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Abstract: Reactions of 3-(2-(pyridin-4-yl)ethyl)pentane-2,4-dione (HacacPyen) with AgPF6 and
AgBF4 afforded cationic silver complexes [Ag(HacacPyen)2]+ with essentially linear coordination of
the AgI cation by two pyridine N atoms. Rather unexpectedly, the HacacPyen ligands in the PF6

–

salt 1 adopt the diketo form, in contrast to the uncoordinated HacacPyen molecule, whereas the
corresponding BF4

– salt 2 and the majority of 3-substituted acetylacetones crystallizes as the enol
tautomer. In both compounds 1 and 2, complex cations aggregate via short Ag···Ag interactions
to pairs. These contacts amount to 3.21 Å in 1 and 3.26 Å or 3.31 Å in 2. As they are unsupported
by any additional bridging ligands and correspond to the closest interionic interactions between
neighbouring complex cations, they may be addressed as argentophilic interactions. The PF6

– anions
in 1 and the BF4

– counter ions in 2 are involved in long and presumably electrostatic Ag···F contacts
of ca. 2.9 Å. Additional coordination between AgI and keto O atoms of symmetry-equivalent ligands
occurs in 1 and leads to an extended two-periodic supramolecular structure.

Keywords: ditopic ligands; argentophilic interactions; keto-enol tautomrism; coordination chemistry;
metal-organic frameworks

1. Introduction

The increasing interest in metal-organic frameworks (MOFs) is not only due to the structural
diversity and inherent beauty of this class of compounds but also to their physical properties.
The organic linkers may connect nodes with attractive magnetic [1,2] or optical [3] features, and often
a large inner surface area enables a variety of applications such as gas storage [4] or catalysis [5–8].
The incorporation of more than a single cation type as nodes can obviously increase the range of
accessible coordination polymers and in principle enable more potential applications. The resulting
higher complexity will, however, also lead to synthetic challenges: well-ordered bimetallic systems
will usually be easier to interpret and study with applications in mind but require selectivity.
Substituted acetylacetone derivatives represent ditopic linkers with coordination sites of different
Pearson hardness [9,10] and have been successfully employed to assemble well-ordered bimetallic
extended structures. Scheme 1 compiles two widely used examples and our candidate from this class
of compounds.
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Scheme 1. Structures of two common N donor substituted acetylacetones and our candidate:
3-cyanopentane-2,4-dione (HacacCN), 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) and 3-(2-(pyridin-
4-yl)ethyl)pentane-2,4-dione (HacacPyen), respectively.

HacacPy was introduced in 1995 by Sanders and coworkers [11]. Following that report, first
the groups of Domasevitch [12–14] and Maverick [15–17], later others [18], including our group [19],
have used the compound in coordination chemistry. The structure of the uncoordinated ligand
was established in 2017 by temperature-dependent neutron diffraction [20]. The nitrile-substituted
acetylacetone HacacCN [21,22] is more restricted with respect to its N donor capabilities [23–33].
Many other combinations of the chelating acetylacetonato and N donor sites may be envisaged; the
subject has been recently reviewed [34]. We here address the less popular ditopic acetylacetone
3-(2-(pyridin-4-yl)ethyl)pentane-2,4-dione (HacacPyen, Scheme 1). HacacPyen was synthesized by
Domasevitch and coworkers [14] and used as O,O’ chelating ligand for BeII; the original authors also
communicated the structure of a bimetallic chain polymer obtained by N coordination of the pyridyl
rings in the BeII complex to CdCl2. We recently investigated the crystal structure of HacacPyen by
temperature-dependent neutron diffraction and confirmed that the uncoordinated organic molecule
exists as the enol tautomer [35]. In this study, we report the syntheses and structural characterizations of
two bis adducts of HacacPyen to AgI and put the resulting hexafluorophosphate and tetrafluoroborate
salts in the scientific context of argentophilic interactions.

