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Abstract: Hydrogen in hydrous minerals becomes highly mobile as it approaches the geotherm of
the lower mantle. Its diffusion and transportation behaviors under high pressure are important in
order to understand the crystallographic properties of hydrous minerals. However, they are difficult
to characterize due to the limit of weak X-ray signals from hydrogen. In this study, we measured
the volume changes of hydrous ε-FeOOH under quasi-hydrostatic and non-hydrostatic conditions.
Its equation of states was set as the cap line to compare with ε-FeOOH reheated and decompression
from the higher pressure pyrite-FeO2Hx phase with 0 < x < 1. We found the volumes of those
re-crystallized ε-FeOOH were generally 2.2% to 2.7% lower than fully hydrogenated ε-FeOOH. Our
observations indicated that ε-FeOOH transformed from pyrite-FeO2Hx may inherit the hydrogen loss
that occurred at the pyrite-phase. Hydrous minerals with partial dehydrogenation like ε-FeOOHx
may bring it to a shallower depth (e.g., < 1700 km) of the lower mantle.
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1. Introduction

The major components of the lower mantle are made of nominally anhydrous minerals,
which contain no more than 1 weight percent of water [1,2]. However, recent discoveries of deep hydrous
phase (DHP) including δ-AlOOH [3–5], phase H [6], HH-phase [7], and pyrite-type FeO2Hx [8,9],
which were synthesized at conditions of cold mantle geotherm from natural minerals like diaspore
(α-AlOOH) and goethite (α-FeOOH), provide possible mechanisms to transport a significant amount
of water to the bottom of the mantle. The potential presence of hydrogen is likely to contribute a
variety of seismological features observed at Earth’s lower mantle. For example, dehydration melting
at the top of the lower mantle could dramatically decrease the seismic velocities below a depth of
660 kilometers [10]. Accumulation of iron-enriched hydrous pyrite-type phase would reduce the speed
of seismic waves at the core-mantle boundary, which may be detected at large low shear velocity
provinces and ultra-low velocity zones [11–13]. Reservoirs of H also produce hydrides that would
possibly infiltrate to the outer core [9,14]. Although H is an influential volatile component, the budget
of H in the lower mantle is still under debate [15]. Large uncertainties in the abundance are probably
due to the scarcity to find natural samples derived from the deep mantle [16]. However, the number of
DHPs revealed by laboratory experiments continues to grow with the development of high-pressure
synchrotron-based experiments [17]. The extraordinary thermal stabilities of DHPs suggest that the
lower mantle can hold more water than previously expected.
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Discoveries of novel DHPs have attracted an appreciable amount of research efforts [5,18–20].
What is equally important is the diffusion and transportation behaviors of hydrogen in those DHPs [21].
Since hydrogen is the lightest element and is highly mobile, an outstanding question is how we
can quantify the hydrogen content in DHP under high pressure. It becomes even more challenging
when DHP is partially dehydrogenated [22,23]. In this case, we measured the equation of state of
ε-FeOOH, a typical DHP in the Fe-O-H ternary system, and studied its hydrogen content based on its
volume variation. This method has been testified to determine the hydrogen content in hydride [24]
and pyrite-type FeO2Hx [22]. We provide evidence that the ε-FeOOH phase could undergo partial
dehydrogenation and provide evidence that a new form of ε-FeOOHx (0 < x < 1) can be stabilized at
lower mantle conditions. Similar to pyrite-type FeO2Hx (0 < x < 1), ε-FeOOHx may exist as a solid
solution of ε-FeOOH and FeO2 [8].

