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Abstract: The effect of bacteria that present in the human urine (Escherichia coli, Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Staphylococcus aureus) was studied under the conditions of biomimetic
synthesis. It was shown that the addition of bacteria significantly affects both the phase composition
of the synthesized material and the position of crystallization boundaries of the resulting phosphate
phases, which can shift toward more acidic (struvite, apatite) or toward more alkaline (brushite)
conditions. Under conditions of oxalate mineralization, bacteria accelerate the nucleation of calcium
oxalates by almost two times and also increase the amount of oxalate precipitates along with
phosphates and stabilize the calcium oxalate dihydrate (weddellite). The multidirectional changes in
the pH values of the solutions, which are the result of the interaction of all system components and the
crystallization process, were analyzed. The obtained results are the scientific basis for understanding
the mechanisms of bacterial involvement in stone formation within the human body and the creation
of biotechnological methods that inhibit this process.

Keywords: pathogen crystallization; biomimetic synthesis; renal stone; calcium oxalate; apatite;
brushite; struvite; octocalcium phosphate; whitlockite; Escherichia coli; Klebsiella pneumoniae;
Pseudomonas aeruginosa; Staphylococcus aureus

1. Introduction

Urolithiasis is an example of pathogenic mineral formation in the human body. Various exogenous
and endogenous factors are considered among the reasons for the development of urolithiasis [1,2].
The more factors act simultaneously, the more difficult the pathogenesis of urolithiasis and the worse
its prognosis, which is due to frequent recurrence of the disease and the rapid growth of stones.

Currently, there are many theories explaining the causes and mechanisms of pathogenic stone
formation in the human urinary system [3–10]. All theories are based on the complex interaction of
biogenic and abiogenic substances, but none of them are exhaustive. The least studied is the bacterial
theory [4].

It is well known that the presence of a variety of bacteria in the urine is very likely and bacterial
inflammation often accompanies stone formation [11]. Assumptions about the significant effect of
microorganisms on the processes of lithiasis in the human urinary system have been made in a
number of works [2–13]. The crystallization system (urine) contains about a dozen bacteria species.
Microbiological examination of removed urinary stones’ microflora shows that more than half of
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urinary stones are infected, in most cases by several types of bacteria [2,14]. Infectious diseases of
the urinary tract are direct or indirect provocateurs of stone formation in the human urinary system.
According to the observations of practicing urologists, infectious sequelae after lithotripsy are rather
frequent, even against the background of sanitized urine, which indicates that the stones are infected
by bacteria during the formation [2]. The results of urine stone sowing showed that Enterococcus faecalis,
Enterococcus faecium, Staphylococcus epidermidis, Staphylococcus haemolyticus, Pseudomonas aeruginosa,
Klebsiella pneumoniae, Proteus mirabilis, and Escherichia coli, as well as Streptococcus spp, Staphylococcus
aureus, Acinetobacter baumanii, Candida albicans, and Morganella morganii were among the most frequently
excreted microorganisms [14]. The presence of pathogens in the urine affects the parameters and
composition of urine, which in turn should affect the crystallization of urinary stones’ mineral phases.
A number of studies have shown that bacteria can form biofilms on the surface of a stone, which leads
to the formation of chronic infection during diseases of the urinary system [2,15,16].

A substantial portion of papers on the effect of bacteria on the stone formation in the human
urinary system is devoted to the so-called infectious renal stones, consisting mainly of struvite
((NH4)MgPO4·6H2O), and sometimes containing hydroxylapatite (Ca5(PO4)3(OH)) and brushite
(Ca(HРО4)·2Н2О) [12]. The bacteria that cause the secondary phosphate stone formation belong to
the urease-forming microflora [17]. Infectious stones are formed as a result of urea hydrolysis to
ammonium ions and bicarbonate, increasing the urine pH to normal or alkaline values and binding to
available cations to produce magnesium ammonium phosphate (struvite) and carbonate apatite [12].
Struvite stones are found only in a small number of patients susceptible to urinary tract infections. Thus,
in our collection of renal stones of St. Petersburg and the Leningrad region residents, which consists of
more than 2000 samples, only 27 belong to this "infectious" type (Figure 1). It is assumed that oxalate
stones may also have an infectious origin [2,3,17]. The data on the initiation of the crystallization and
aggregation of calcium oxalates in the presence of E. coli [18], as well as the work on the crystallization
of weddellite (CaC2O4·2H2O) in the presence of E. coli [19], favor of this assumption. In addition,
a number of papers suggest that bacteria can serve as centers of crystallization and the subsequent
growth of renal stones, forming a phosphate shell around itself [20].