2. Experimental Section

2.1. Methods and Materials

Pentane-2,4-dione (Alfa Aesar, Kandel, Germany, 99%), sodium (Sigma Aldrich, Munich, Germany,
n. a.), AgPF6 (Acros Organics, Darmstadt, Germany, 98%) and AgBF4 (Merck, Darmstadt, Germany,
n. a.) were used without further purification. 4-Vinylpyridine (Alfa Aesar, 95%) was purified by
vacuum distillation prior to use. Magnetic resonance spectra were recorded with a Bruker Avance II
UltrashieldT11 plus 400 instrument (400 MHz, referenced to tetramethylsilane). Infrared spectra were
measured using a Nicolet Avatar 360 E.S.P. spectrometer in potassium bromide windows. Elemental
analyses were performed using a Heraeus CHNO-Rapid VarioEL.

2.2. Synthesis of 3-(2-(Pyridin-4-yl)ethyl)pentane-2,4-dione (HacacPyen)

3-(2-(Pyridin-4-yl)ethyl)pentane-2,4-dione (HacacPyen) was prepared according to a slightly
modified method by Vreshch et al. [14]. Using standard Schlenk techniques, a solution of freshly
distilled 4-vinylpyridine (39.0 mL, 362 mmol) in dry ethanol (2.5 mL) was added to a boiling solution
of sodium (2.725 g, 118.5 mmol) and acetylacetone (73.5 mL, 712 mmol) in dry ethanol (47.5 mL) over
15 min. The solution was kept at reflux for 2 h. After cooling to room temperature, the solvent was
removed under reduced pressure and water (500 mL) was added. The aqueous phase was extracted
with CHCl3 (3 × 150 mL) and the combined organic phases were dried over anhydrous Na2SO4.
The solvent was removed under reduced pressure and the residue was purified by vacuum distillation
(15 mbar, 115 ◦C) to remove starting material. The residue was dissolved in a small amount of hot
CH2Cl2 and stored at −25 ◦C overnight. The crystals were filtered off, washed with a small amount of
cold diethyl ether and dried in air. The product was received as a pale orange crystalline solid. Yield:
12.325 g (60.05 mmol, 16.6%). 1H NMR (400 MHz, CDCl3) δ 16.79 (s, 1H), 8.56 (d, 3 J = 6.0 Hz, 2H),
7.21 (d, 3 J = 6.0 Hz, 2H), 2.75 (d, 3 J = 8.0 Hz, 2H), 2.57 (d, 3 J = 8.0 Hz, 2H), 2.08 (s, 6H). 13C{1H} NMR
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(100 MHz, CDCl3) δ 203.48, 191.28, 150.04, 149.77, 123.88, 108.84, 32.71, 28.73, 28.35, 22.82. CHN: Anal.
Calcd for C12H15NO2: C, 70.22%; H, 7.37%; N, 6.82%. Found: C, 70.24%; H, 7.23%; N, 6.85%.

2.3. Synthesis and Crystallization of [Ag(HacacPyen)2]PF6, 1

HacacPyen (41.1 mg, 0.2 mmol) and AgPF6 (25.3 mg, 0.1 mmol) were dissolved in acetone (2 mL
each). The two solutions were mixed and stirred for 15 min. The solvent was slowly evaporated
at room temperature. The crude product was received as a yellow oil. Yield: 30.3 mg (0.046 mmol,
46%). Recrystallization from benzene at room temperature afforded single crystals as colorless needles
suitable for single crystal X-ray diffraction. Although the synthesis of the crude oil may be reliably
reproduced, several recrystallization experiments failed to give a crystalline solid. When crystalline 1
is obtained, it corresponds to an essentially phase pure solid as shown by X-ray powder diffraction
(Figure S1 in the supplementary materials). We also note 1 readily reacts with redox active substances;
even manipulation with metallic laboratory equipment may result in formation of Ag0. IR (KBr):
ν̃/cm−1 = 3431(s), 2930(w), 2860(w), 1724(m), 1699(s), 1604(s), 1560(w), 1418(m), 1361(m), 1153(w),
992(w), 844(s), 559(m) (Figure S2). CHN: Anal. Calcd for [Ag(HacacPyen)2]PF6, including a minor
contamination of the oily residue: C, 43.46%; H, 4.56%; N, 4.22%. Found: C, 45.27%; H, 4.68%; N, 4.38%.

