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Supplementary Information 

1. The capillary length 

Diffusion-limited crystal growth from solution can be described in two equivalent ways: by 

expressing supersaturation in terms of mole fractions or in terms of concentrations. In the former 

case mass transport is naturally given by Maxwell-Stefan diffusion, in the latter case by Fick diffusion. 

Maxwell-Stefan diffusion is diffusion driven by a chemical potential gradient and Fick diffusion is 

diffusion driven by a concentration gradient. In general, the chemical potential of the ice phase 

depends on the curvature of the crystal surface. This is comparable to the Laplace pressure in a 

droplet. The shift is inversely proportional to the radius of curvature; the constant of proportionality 

is the capillary length, defined in Eq. S1. 

Because the numerical value of the supersaturation  in the two methods is different, so is the value 

of the capillary length, because the relative change in growth rate is the same in both formulations. 

In the formulation based on concentration, the capillary length is generally denoted by d0, and in the 

mole fraction formulation it is denoted by lc. The former capillary length was derived by Langer as 1  
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Here, wi = (29–0.4T) mJ m–2 is the ice-sucrose solution interfacial energy 2. Tabs is the temperature in 

Kelvin; ice = 917 kg m–3 is the density of ice; and Lm = (333+2.21T) kJ kg–1 is the effective 

temperature-dependent latent heat of melting in a concentrated sucrose solution. The factor 2.21 is 

the difference of the specific heats of water and ice.  

In the second formulation, the capillary length lc was derived by Van Westen and Groot as 2 
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Here, Vm is the molar volume of ice,  is the molar chemical potential and x is the molar fraction of 

sucrose in the matrix. In this expression we used the approximation that the sucrose molar fraction 

vanishes in the ice phase, otherwise one factor x in the denominator should be replaced by the 

molar miscibility gap. Van Westen and Groot used experimental data for the water activity of 

sucrose solutions to obtain the thermodynamic factor 𝑥(𝜕𝜇/𝜕𝑥)𝑝,𝑇/𝑅𝑇, whereas Langer used the 

liquidus line. 

In either case the concentration, or mole fraction, at a curved interface with a radius of curvature a, 

is given by 

{
𝑥𝑎 = 𝑥𝑒𝑞(1 − 𝑙𝑐/𝑎)

𝐶𝑎 = 𝐶𝑒𝑞(1 − 𝑑0/𝑎)
 S3 

Hence the shifts in concentration or mole fraction are C = –Ceqd0/a and x = –xeqlc/a. The ratio of 

these is important to find a relation between the two definitions of the capillary length, 
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To calculate the right-hand side of this equation, we consider a weight fraction w sucrose in aqueous 

solution. To a high degree of accuracy, the density of this solution is given by 

𝜌 =
1
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=
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where s and w are the densities of sucrose and water respectively. Thus, the total liquid volume is 

the sum of the water and sucrose volumes. The (mass) concentrations of sucrose and water are now 

found as C = w and Cw = (1–w), and the molar concentrations follow as ns = C/Ms and nw = Cw/Mw. 

The molar fraction is now obtained as 
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A straightforward calculation gives the sucrose concentration as 
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Combining S6 and S7 we find the derivative in A4 as 
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Thus, from Eq. S4 and Eq. S8 we find the relation between d0 and lc as: 
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The capillary length d0 can now be calculated in two ways: directly from the liquidus (Eq. S1), or from 

the thermodynamic relation Eq. S2 using a fit model for the thermodynamic factor 2. From these 

independent methods we find at T = –2 oC from Eq. S1: d0 = 10.45 nm, and from Eq. S2/S9: d0 = 

10.59 nm. The two methods agree to within 1%. At T = –10 oC, we find from Eq. S1: d0 = 1.26 nm, 

and from Eq. S2/S9: d0 = 1.52 nm. At this temperature, the two methods differ by some 17%. This 

may be caused by an uncertainty in temperature-dependence of the thermodynamic factor. Using 

the known liquidus for sucrose solutions (Eq. S11), we find from Eq. S1 the numerical result for d0 in 

a sucrose solution as: 

𝑑0 = −
25.9

𝑇
∙
(1 − 0.017𝑇)

(1 − 0.142𝑇)
    [nm] S10 

where T is the temperature in oC and d0 is expressed in nm. Note that the correspondence between 

d0 and lc (Eq. S9) can be used to obtain the thermodynamic factor along the melting line. 

