 1/2 and s′ = 1. The QMC simulation was carried out at the temperature T = 0.01 J, the
DMRG one was carried out the number of optimized states N = 50.

According to our DMRG calculations this plateau is present because of the energy gap between
the states with S < Smax/2 and the states with S = Smax/2.

It is of interest, that for the simplest pristine armchair nanoribbon (Figure 1b) we did not find the
intermediate magnetization plateau (Figure 7).
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Figure 7. Field dependence of magnetization m for the cluster of 320 spins of the system shown on the
Figure 1b, for s′ = 1/2 and s′ = 1. QMC: T = 0.01 J, DMRG: N = 50.

We also studied numerically the field dependence of magnetization for a more complicated
system: pristine 3-zigzag nanoribbon and the corresponding derivatives with embedded nonmagnetic
heteroatoms shown in Figure 1c by the QMC method (the cluster of 648 spins; one spin per site).

According to these calculations (Figure 8) we have intermediate magnetization plateau only for
the magnetic derivative similar to the case of polyphenylene (Figure 7). For the pristine 3-zigzag
nanoribbon our QMC calculations demonstrated the absence of the plateau with zero magnetization in
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contrast to the case of pristine polyacene and polyphenilene. Probably, the pristine 3-zigzag nanoribbon
has very small gap in the energy spectrum and the accuracy of our numerical study is not enough to
determine this.Crystals 2019, 9, x FOR PEER REVIEW 7 of 12 
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Similar calculations were performed also for the model “sandwich” structure shown in Figure 2.
The results of the QMC study for the case s′ = 1/2 are shown in Figure 9 and demonstrate intermediate
magnetization plateau at m = 1/18 for structure Figure 4a and m = 1/26 for structure Figure 4b in
agreement with the suggested existence of the energy gap for the excitations with S ≥ S0 (similar to the
magnetic derivative of the nanoribbons considered above).
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Despite the frustrated character of chain spin structure formed by triangular graphenic clusters,
in the case of a weak interaction between the triangular fragments and embedded transition metal
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ions the analytical perturbation theory permits us to treat it as an effective bipartite spin system. Thus,
using this technique [42,43], we derived the following low-energy effective Hamiltonian:

He f f = Je f f
L−1∑
m=1

S1,m(S2,m + S2,m+1), Je f f = J′1ρ1 + 2J′2ρ2

ρi =
〈
Ψ0(S0)

∣∣∣Sz
i

∣∣∣Ψ0(S0)
〉
/S0

,

where the coupling constants J′1 and J′2 correspond to the interactions between transition metal ion and
nearest and next nearest carbon atoms of the triangular clusters.

At J′2 = 0 the spin lattice system shown in Figure 4 has an alternant character. Therefore, according
to the extended Lieb theorem it has macroscopic ground state spin in thermodynamic limit.

The effective coupling constant changes its sign when the ratio R = J′2/J′1 passes the critical value:

Rc = −ρ1/(2ρ2) > 0

This means that the increase of J′2 leads to the macroscopic jump in the value of the ground state
spin (spin switching) when the ratio of coupling constants R passes through the critical value Rc. This
analysis is valid for triangular clusters of arbitrary size. For the predictions of the appearance of spin
switching only the numerical estimations for the reduced spin densities ρ1 and ρ2 are required. Thus,
for the triangular graphitic clusters formed by 13 spins (Figure 4) the exact diagonalization gives the
estimate of Rc ≈ 0.333.

4. Discussion

We studied analytically and numerically the energy spectrum and low-temperature magnetic
properties of quantum Heisenberg spin models for narrow graphitic nanoribbons with periodically
embedded heteroatoms and the chain systems on the base of small graphitic clusters connected by
bridge atoms of transition metals: components of hypothetical quasi-one-dimensional crystals. For
several nanoribbon structures with embedded heteroatoms we found macroscopic ground state spin,
gapless lowest excitation spectra and intermediate magnetization plateaus at low temperatures. On
the base of DMRG and QMC calculations, we demonstrated the existence of a small gap in the energy
spectrum of polyacene, the simplest representation of zigzag nanoribbons. This result is in agreement
with DMRG calculations for the Hubbard model [15] and DFT simulation [12]. On the other hand, our
analytical LSWA approach shows a gapless excitation spectrum. The disagreement with the DMRG
consideration emphasizes the importance of carefully accounting for electron correlation effects for the
adequate simulation of the magnetic properties of graphene-based materials.

On the base of our numerical simulation we found the intermediate plateau in field dependence
of pristine polyacene magnetization is present at low temperatures. This plateau is also present in
field dependence of magnetization of magnetic derivatives of polyacene and is absent in the case
of polyphenylene. It should be interesting to check this effect experimentally by measuring the
corresponding magnetization profile at low temperatures.