2.4. Synthesis and Crystallization of [Ag(HacacPyen)2]BF4 ·C4H8O2, 2

HacacPyen (41.1 mg, 0.2 mmol) and AgBF4 (19.5 mg, 0.1 mmol) were dissolved in ethylacetate
(2 mL each). The two solutions were mixed and stirred for 5 min and the solution was kept at −25 ◦C
overnight. The product was received as a colorless crystalline solid. Yield: 37.5 mg (0.054 mmol,
54 %). Single crystals suitable for single crystal X-ray diffraction were received after storing a solution
of lower concentration after 1 d at −25 ◦C. IR (KBr): ν̃/cm−1 = 3424(s), 2961(m), 2930(m), 2867(w),
1692(s), 1618(s), 1564(w), 1435(m), 1365(m), 1147(m), 1054(s), 816(m), 525(m) (Figure S2). CHN: Anal.
Calcd for the dry solid [Ag(HacacPyen)2]BF4: C, 47.63%; H, 5.00%; N, 4.63%. Found: C, 46.07%; H,
4.72%; N, 4.19%.

2.5. Structure Determinations

Intensity data were collected with a Bruker D8 goniometer equipped with an APEX CCD
area detector and an Incoatec microsource (Mo-Kα radiation, λ = 0.710 73 Å, multilayer optics) at
100(2)K (Oxford Cryostream 700 instrument, Oxfordshire, UK). Crystal data for 1: C24H30AgF6N2O4P,
663.34 g mol−1. Monoclinic, P21/c (No. 14); a = 10.8000(16)Å, b = 16.310(2)Å, c = 16.006(2)Å;
β = 107.103(4)◦; V = 2694.7(7)Å

3
; Z = 4; 30097 reflections, of which 4940 were independent; Rint

= 0.1103; F(000) = 1344; µ = 0.882 mm−1; ρcalc = 1.635 g cm−3. Crystal data for 2: C28H38AgBF4N2O6,
693.28 g mol−1. Triclinic, P1 (No. 2); a = 11.1270(11)Å, b = 14.8723(14)Å, c = 20.5106(19)Å; α =
77.897(2)◦; β = 74.931(2)◦; γ = 75.966(2)◦; V = 3140.5(5)Å

3
; Z = 4; 42177 reflections, of which 14589

were independent; Rint = 0.0405; F(000) = 1424; µ = 0.707 mm−1; ρcalc = 1.466 g cm−3. Data were
integrated with SAINT [36] and corrected for absorption by multi-scan methods [37]. The structure
was solved by intrinsic phasing [38] and refined by full matrix least squares procedures based on
F2, as implemented in SHELXL-13 [38]. Hydrogen atoms were treated as riding with C – H = 0.98 Å
for CH3, C – H = 0.95 Å for aryl-CH and C – H = 1.00 Å for alkyl-CH groups and assigned isotropic
displacement parameters constrained to Uiso(H) = 1.5 Ueq(C) for methyl groups or Uiso(H) = 1.2
Ueq(C,N) otherwise. The unit cell of 2 features two large voids, each characterized by a volume

of ca. 300 Å
3

and an electron content of ca. 100 electrons, in good agreement with the requirements
for two molecules of disordered ethylacetate per void. As no model with atomic resolution for the
co-crystallized solvent molecules could be derived, their contribution of the structure factors was taken
into account with the SQUEEZE procedure [39]. Convergence results for 1: 347 refined parameters.
R1(all) = 0.0476; wR2 = 0.1077; GOF = 1.026; ρ(min/max): −0.45/0.49 e Å

−3
(Full information: Table S1).

