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Abstract: Although deployable structures have important applications in various fields, developing
a new form of structural configuration faces some scientific challenges. Furthermore, kinematic
singularity frequently exists in these structures, which has a negative impact on deployment
performance and stiffness. To deal with these problems, this paper obtains inspiration from crystals on
two-dimensional (2D) space, and aims at developing symmetric deployable structures assembled by
identical link members and periodic units. Mobility and compatibility conditions of crystal-inspired
deployable structures are given, and a detailed design for novel joints with bevels gears is proposed
to avoid singularity of these symmetric structures. According to feasible solutions to the compatibility
conditions, several types of deployable structures are developed and verified to be mobile with a
single degree of freedom. The results show that the proposed joint with bevel gears has a satisfactory
singularity avoidance capability, and the assembled structures exhibit a good deployment performance.
Because a crystal-inspired deployable structure can be gradually deployed to cover a large area, it has
a potential engineering application as a macroscopic or mesoscale structure.
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1. Introduction

Deployable structures have certain modes of internal mechanism, and they are capable of
transforming from compactly stowed states into deployed states [1–3]. Thus, they have been widely
studied and obtained many engineering applications. For instance, deployable structures can be
adopted for retractable roof structures [4], reconfigurable mechanisms and robotics [5], foldable solar
and masts [6], and self-deployable stents [7]. It is important to develop innovative deployable structures,
which faces a few scientific challenges. During mechanism design, the link member connected by
revolute joints at its ends is always utilized as basic units for assembling a large scale deployable
structure [8–11]. However, these mechanisms have lesser mobility and redundant constraints, which
will result in a sudden change of structural configuration and kinematic singularity.

In fact, kinematic singularity frequently exists in deployable structures, especially when the
adjacent links become coplanar. Admittedly, singularity has a critical effect on accuracy, deployment
performance, and structural stiffness. To overcome these difficulties, some researchers have investigated
singularity of deployable structures. Kumar and Pellegrino [12] introduced the singular value
decomposition technique to study the motion path and singularity of two-dimensional (2D) pin-jointed
mechanisms. Recent studies [13,14] have pointed out that a deployable structure has new mechanism
modes at the singular points along the motion path, which potentially leads the structure transforms into
a specific bifurcation path. Lee and Park [15] proposed a double parallel mechanism, which can reduce
the interference between links and avoid singularity through constraining the motion. Bandyopadhyay
and Ghosal [16] proposed a method for avoiding singularity by recreating a non-singular path near
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the singular point and maintaining external forces on certain joints. Wei et al. [17] and Ding et al. [2]
proposed different types of polyhedral linkages, and proposed different types of deployable structures
and further explored kinematic mobility and bifurcation behavior of these symmetric deployable
structures. Recently, based on group representation theory, Chen et al. [18] utilized symmetry to
investigate singularity of deployable structures, and extracted new mechanisms with lower-order
symmetries. To identify the feasibility of the bifurcation paths, they improved the prediction–correction
algorithm to follow the structures transforming into expected bifurcation paths. Nevertheless, limited
literature discussed how to avoid the negative influence of the kinematic singularity. Importantly,
deployable structures for engineering applications should be reasonably designed to exhibit regularity
and symmetry. Their link members and joints should be easy to be fabricated and assembled.

On the other hand, crystals (such as snowflakes, diamonds, and table salt) are arranged in highly
ordered microscopic structures in 2D or 3D space [19]. They have a long-range translational order,
characterized by a periodic spacing of unit cells [20], and exhibit periodic symmetry. Thus, crystals can
provide important inspiration for developing the connectivity patterns of the members of innovative
deployable structures. Accordingly, the atoms or molecules of the crystal structures can represent
connecting joints of deployable structures. Inspired from crystals on 2D space, this study aims at
dealing with developing large-scale and symmetric deployable structures assembled by identical link
members, and proposing an effective approach for avoiding kinematic bifurcation by replacing the
revolute joints that introduce singularity with novel joints. Different from the conventional approach,
which generally relies on redundant actuation, the novel joints with bevel gears are simple and the
applications of crystal-inspired deployable structures are promising.