Figure 1. Infectious renal stones: (a) Apatite–struvite–brushite, (b) struvite, and (c) struvite–brushite.
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The results of model experiments on the crystallization of pathogenic phase analogs in the presence
of bacteria have shown that bacteria change the pH of solutions and can increase the amount and
alter the morphology of the resulting oxalate and phosphate crystals [3,6,7,13,21]. Unfortunately,
the currently available data are insufficient to characterize the effect of the bacterial presence in the
urine on the phase composition of the resulting renal stones.

In order to advance in this direction, we conducted a synthesis experiment using solutions that
simulate the composition of human urine, including containing bacteria common for human urine,
and revealed their role in the crystallization of urinary phosphate and oxalate stones.

2. Materials and Methods

Biomimetic syntheses in the presence of bacteria were carried out by precipitation at 37 ◦C from
solutions that simulated the composition of human urine and its inorganic components, where the
content corresponded to their minimum or maximum values (Table 1). The volume of the solution
after mixing of initial components in accordance with Figure 2 was 500 mL. The content of calcium
cations in solutions ranged from 5 to 7.7 mmol/L, which is due to the fact that in small volumes
of solution (0.2 L) and with a limited time to carry out the synthesis (1–2 days) the formation of a
crystalline precipitate at lower calcium concentrations does not occur. To accelerate the crystallization
of calcium and magnesium phosphates, oxalate ions (in the form of ammonium oxalate) were also
added to the initial solution in a low concentration (0.1 mmol/L). Also, experiments in the so-called
“oxalate system” containing only calcium ions and oxalate ions were conducted (calcium oxalate
supersaturation is equal to 7, which corresponds to the physiological values of urine), since calcium
oxalate does not crystallize in the system simulating the composition of urine. Ovalbumin was added
to the experiments at a concentration of 10 mmol/L [22]. Syntheses were carried out by precipitation
in an aqueous solution or in solutions of protein-containing nutrient media, the Müller Hinton
Broth (MHB) nutrient medium or the Meat-Peptone Broth (MPB), which were prepared according
to standard techniques [23,24]. In addition, bacteria associated with inflammatory processes and
present in significant quantities both in the environment and in the human body were added to
each of the protein media and to the model media in an amount of 106 particles per liter: Escherichia
coli («e»), Klebsiella pneumoniae («kl»), Pseudomonas aeruginosa («ps»), and Staphylococcus aureus («s»).
The following bacterial American Type Culture Collection (ATCC) strains were used in the experiments:
25922 («e»), 70060325922 («kl»), 27853 («ps»), and 29213 («s»). The pH of the solutions varied between
5.77–7.26 (minimum concentrations of inorganic components) and 6.10–8.07 (maximum concentrations
of inorganic components). The acidity of the initial solutions was adjusted using aqueous solutions of
HCl and NaOH. The crystallization start time (clouding of the solution) and phase composition of
the obtained precipitates were recorded during experiments. Clouding of the solution was recorded
visually. The precipitate obtained a day later was filtered, washed with distilled water, and dried at
room temperature; at least three iterations were performed for each experiment.

Table 1. Elemental composition (mmol/L) of model solutions and urine.

Component Model Solution Human Urine [22,25]

Min Concentration Max Concentration
Na+ 60 73 67–133
K+ 21.7 102 33–47

Ca2+ 5–7.7 5–7.7 1.7–5
Mg2+ 5.3 11 5.3–11
NH4

+ 20.8 49.4 20–50
Cl- 67 80 67–167

CO3
2- 0 33 0–33

PO4
3- 13 33 13–33

SO4
2- 21.7 69 27–80
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Figure 2. The scheme of the synthesis experiment in system which simulated the composition of urine
by inorganic components.