CCDC reference number: 1936466 [40]. Convergence results for 2: 658 refined parameters. R1(all) =
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0.0385; wR2 = 0.1079; GOF = 1.080; ρ(min/max): −0.63/1.81 e Å
−3

(Full information: Table S1). CCDC
reference number: 1944686 [41]. Figure 1 shows displacement ellipsoid plots of the asymmetric units
in 1 and 2.

(a)

(b)

Figure 1. Displacement ellipsoid plots [42] of the asymmetric units (a) in 1 and (b) in 2; ellipsoids are
drawn at 50 % probability, H atoms have been omitted.

3. Results and Discussion

Reactions of HacacPyen with AgPF6 in acetone and recrystallization from benzene and AgBF4 in
ethylacetate resulted in the formation of crystalline 1 and 2 (Scheme 2).

In the crystal of 1, each AgI cation is N coordinated by two symmetrically independent HacacPyen
molecules. These ligands adopt slightly different conformations: the torsion angles between the
central C of the acetylacetone moieties, the C atoms of the ethylene bridge and the para C in the
pyridine ring amount to 155.3(4)◦ (C3–C6–C7–C8) and −173.6(4)◦ (C15–C18–C19–C20). In contrast to
uncoordinated HacacPyen [35] both ligands exist as diketo tautomers, with short C –– O double and
long C – C single bonds (Table 1) in the non-planar acetylacetone moieties.
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Scheme 2. Synthesis of 1 and 2 starting from HacacPyen.

Table 1. Selected bond distances and angles in the two symmetrically independent acetylacetone
moieties of 1.

O1–C2 / Å 1.221(6) O3–C14 / Å 1.201(5)
O2–C4 / Å 1.233(6) O4–C16 / Å 1.221(6)
C2–C3 / Å 1.508(6) C14–C15 / Å 1.528(6)
C3–C4 / Å 1.525(7) C15–C16 / Å 1.512(6)
6 (C2–C3–C4) / ◦ 109.1(4) 6 (C14–C15–C16) / ◦ 108.7(4)

We note that the enol tautomer is more popular for acetylacetones with N donor substitutents
in 3-position ([34] and references cited therein.). In addition to the almost linear coordination by the
two symmetrically independent pyridine N donor atoms, each AgI cation is engaged in short contacts
to the keto oxygen atoms of a neighboring HacacPyen and to a AgI cation of an inversion-related
bis(HacacPyen) silver complex (Figure 2).

Figure 2. Cationic dinuclear aggregate of 1 [42], showing the coordination environment around AgI.
Selected interatomic distances and angles: Ag1···Ag1i 3.2129(8)Å, Ag1···N1 2.127(4)Å, Ag1···N2
2.130(4)Å, Ag1···O3ii 2.806(3)Å, Ag1···O4ii 2.915(3)Å, N1···Ag1···N2 171.48(15)◦, O3ii···Ag1···O4ii

69.7(2)◦. Symmetry operators: i = 1− x, 1− y, 1− z; ii = x, 0.5− y, 0.5+ z; iii = 1− x, 0.5+ y, 0.5− z.

This short Ag···Ag distance amounts to 3.2129(8)Å and deserves a closer inspection. Values
of 1.7 [43] and 1.72 Å [44] are commonly accepted for the van der Waals radius of Ag, although
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Batsanov [45] has suggested a significantly larger radius of 2.0 Å. Contacts between neighboring
d10-configured AgI cations are referred to as argentophilic interactions [26,43,46–54]; a review has been
compiled a few years ago [55]. The relevance of such closed-shell interactions for the overall lattice
energy of solids has been addressed by Pyykkö [56]. The Ag···Ag contact in 1 is not promoted by any
bridging moiety. On the very contrary: the d10 cations approach closer than any other non-hydrogen
atom pair in the {[Ag(HacacPyen)2]+}2 aggregate. Figure 2 shows that the N donor ligands bend
away from the contact region, with N1···N2i contacts of 3.435(5)Å. The relevance of the argentophilic
interaction is further corroborated by the arrangement of the N and O coordination partners about the
AgI which all reside within the same hemisphere. Taking the short contacts into account, the HacacPyen
ligands bridge neighboring AgI to chains in [0 0 1], and the argentophilic interactions crosslink these
strands in [0 1 0] direction to a two-periodic supramolecular network in the (1 0 0) plane (Figure 3).