 

2. Calculation of ice phase volume fraction (T) 

The equilibrium ice phase mass fraction, f(T), in a product containing  mass fractions fs of sucrose, fw 

of pure water and fother of additives is calculated as function of temperature using the Lever Rule 

from the equilibrium sucrose mass fraction in the aqueous phase, 𝑤𝑒𝑞(𝑇) .   
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Firstly, 𝑤𝑒𝑞(𝑇)is given by  equation (26) in reference as 2 

𝑤𝑒𝑞(𝑇) ≈
1

1.195 − 5.781/𝑇
 S11 

The numerical values in the equation for 𝑤𝑒𝑞(𝑇)  give a good fit to all available experimental data for 

T > −14 °C. 

The equilibrium ice phase mass fraction as a function of temperature is thus obtained as 

𝑓(𝑇) = 1 − 𝑓
𝑜𝑡ℎ𝑒𝑟

−
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The ice phase volume fraction, () follows straightforwardly as 
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+
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where ice = 0.917 g/cm3 is the density of ice, and M = 1.14 g/cm3 is the density of the 

unfrozen matrix. For the numerical calculations we used the water and sucrose mass 

fractions of the experimental ice cream formulation which are fw = 0.5512 and fs = 0.2883. 

 

3. Update scheme and consistency check 

To find the mean cubed crystal size as function of time, we decrease the temperature by a small step 

T (< 0) and calculate the corresponding time step from a chosen cooling rate B = –dT/dt. The cubed 

crystal size does not follow proportionally to the ice fraction but has to be integrated in steps 

because of the Ostwald ripening term in Eq. 6. For a stable result we use a Crank-Nicholson scheme: 

⟨𝑎3⟩𝑡+𝛿𝑡 = ⟨𝑎3⟩𝑡 +
(⟨𝑎3⟩𝑡 + ⟨𝑎3⟩𝑡+𝛿𝑡)

(𝑓𝑡 + 𝑓𝑡+𝛿𝑡) 
 𝛿𝑓 +

1

2
((ℎ𝐾)𝑡 + (ℎ𝐾)𝑡+𝛿𝑡)𝛿𝑡  S13 

Since the mass fraction and weight fraction in the next time step depend only on temperature, the 

functions ℎ(𝜙) and 𝐾(𝜙, 𝑇) in the next time step are known. Hence, the mean cubed crystal size in 

the next time step is solved as 

⟨𝑎3⟩𝑡+𝛿𝑡 =
(1 + 𝛿𝑓/(𝑓𝑡 + 𝑓𝑡+𝛿𝑡))⟨𝑎3⟩𝑡  + 1

2
 ((ℎ𝐾)𝑡 + (ℎ𝐾)𝑡+𝛿𝑡) 𝛿𝑡 

(1 − 𝛿𝑓/(𝑓𝑡 + 𝑓𝑡+𝛿𝑡))
 S14 

In this scheme we use the equilibrium ice fraction explicitly in the calculation of the ice volume 

fraction which appears in g and h, and implicitly through using the equilibrium Ostwald ripening 

theory.  

The update scheme above is essentially based on the equilibrium ice fraction, whereas we should 

use the actual ice fraction for the crystal size evolution. Moreover, we assumed that quasi-

equilibrium conditions apply, so that we can use the equilibrium result for Ostwald ripening. 
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However, if temperature continually drops the actual ice fraction will lag behind. Here we check if 

this quasi-equilibrium assumption is justified. 

When the ice mass fraction has non-equilibrium value f, it will generally move towards the 

equilibrium fraction fice as df/dt = (fice–f)/, where  is a relaxation time. For sufficiently slow, 

continuous cooling we will have df/dt ≈ dfice/dt hence the deviation from equilibrium follows as 

𝛿𝑓 = 𝑓𝑖𝑐𝑒 − 𝑓 ≈ 𝜏𝑓̇𝑖𝑐𝑒   S15 

The relaxation time is calculated from the slowest relaxation mode of the diffusion field around a 

sphere of radius a, enclosed by an outer sphere of radius Rs, where a3/Rs
3 = . This mode is given by 

𝐶(𝑟, 𝑡) = 𝐶𝑒𝑞 + 𝐴 sin(𝑘(𝑟 − 𝑎)) exp(−𝑡/𝜏) /𝑟, where k is a wave number that should satisfy the 

boundary condition dC/dr = 0 at the outer radius. Defining  = k(Rs–a), we find this boundary 

condition to be satisfied for tan() = /(1–), or  = (1–/tan())3. A reasonable approximation to 

the inverse of this function is found by matching the solutions for low and high volume fractions. 