2. Materials and Methods

We started our experiment by synthesizing ε-FeOOH from goethite (α-FeOOH, CAS: 20344-49-4).
Goethite comprises double chains of edge-shared octahedra that form 2 × 1 channels hosting hydrogen
bonds at an ambient condition. Above 5 GPa, it transforms to a high-pressure phase of ε-FeOOH,
which consists of corner-shared single bands of octahedral. ε-FeOOH is thermodynamically stable in
cold subducted slabs [25]. It is quenchable to ambient conditions once the crystal is synthesized in a
multi-anvil press [26,27]. We followed the recipe by Suzuki [26,27] by compacting goethite powder
in a gold capsule, rolling in a rhenium heater, and placing it in a Kawai-type multi-anvil press at
the Geophysical Laboratory, Carnegie Institution of Washington. The use of the gold capsule was
to seal water from out-of-capsule diffusion. The ε-FeOOH sample was synthesized at 10 GPa and
800 ◦C for 4 hours. After quenching to ambient conditions, the recovered samples were examined and
confirmed on a diffractometer (Figure 1). The lattice parameters and volume at ambient conditions
of the synthesized ε-FeOOH phase (orthorhombic, P21nm) were listed in Table 1 when compared
with ε-FeOOH synthesized in other laboratories [26]. We found the ambient lattice parameters of
our sample were consistent with other studies, which confirmed the composition of the synthesized
ε-FeOOH was fully hydrogenated.
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Figure 1. X-ray diffraction pattern of synthetic ε-FeOOH at ambient conditions. The sample was
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Table 1. Structural data for the synthesized ε-FeOOH under an ambient environment.

Phase V0/Z (A3)
Lattice Parameters (Å, Degree)

Reference
a b c

ε-FeOOH 33.139(3) 4.9544(2) 4.4594(3) 2.9999(1) Suzuki et al. 2016 [26]
ε-FeOOH 33.10(3) 4.954(1) 4.4540(9) 3.0001(8) Suzuki et al. 2009 [27]
ε-FeOOH 32.636(3) 5.273(4) 4.423(3) 2.798(2) This study

We then loaded powder ε-FeOOH in a diamond anvil cell (DAC) with Ne as the pressure medium.
A second piece of ε-FeOOH from the same source was loaded without any pressure medium to
check the effect of anisotropic compression [28]. The sample chamber was built by drilling a 100 to
120 µm hole in a tungsten gasket, which was squeezed between two diamond anvils with a 260 µm
culet. Angular dispersive X-ray diffraction (XRD) patterns were obtained at the 13BM-C station of the
GeoSoilEnviroCARS at the Advanced Phonon Source, Argonne National Laboratory (Argonne, IL,
USA). The wavelength of the incident X-ray was 0.434 Å and the initial data reduction was performed
by the Dioptas program [29]. We chose both ruby and gold for pressure calibration [30,31].

3. Results

In Figure 2, the high-pressure XRD patterns can be indexed to ε-FeOOH, gasket, and ruby.
We collected XRD patterns up to 56.3 GPa and ε-FeOOH is still stable. Figure S1 (in Supplementary
Materials) shows the selected XRD pattern of compared ε-FeOOH without a pressure medium.
The molar volume of ε-FeOOH in Ne pressure medium is 24.7(3) Å3 at 56.3 GPa, which is consistent
with literature [32]. The volumes as a function of pressure were plotted in Figure 3a. Under a
hydrostatic condition, the change of volume became much more incompressible at around 45 GPa,
which may attribute to the spin transition of iron [32,33]. Likewise, spin transition occurred about
4–5 GPa in advance under non-hydrostatic conditions, which is possibly affected by the deviatoric
stress [32]. In Figure 3b, we showed the pressure dependence of the relative lattice constants of
ε-FeOOH. By comparing their evolution of the edge length along the lattice axis, we found the
a and b axes were more affected by hydrostaticity and, thus, became more compressible under
non-hydrostatic conditions. The elastic anisotropy may be the result of pressure induced hydrogen
bond symmetrization in ε-FeOOH [32]. The centering of H atoms in two O atoms induced the
shortening of O-O distance along the b axis. An interesting coincidence was the same H-bond behavior
in the iso-structured δ-AlOOH, whose thermal stability is significantly improved due to the H-bond
symmetry [34]. The same symmetrical hydrogen bonds in ε-FeOOH may also expand its thermal
stability field to higher temperatures.
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where P is the pressure, KT0 is the isothermal bulk modulus, V0 and V are the volumes at high pressure
and ambient condition, respectively, and K’0 is the pressure derivative of KT0 at 1 bar. The data were
listed in Table 2 [35]. It should be noted that the EOS of ε-FeOOH was separated to two regions
due to the high-spin to low-spin transition. For the high-spin phase, the bulk modulus K0 equals
to 125.2(4) GPa with V0 per formula unit (f.u.) of 32.4(4) Å at hydrostatic condition, which was
consistent with previous studies [26]. The low-spin state has a much higher bulk modulus K0 =