We also demonstrated the possibility of spin switching for frustrated systems on the base of
triangular graphitic clusters connected by bridged ions of transition metals and analyzed the necessary
conditions for the realization of this effect. This effect may be used for the design of magnetic
chemo-sensors because the changes in chemicals surrounding of our material may change drastically
the ratio of coupling constants R describing the interactions between triangular nanoflake and group
of atoms with nonzero total spin, e.g., complex cation of the transition metal.

Note also, the provided computations were used for such a search bearing in mind that the
existing solid-state quantum chemistry packages related to electron simulation of magnetic properties
of crystals do not provide, an option of including linear spin waves and thus have restricted capacity
in the sense of modeling temperature-dependent responses of the target materials to the magnetic
field and other similar properties. Thus, the present analysis indicates to a necessity of widening the
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repertory of possible quantum states to be included in the modeling of crystals which will be possibly
done in the future.
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Appendix A. Linear Spin Wave Approximation for Zigzag Nanoribbons

Spin Hamiltonian for polyacene with embedded heteroatoms (Figure 1a) may be written as:

Ĥ =
N∑

l=1

[S1l(S2l + S2l+1) + S2lS3l + αS4l(S3l + S3l+1)] (A1)

Here we assume the periodic boundaries S2N+1 = S21, S3N+1 = S31, and an arbitrary value of the
embedded spin S4l = s′.

In the spin wave approximation the corresponding linearized Hamiltonian had the form:

Ĥ0 = EAF +
N∑

l=1

{
1
2

(
2a†1,la1,l + 3a†2,la2,l

)
+

(
1
2 + 2αs′

)
a†3,la3,l + αa†4,la4,l +

+ 1
2

[
a†1,l(a

†

2,l + a†2,l+1) + a†2,la
†

3,l + h.c.
]
+ α

√
s′
2 a†4,l

[
(a†3,l + a†3,l+1) + h.c.

]}
EAF = −

(
3
4 + 2αs′

)
N.

(A2)

Translation symmetry in the horizontal direction permitted us to introduce a quasi-wave vector
k = 2πl/N, l = 0, 1, . . . , N − 1, and to perform Fourier-transform for operators

a jl =
1
√

N

∑
k

exp(ikx)a jk, j = 1, 3;

a jl =
1
√

N

∑
k

exp(−ikx)a jk, j = 2, 4;
(A3)

After the Fourier-transform the Hamiltonian (A3) took the form:

Ĥ0 = EAF +
∑
k

{
1
2

(
2a†1ka1k + 3a†2ka2k

)
+

(
1
2 + 2αs′

)
a†3ka3k + αa†4ka4k+

+ 1
2

[
(1 + eik)a†1ka†2k + a†2ka†3k

]
+ α

√
s′
2 (1 + e−ik)a†3ka†4k + h.c.

} (A4)

To diagonalize (A4) we used the Heisenberg representation of the creation and annihilation
operators in order to derive the equations of motion:

.
a jk =

i
}
[
Ĥ, a jk

]
,

and applied the generalized u-v Bogolubov transformation in the form:

a jk =
4∑

i=1

(
U( j)

ik bik + V( j)∗
ik b†ik

)
, j = 1− 4,
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assuming that the new set of operators diagonalizes the Hamiltonian (A4). In the result, we had:

.
b jk = −

i
}ε jkb jk

For each ε jk we had similar sets of eight linear uniform algebraic equations for eight coefficients,
which separated into two sets with four equations each, corresponding to four energy branches with
the dispersion relations:[

(ε∓ 1)(ε± 3/2) + cos2 k
2

][
(ε± α)(ε∓ 1/2∓ 2αs′) + 2α2s′ cos2 k

2

]
+

+ 1
4 (ε∓ 1)(ε± α) = 0

(A5)

One should take only non-negative solutions for ε (energies) in (A5). It is easy to show that at
k = 0 the solution ε = 0 always exists. This means that in the linear spin wave approximation the
energy spectrum is gapless for any value of s′ and coupling parameter α.

In the long-wave limit k << 1 the approximate formulas for the lowest energies are different for
the cases s′ , 1/2 and s′ = 1/2

s′ ,
1
2

: εk ≈
(2αs′ + 1)
4|2s′ − 1|

k2 (A6)

and
s′ =

1
2

: εk ≈
1
2
√
α|k| (A7)

Similar calculations for 3-zigzag nanoribbon structures also gave the gapless energy spectrum:

s′ ,
1
2

: εk ≈
(αs′ + 1)
2|2s′ − 1|

k2 (A8)

and:

s′ =
1
2

: εk ≈
1
2

√
α(α+ 2)
(2α+ 1)

|k| (A9)
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