This leads to 𝛿 ≈ √3𝜙1/6/(1 + 𝛼𝜙𝛽), where 𝛼 = 2√3/𝜋 − 1 ≈ 0.1027 and 𝛽 = (1 − 8/𝜋2)/(6 −

𝜋√3) ≈ 0.3391 This approximation is accurate to 4 decimal places. The relaxation time is now 

obtained as 

𝜏 =
(𝑅 − 𝑎)2

𝐷𝐹𝑖𝑐𝑘𝛿2
=

𝑎2

𝐷𝐹𝑖𝑐𝑘

(𝜙−1/3 − 1)
2

(1 + 𝛼𝜙𝛽)

3𝜙1/3
  S16 

Here, DFick is the Fick diffusivity at equilibrium, which is given by 2 

𝐷𝐹𝑖𝑐𝑘 = exp(−21.97 + 𝑇 + 𝑇2)    [m2/s] S17 

where =0.4157 K-1 and =0.0046 K-2. The relaxation time depends on the starting radius, on the 

cooling rate and on temperature, but generally the relaxation time is in the order of 1 to 10 seconds. 

Multiplied by the growth rate of the equilibrium ice fraction, allows an estimate of how far the ice 

fraction is off equilibrium. For cooling rates of 0.01 to 0.1 K min–1 and crystals to start at a radius of 

5 m, the relative deviation from the equilibrium ice fraction is of the order f/fice ~ 10–5-10–3, 

depending on temperature. Hence, for the calculation of the ice volume fraction the quasi-

equilibrium assumption is justified. 

Next, we check if the quasi-equilibrium assumption is justified for the Ostwald ripening rate. 

Generally, Ostwald ripening starts when the overall supersaturation is small compared to curvature 

effects, see Eq. 1 of the main text. For this estimate we will use the formulation in terms of the 

sucrose concentration. The supersaturation  = 1–Cs/Cs,eq can be related to the ice fraction as  = 

f/(1–0.375fs–fice). We substituted the densities of water and sucrose, to obtain 1–w/s ≈ 0.375. The 

critical radius is now found as 

𝑎∗ = 2𝑑0/Δ = 2𝑑0(1 − 0.375𝑓𝑠 − 𝑓𝑖𝑐𝑒)/𝛿𝑓 S18 
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where d0 is the capillary length. A detailed calculation of d0 is given above. ac is calculated from the 

supersaturation that is caused by fast cooling, whereas a* is the actual mean radius of curvature 

which causes its own supersaturation due to curvature effects. 

 

Figure S1. Critical radius, a* , calculated for growing ice crystals in 
30% sucrose solution, cooled at a rate of 0.01 K min–1 (full curves) 
and for 0.1 K min–1 (dashed curves), starting at 5 (black) and 10 
(green) μm radius. The blue and orange curves show the actual 
mean radius; the crosses give the intersection points with the critical 
radius. 

 

The question if quasi-equilibrium conditions apply depends on the size of the crystals. If the mean 

radius of curvature is smaller than the critical radius a*, curvature effects will dominate over the 

overall supersaturation, and equilibrium Ostwald ripening applies. If the crystals are similar or larger 

in size than a* we may expect distortions to the crystal size distribution and equilibrium Ostwald 

ripening can no longer be used. The critical radius a* is shown in S1. Also shown is the actual cubed 

root of the mean cubed radius, <a3>1/3  as function of temperature. The blue curves correspond to 

the black curves, and orange corresponds to green. The intersection points have been marked by 

crosses. This shows that equilibrium conditions apply above a temperature between –15 oC to –14 
oC if the cooling rate is 0.01 C/min, depending on the initial crystal radius. For a cooling rate of 0.1 

K min–1, equilibrium conditions apply above a temperature between –14 oC to –10 oC. For lower 

temperatures we can expect strong deviations from the equilibrium Ostwald ripening theory. For 

conditions far from equilibrium, Ostwald ripening may not occur at all. This is the basis for the 

dashed curves in Figure S1. 
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