248.5(2) GPa. Consequently, the sample became more stiffened and incompressible in the low-spin
state. The parallel non-hydrostatic experiments generally reproduced the results from hydrostatic
conditions, with slightly lower bulk modulus of K0 = 114.3(8) GPa in a high spin (Table 2). While
the calculated V0 is almost the same, a smaller K0 from non-hydrostatic compression means that
anisotropic compression may facilitate the formation of symmetric H bond in compressed ε-FeOOH.

Table 2. Compressibility parameters of ε-FeOOH. Abbreviations: PM, Pressure medium. AH,
asymmetric O-H bonding. SH, symmetric O-H-O bonding. Calc., first-principles calculation.

Method/PM Note K0 (GPa) K0’ V0/Z (A3) Reference

Calc. AH/high spin 188(4) 5.19(12) 28.7(2) Thompson et al. 2017 [35]
Calc. SH/low spin 223(2) 4.07(3) 29.3(1) Thompson et al. 2017 [35]

No PM high spin 124(4) 4 33 Gleason et al. 2013 [32]
No PM low spin 162 4 - Gleason et al. 2013 [32]
NaCl high spin 126(3) 10(1) 33.1(3) Suzuki et al. 2009 [27]
NaCl high spin 135(3) 6.1(9) 33.1(3) Suzuki et al. 2016 [26]

Ne high spin 125.2(4) 3.9(2) 32.4(4) This study
Ne low spin 248.5(2) 3.9(8) 29.1(2) This study

no PM high spin 114.3(8) 3.7(8) 32.6(7) This study

The equation of the state is the key to study the diffusion and transportation behaviors of H
in ε-FeOOH. Our previous simulation results suggested that ε-FeOOH with 0–75% of H defects is
still energetically stable and the H loss may promote its phase transition to the pyrite-type FeOOH
by lowering the transition barrier [36]. Removing all the hydrogen in ε-FeOOH leads to a FeO2

stoichiometry, which is a pyrite-type phase synthesized above 74 GPa [8,37]. However, FeO2 is also
reported to have a few low-pressure polymorphs. For example, below ~50 GPa, the pyrite-FeO2

may transform to an orthorhombic FeO2 with Pnnm [38] or Pbcn [39] phase, which are both very
similar to the crystal structure of ε-FeOOH. Would it be possible to form a complete solid-solution
of ε-FeOOH and the corresponding orthorhombic FeO2 [8]? While ε-FeOOH synthesized from
α-FeOOH and multi-anvil press is guaranteed to be fully hydrogenated, ε-FeOOH transformed from
the pyrite-FeO2Hx might inherit the hydrogen loss from its high-pressure polymorph. We took
data from our previous experiments [22] and compared it with the compression curve of ε-FeOOH.
In Figure 4, we used the EOS of ε-FeOOH as the cap line of the fully hydrogenated phase. The volumes
by subtracting 0.5 mole of hydrogen (Phase I [40]) from ε-FeOOH served as the baseline for hydrogen
depleted ε-FeOOHx (x = 0). By comparing their molar volumes, we can calculate the H content x for
possible H depletion in ε-FeOOHx through the following equation.

x = [Vx − Ve0]/VH (2)