Figure 3. Two-periodic supramolecular network of complex cations in 1 [42]; H atoms and PF6
–

counter anions have been omitted for clarity.

Hexafluorophosphate counter anions are often non-coordinating [57,58]. In the case of 1, they
approach the silver centers in the extended cationic structure at a distance Ag1···F1 = 2.927(2)Å
which can be interpreted as a very weak coordinative bond or simply as an electrostatically favorable
contact. In the crystal of 2, the HacacPyen moieties do not exhibit the diketo structure; rather, all
four symmetrically independent acetylacetone moieties adopt the more common enol form with
intramolecular hydrogen bonds and do not coordinate the AgI ions. All intra-ligand HacacPyen
torsion angles between the central C of the acetylacetone moieties, the ethylene bridge and the para
pyridyl C correspond to the anti conformer; the largest deviation from 180◦ is 8.9◦ in C39–C42–C43–C44.
In contrast to 1, all Ag···OHacac contacts in 2 are longer than 3 Å. Therefore, 2 should not be interpreted
as a supramolecular network. Instead, the tetrafluoroborate counterions form closer contacts to the
AgI ions (Figure 4).
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Figure 4. Coordination spheres of the two independent AgI ions in 2 [42]. Selected interatomic
distances and angles: Ag1···Ag1i 3.2605(4)Å, Ag1···N1 2.1222(19)Å, Ag1···N2 2.131(2)Å, Ag1···F1
2.8796(16)Å, Ag1···F3i 2.9624(17)Å, N1···Ag1···N2 174.33(7)◦; Ag2···Ag2ii 3.3105(4)Å, Ag2···N3
2.132(2)Å, Ag2···N4 2.133(2)Å, Ag2···F5 2.998(2)Å, Ag2···F6 2.9129(17)Å, N3···Ag2···N4 174.30(8)◦.
Symmetry operators: i = 1− x, 1− y, 1− z; ii = 1− x, 1− y, 2− z.

In comparison with 1, two instead of one F atom of the counter ions come close to each AgI. This is
in accordance with the slightly higher coordinating ability of BF4

– compared to PF6
– [59]. However,

this small difference has an impact on the acetylacetone moieties resulting in the more uncommon
1,3-diketo tautomer for 1. Furthermore, the pyridine moieties in 2 are closer to each other than in
1. This results in favorable π-interactions. Nevertheless, the Ag···Ag interactions remain the closest
inter-residue contacts in both independent dinuclear {[Ag(HacacPyen)2]+}2 moieties in 2; e.g., the
N1···N2i is longer with 3.456(3)Å.

4. Conclusions

To conclude, 1 and 2 represent the first N coordinated derivatives of neutral HacacPyen; in
addition, 1 is a rare example of a 3-substituted acetylacetone in the diketo tautomer. We are confident
that O,O’ chelated complexes of this ligand not only with BeII but for a broad range of main group,
transition metal and lanthanide cations may be obtained. After crosslinking with Pearson-soft cations
such as AgI, solids of variable composition and dimensionality and with tunable luminescence
properties will be accessible.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/8/414/s1,
Figure S1: Experimental and simulated X-ray powder diffractograms of 1. The simulation is based on the single
crystal experiments conducted at 100 K whereas the experimental pattern were registered at room temperature,
thus leading to slightly smaller 2θ values for the latter, Figure S2: IR spectra for 1 and 2, Table S1: Crystal data,
data collection parameters and refinement results for 1 and 2.
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The following abbreviations are used in this manuscript:

HacacCN 3-cyanopentane-2,4-dione
HacacPy 3-(pyridin-4-yl)pentane-2,4-dione
HacacPyen 3-(2-(pyridin-4-yl)ethyl)pentane-2,4-dione
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