The phase composition of precipitate products was determined by means of powder X-ray
diffraction method (PXRD). The measurements were performed using a Rigaku «MiniFlex II» powder
diffractometer (CuKα radiation, λ = 1.54178 Å; 30 kV/15 mA; Bragg–Brentano geometry; PSD D-Tex
Ultra detector). X-ray diffraction patterns were collected at room temperature in the range of
3–60 ◦2θ with a step of 0.02 ◦2θ. Phase identification was carried out using the ICDD PDF-2
Database (release 2016). The unit cell parameters were refined by the Pawley method using TOPAS
4.2 software [26]. The background was modeled using a Chebychev polynomial of 12th order. The peak
profile was described using the fundamental parameters approach.

3. Results

3.1. pH Changes of the Medium

The pH of the solutions in the crystallization process of the phosphate phases always decreased in
experiments without organic additives and with the addition of nutrient media and bacteria, it either
increased or decreased (Table 2). As can be seen from Table 2, the nutrient media and bacteria affected
the pH values, which can be explained both by the influence of crystallization processes and bacterial
activity. For instance, interaction of the solution with MHB media slightly reduced the pH value of
the solution in the case of the minimum concentrations of inorganic components and in the case of
maximum concentrations the pH of the solution increased. Addition of Pseudomonas aeruginosa bacteria
to the MHB medium slightly increased the pH value of the solution (by 0.4), while addition of the
same bacteria to the MPB medium increased the pH value of the solution by much more (by 0.6).



Crystals 2019, 9, 259 5 of 11

Table 2. The change in pH of the solutions during the experiment in nutrient media with the addition
of bacteria.

Additives Minimum Concentration Maximum Concentration

Nutrient Medium Bacteria Initial pH Final pH Initial pH Final pH

none none 5.95–7.54 5.94–6.71 5.81–7.73 5.75–7.50

Müller–Hinton Broth

none 5.81–7.15 5.84–6.25 6.10–8.07 6.27–7.39

Escherichia coli (“e”) 5.81–7.15 5.27–6.39 6.10–8.07 5.85–7.35

Klebsiella pneumoniae (“kl”) 5.81–7.15 5.51–6.40 6.10–8.07 5.84–7.50

Pseudomonas aeruginosa (“ps”) 5.81–7.15 6.21–6.51 6.10–8.07 6.16–7.90

Staphylococcus aureus (“s”) 5.81–7.15 5.06–6.45 6.10–8.07 5.66–7.54

Meat–Peptone Broth

none 5.77–7.26 5.78–7.08 6.10–8.03 6.18–7.90

Escherichia coli (“e”) 5. 77–7.26 5.94–7.02 6.10–8.03 6.07–7.67

Klebsiella pneumoniae (“kl”) 5.77–7.26 5.90–7.00 6.10–8.03 6.03–7.80

Pseudomonas aeruginosa (“ps”) 5.77–7.26 6.39–7.40 6.10–8.03 6.18–7.90

Staphylococcus aureus (“s”) 5.77–7.26 6.25–7.23 6.10–8.03 6.14–8.05

3.2. Model Solutions with Minimum Concentrations of Additional Ions Characteristic of a Healthy Person’s
Urine Composition

In syntheses of phosphates with minimum concentrations of inorganic impurities without
additives, formation of the following crystalline phases was observed: Brushite (Ca(HРО4)·2Н2О),
octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O), and whitlockite (Ca9Mg(HPO4)(PO4)6) [27,28].
Brushite formed in synthetic experiments when the initial pH of the solution ranged from 6.46 to 6.86.
Octacalcium phosphate was usually observed together with brushite (less often with whitlockite) in
the pH range of 6.46 to 6.95. Whitlockite was obtained in the pH range of 6.95 to 7.54.