where Vx is the observed volume of ε-FeOOHx from the experiment, Ve0 is the volume of hydrogen
depleted ε-FeOOHx (the baseline with x = 0), and VH is the volume per formula unit of phase-I solid
H2, which is stable up to the pressures of Earth’s core-mantle boundary [41]. The unit cell volumes
of phase-I H2 was obtained from Reference [40]. The same scheme was widely used in estimating
hydrogen numbers in iron hydrides [24]. In Table 3, we compiled the volumes of FeOOHx and
evaluated x from our previous experiments and the literature [9,22,36]. The values of x are within the
range of 0.47–0.75, which are in the same range of our previous estimated x in pyrite-type FeO2Hx [22].
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The coincidence suggests the loss of H in the recrystallized ε-FeOOHx samples may come from its
high-pressure polymorph. We also noticed that the volume of ε-FeOOH reported by Nishi et al. [9]
was 2.2% to 2.7% below the capline of ε-FeOOH, which is equivalent to 0.69 < x < 0.74. It might
be due to a dehydrogenation process by reheating a pyrite-type FeOOH sample at a relatively low
pressure. We summarized the transportation of H in the polymorphic transition between ε-FeOOHx
and pyrite-type FeO2Hx in Figure 4, where the O-H-O framework is re-established in ε-FeOOHx with
the same amount of H defects. As a result, ε-FeOOHx can be regarded as a solid solution of ε-FeOOH
and orthorhombic FeO2. Even if there is no evidence that temperature-induced dehydrogenation will
occur in ε-FeOOH, the H loss may be exhibited as an intrinsic property of pyrite-type FeO2Hx.
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Table 3. Hydrogen content x in ε-FeOOHx.

Pressure (GPa) V0/f.u. (A3) x Reference

72 23.04 0.47 Hu et al. 2017 [22]
78 22.76 0.46 Hu et al. 2017 [22]

87.5 23.15 0.75 Zhu et al. 2017 [36]
52 ~24.2 0.69 Nishi et al. 2017 [9]

4. Discussion

During the transformation from ε-FeOOH to the pyrite structured FeO2H, the emission of H is
still a controversy in experiments [9,22]. The current work used fully hydrogenated ε-FeOOH as the
cap line that was derived from the starting composition and compared with the volumes of ε-FeOOHx.
In comparison, our previous work on pyrite-type FeO2Hx used the baseline of FeO2 [22]. The volume
added to the baseline might be slightly underestimated due to the volume collapse amid the phase
transition. Therefore, our current estimation on ε-FeOOHx was more reliable and sensitive to H loss.
The results confirmed both ε-FeOOHx and pyrite-type FeOOHx are partially dehydrogenated.

Our EOS of ε-FeOOH under different hydrostatic environments extended the studies of
ε-FeOOH [26,27,32] to a wider pressure range. The XRD experiments of ε-FeOOH and ε-FeOOHx have
many implications for hydrogen diffusion and transportation in the deep Earth. H loss in transformed
ε-FeOOH indicated H transportation is not affected by the phase transition. Therefore, recycled
hydrogenated phases near the core-mantle boundary will retain the loss of hydrogen when they were
subducted to a shallower part of the lower mantle even when they transformed to other phases like
ε-FeOOH. It indicates ε-FeOOH in the lower mantle may have a significant amount of H defects.
The total H content in the lower mantle may not be estimated by the H amount in full hydrogenated
DHP. Instead, the case of dehydrogenation needs to be considered. Our experimental results support
the H loss phenomenon in the high-pressure phases of FeOOH. The released hydrogen may escape or
dissolve in the surrounding Earth materials as a part of the hydrogen cycle in Earth’s deep interiors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/7/356/s1,
Figure S1: Selected x-ray diffraction patterns of compressed ε-FeOOH under non-hydrostatic condition.

http://www.mdpi.com/2073-4352/9/7/356/s1
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Angular Dispersive X-ray Diffraction Experiments: Angular dispersive x-ray diffraction experiments were
performed at 13BM-C station of the GSECARS at the APS, ANL. Samples of ε-FeOOH powders were grinded and
pre-compressed to ~15 (T) × 60 (W) × 60 (L) µm3 before placing on the culet of DAC. High pressure was achieved
by using diamond anvils with 260 µm culet diameter. The sample chamber was a drilled hole with 100–120 µm
diameter in a tungsten gasket. For quasi-hydrostatic condition, neon gas was pumped into the sample chamber
using a gas-loading system at HPSTAR. For non-hydrostatic condition, no pressure medium was used. One or two
pieces of ruby were placed around the sample to calibrate pressure. The ruby pressure scale was compared with
the equation of state of gold [30] and Ne [42]. Pressure uncertainty is up to ± 1 GPa throughout the experiment.
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