Addition of MHB medium to the model solution changed the phase composition of the sediment
(Figure 3). In the pH range 6.75–7.3, the brushite phase was detected. Brushite also formed after
addition of various bacteria to the solution. Moreover, the whitlockite phase was detected in the
syntheses that were carried out in the presence of “kl” at a pH of 7.15. In addition, in the experiments
with “e” and “ps” bacteria at pH 7.05–7.15, formation of struvite was identified (together with brushite).

Addition of the MPB medium to the model solution also led to changes in the phase composition
of the sediment (Figure 3). In this case, brushite was detected at pH ~7.06. Brushite did not crystallize
at such a high pH in the experiments without additives. Another difference in the phase composition
of the precipitate was the formation of struvite at a pH of 7.26, which is absent in the products of
syntheses without additives. The brushite phase was detected in the sediments of all syntheses, which
were carried out in the presence of bacteria. Whitlockite was formed only in the synthesis in which
the E. coli bacteria were present at a pH of 7.07. Struvite was formed in the syntheses with bacteria,
except those experiments with the addition of Staphylococcus aureus, at a pH of 7.0 or higher. In all the
syntheses with bacteria, the formation of apatite was observed at a pH of 6.72 or higher.



Crystals 2019, 9, 259 6 of 11

Figure 3. Phase composition of synthesized products from model solutions with minimum
concentrations of additional ions characteristic of a healthy person’s urine composition. Legend:
♦—brushite, +—struvite, ∆—whitlockite, •—apatite, �—octacalcium phosphate, ×—no precipitation;
Escherichia coli —«e», Klebsiella pneumoniae—«kl», Pseudomonas aeruginosa—«ps», and Staphylococcus
aureus—«s».

3.3. Model Solutions with Maximum Concentrations of Additional Ions Characteristic of a Healthy Person’s
Urine Composition

In the phosphate syntheses with maximum concentrations of inorganic impurities without
additives, the formation of brushite and struvite was observed (Figure 4). Brushite was formed in a
wide range of pH values of the initial solution from 5.81 to 7.63. Struvite growth occurred at higher pH
values (from 7.23 to 7.73) and usually along with brushite.

When MHB medium was added to the model solution, hydroxylapatite was clearly observed
in the precipitate composition, in addition to common brushite and struvite. Brushite and struvite
phases also formed when various bacteria were added to the solution, while apatite was detected only
in syntheses with E. coli and Pseudomonas aeruginosa. In all the systems, except for the synthesis in
the presence of Klebsiella pneumoniae, there was a significant shift in the beginning of the precipitate
formation toward higher pH values. Thus, brushite was obtained in syntheses within the pH range
7.0–7.03 (in the system with “kl” at a pH of 6.10), apatite was observed only at a pH of 7.0, and struvite
at a pH of 7.0 or higher.

Addition of MPB medium to the model solution did not lead to changes in the phase composition
of the sediment. Brushite and struvite were formed when various bacteria were added to the solution
(Figure 4). The brushite phase was found in all systems, but at different pH values: Between 6.10 and
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7.06 (syntheses with “st”, “kl”, and “ps”) or 6.96–7.06 (syntheses with “e”). Struvite was formed in all
the systems at a pH of about 7 and higher.

Figure 4. Phase composition of synthesized products from model solutions with maximum
concentrations of additional ions characteristic of a healthy person’s urine composition. Legend
as in Figure 3.

3.4. Crystallization in the Oxalate System

As the result of the biomimetic syntheses, it was found that the presence of bacteria accelerates
nucleation within the oxalate system (Table 3). Perhaps, bacteria can act as nucleation centers.
The greatest effect (more than twice) in accelerating the crystallization rates of the calcium oxalates
was observed in the presence of Pseudomonas aeruginosa.

Table 3. Nucleation of calcium oxalates in the presence of bacteria at various supersaturations (γ).

Bacteria Nucleation Time, s

γ = 3 γ = 7 γ = 10
None More than 2400 (>40 min) 840 140

Staphylococcus aureus 1500 510 30–50
Klebsiella pneumoniae 1290 470 30–50

Escherichia coli 1200 420 30–50
Pseudomonas aeruginosa 1140 370 30–50

PXRD analyses of the precipitates obtained in the presence of bacteria within the oxalate system
showed formation of calcium oxalate mono and dihydrate (whewellite and weddellite, respectively),
while in the syntheses without bacteria only whewellite was formed. According to the PXRD data,
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the whewellite/weddellite ratio in precipitants was determined along with unit cell parameters, from
which the content of “zeolite” water, x, in the structure of weddellite (CaC2O4·(2 + x)H2O) was
calculated (Table 4) [29]. The presence of bacteria did not practically affect the whewellite/weddellite
ratio, as well as the content of “zeolite” water (x). Moreover, the results obtained for the syntheses with
bacteria were close to the effect of proteins that stabilize calcium oxalate dihydrate crystallization [1,30].

Table 4. Characteristics of phases synthesized within the oxalate system in the presence of bacteria and
protein additives.

Additives Whewellite/Weddellite Ratio Selected Crystallographic Data for the Weddellite Phase

Unit Cell Parameter, Å
Amount of “Zeolite” Water

(x), p.f.u. *

None whewellite – –
Ovalbumin 5:2 12.349(1) 0.26

Escherichia coli 5:2 12.344(1) 0.23
Pseudomonas aeruginosa 5:2 12.341(2) 0.21

Staphylococcus aureus 5:2 12.346(2) 0.24

* Per formula unit; calculations were made with regard to the a unit cell parameter, using the regression equation
reported in [29].

4. Discussion

Perhaps, the most important results of the study are that in systems with minimum and maximum
concentrations of inorganic ions, only analogs of the phosphate renal stone mineral phases were
observed, while calcium oxalates were obtained under given conditions only with an increase in the
concentration of oxalate ions up to the oxalatouria values, both in experiments with bacteria and without
them. This result is in general agreement with the literature data on model crystallization experiments
in the human urinary system [21,27,31]. Thus, according to the thermodynamic calculations and
experiments in systems that simulate composition of the physiological liquid, calcium oxalates are
formed in much smaller quantities than what is actually observed during pathogenic processes in the
human body. Moreover, the weddellite phase (calcium oxalate dihydrate) does not form at all [31].
Introduction of bacteria and protein (ovalbumin) to the system leads to a similar result in all the
experiments, increasing the portion of weddellite and increasing the amount of calcium oxalates in
general. It should be also noted that, according to the unit cell parameters of weddellite crystals which
are formed in the presence of bacteria, the amount of “zeolite” H2O molecules (x) falls into a rather
narrow range of values, whereas those in the structures of weddellite crystals from human renal stones
vary much more (from 0.13 to 0.37 p.f.u.).

According to our data, all bacteria initiate the nucleation of calcium oxalates and promote the
crystallization of metastable calcium oxalate dihydrate (weddellite) in the oxalate system (containing
only Ca2+ and [C2O4]2– ions). The initiation of calcium oxalate nucleation in the presence of bacteria
is in agreement with the results of some recent studies, which describe an increase in the number of
calcium oxalate crystals and their size in the presence of bacteria [32].

As it was shown by the results of phosphate crystallization experiments, the addition of bacteria
and nutrient media leads to a change in the phase composition of the precipitate and to the shift of
the phosphate phase’s formation boundaries (Figures 3 and 4). The addition of the MHB medium to
the model solution with the minimum concentration of inorganic impurities led to the disappearance
of octacalcium phosphate and whitlockite, followed by the formation of brushite and rare struvite
occurrences. The same addition to the model solution with the maximum concentration of inorganic
impurities led to the crystallization of apatite, along with brushite and struvite, and to the significant
shift of brushite and apatite formation areas toward higher pH values of the solution (~7.0).

The addition of the MPB medium to the model solution with a minimum concentration of
inorganic impurities led to the formation of brushite and whitlockite and, in addition, crystallization
of struvite was detected at a pH of 7.26, so the shift in the struvite phase formation boundary in this
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system moved toward being significantly more acidic. The brushite phase was observed in this system
in a narrower pH range around 7.06. Since brushite did not form in experiments without organic
additives at such a high pH, this suggests that the boundary of its formation expanded to the more
alkaline side. The same addition to the model solution with the maximum concentration of inorganic
impurities did not lead to any change in the phase composition of the synthesized products. At the
same time, it can be stated that the boundary of the brushite formation area has shifted to the more
alkaline region of solutions and the boundary of the struvite formation area shifted to the more acidic
region (pH of 6.96).

The addition of bacteria to the appropriate media led to additional changes in the composition of
the precipitates (Figures 3 and 4). Thus, in the syntheses with minimal concentrations of inorganic
impurities, the appearance of Escherichia coli and Pseudomonas aeruginosa in an MHB medium led to the
formation of struvite and shifted its starting crystallization boundary to the more acidic region (pH of
7.05). Although struvite was initially present in the synthetic products, the appearance of bacteria in
the MHB medium contributed to the displacement of its crystallization area to the more acidic region.
The effect of Escherichia coli and Staphylococcus aureus bacteria on the crystallization of brushite was
also well demonstrated in systems containing MHB; the shift of the brushite initial crystallization area
occurred toward the more alkaline region. The effect of the bacteria addition on the crystallization of
apatite was clearly visible in the MPB medium; the appearance of bacteria promoted crystallization of
apatite and shifted its formation boundary to the more acidic region (pH of 6.72).

The change in the pH values of the solution during the biomimetic syntheses process occurred in
different directions, due to both the crystallization process of various phases and the effect of a certain
protein medium type and all types of bacteria addition. The decrease in pH in systems that modeled
urine using inorganic components can be explained by the result of phosphate phase crystallization,
while an increase in systems with bacteria can be explained by the influence of metabolic products.
The presence of urease-producing bacteria such as Pseudomonas aeruginosa, Klebsiella pneumoniae and
Staphylococcus aureus in urea led to an increase in pH [11,12].

The displacement of struvite crystallization boundaries obtained in the experiments, which led
to its intensive formation, once again underlines the involvement of bacteria in the formation of
"infectious" renal stones, described in a number of works [3,12]. At the same time, the expansion of the
brushite crystallization area boundaries and the crystallization of apatite, as well as the formation of
weddellite in the oxalate system, shows that the influence of the presence and function of bacteria in
the crystallization medium was not only limited to the alkalization of the urine and the formation of
ammonium ions, but significantly affected the types of growing mineral phases and the size of their
crystallization areas with natural variations in urine pH.

5. Conclusions

Under the conditions of model experiments, the effect of bacteria that are present in human
urine (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus) on
the formation of the renal stone mineral phases, such as brushite, struvite, vitlocite, octacalcium
phosphate, apatite, whewellite, and weddellite, was studied in systems simulating the composition of
human urine and using two types of nutrient media (Muller–Hinton Broth and Meat–Peptone Broth).
Multidirectional changes in the pH values of the solutions were analyzed, which are the result of all
system components’ interactions with the crystallization process.

It was shown that the presence of bacteria has a different effect on the phosphate and oxalate
phases’ formation. The presence of pathogens and nutrient media significantly affect the precipitant
phase composition and the position of the resulting phosphate phase’s crystallization boundaries,
which can shift both to more acidic (struvite, apatite) and more alkaline (brushite) areas. Under
conditions of oxalate mineralization, bacteria accelerate the nucleation of calcium oxalates by almost
two times and also increase the amount of oxalate precipitates along with phosphates and stabilize the
calcium oxalate dihydrate to weddellite.
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As it can be seen from the reported results and the available literature data, the bacterial effect on
oxalate and phosphate phase formation is different. Thus, in the case of oxalate mineralization, primarily
(most likely), the inflammatory process will contribute to the decrease of oxalate supersaturation in
urine due to calcium oxalate crystallization. In the case of phosphate mineralization, the change in
urine pH and the products of bacterial metabolism will be of major importance. Studies aimed at
identifying the specific action of certain microorganisms on the crystallization of certain mineral phases
should serve to develop individual methods of treatment and prevention of urolithiasis.

The obtained results could be regarded as the scientific basis for understanding the mechanisms of
bacterial participation stone formation in the human urinary system and the creation of biotechnological
methods for the prevention of this disease.
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