2. Materials and Methods

On the basis of the mobility rule proposed by Hunt [21] and extended by Guest and Fowler [22],
the generalized mobility criterion of an over-constrained structure starting in T-dimensional space is

m = (T + R) · (n− 1) − (T + R)g +
g∑

i=1

fi (1)

where m is the relative mobility of the structure and m > 0 for a deployable structure, n is the number
of members, g is the number of joints, and fi denotes the number of the relative freedom permitted by
a joint i ∈ [1, g]. Notably, in Equation (1), T modes of rigid-body translation and R modes of rigid-body
rotations have been excluded, because the structure is generally freestanding.

When a structure is symmetric [18,23], involved mobility analysis can be significantly simplified
using group theory, and fruitful insights can be obtained from certain symmetry representations [3,24].
Importantly, a necessary condition for guaranteeing the mobility of a symmetric deployable structure
is that the structure must retain internal mechanism mode with full symmetry. That is,

Γm ⊃ Γ(1) (2)

where Γm denotes the symmetry representation of the relative mobility [18,24], Γ(1) indicates full
symmetry in a symmetry group, and Γ(1) can be directly read from group theory tables [25].

Inspired by crystals on 2D space [20], deployable structures should be neatly designed to exhibit
regularity and periodic symmetry, which are beneficial to the involved fabrication, assembly, and cost.
Here, inspired by different types of Bravais lattices in two-dimensional space [20,25], crystal-inspired
deployable structures assembled by the link members with identical lengths and less than three types
of connecting joints are concerned. Thereafter, a general link member of the structure is connected to
two specific joints, which are respectively designed for connecting n1 links and n2 links. For example,
Figure 1 shows two illustrative unit cells of deployable structures assembled by different types of joints.
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where iX  and idX  are the nodal vector and displacement increment of the node [0, 4]i ∈ , node 0 
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Figure 1. Unit cells of deployable structures assembled by different types of joints, which are designed
to respectively connect to n1 and n2 links: (a) n1 = 2, and n2 = 4; (b) n1 = n2 = 4.

Based on the compatibility conditions of the members in the fully folded and deployed states,
it satisfies

(n2 − 2)π
n2

≤
2π
n1

(3)

where the right term in Equation (3) describes the angle between the adjacent members connected by
the joints with n1 links, and the left term in Equation (3) denotes the inner angle of an n2-sided regular
polygon. Then, Equation (3) can be rewritten as

0.5n1n2 ≤ n1 + n2 (4)

On the other hand, to maintain full symmetry and overcome the singularity of a deployable
structure, all the n1 or n2 links connected to the same joint should be synchronously folded and
deployed during transformations. In other words, the rotation angles of adjacent links are similar,
and, thus, the compatibility equation for the joint can be established. For example, as far as the joint
connected by n1 or n2 = 4 links is concerned, the corresponding geometric constraint equation is
given by

J · d =
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where Xi and dXi are the nodal vector and displacement increment of the node i ∈ [0, 4], node 0 is the
intersected joint, and nodes 1–4 are the connected joints. In Equation (5), the vector XT

12 = X2 −X1,
and the other items can be explained in a similar way.

3. Results

Because of the symmetry requirements on each connecting joint and the integers n1 ≥ 2 and n2 ≥ 3,
limited feasible solutions to the compatibility conditions given by Equations (3) and (4) were obtained
and shown in Figure 2. That is: 

n2 = 3, n1 = 6, 3, 2
n2 = 4, n1 = 4, 2
n2 = 6, n1 = 3

(6)

Figure 2 shows that limited feasible solutions exist for the compatibility conditions. Through these
solutions, a few crystal-inspired deployable structures with different configurations and symmetry can
be obtained. For instance, when n1 = n2 = 3 or n1 = n2 = 4, only one type of connecting joint is adopted
for the structures. Otherwise, two different types of connecting joints are needed for assembling the
desired deployable structure. Note that the case n1 = 6, n2 = 3 and the case n1 = 3, n2 = 6 reveal the
same type of deployable structures.
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equivalent to the traditional revolute joint for deployable structures, where both of the two 
connected links rotate in the same plane. 
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Figure 2. Feasible solutions to the compatibility conditions of the members given by Equations (3) and
(4): (a) Three-dimensional (3D) view; (b) typical solutions marked by the dots.

3.1. Feasible Deployable Structures with Different Types of Joints and Configurations

3.1.1. Case I: n1 = n2 = 4

To verify the feasibility of the obtained solutions, four links connected by a common joint is taken
as a basic unit, whereas n1 = n2 = 4. Then, according to the periodic symmetry, a simple deployable
structure with 2 × 2 basic units can be assembled by repeating and combining two basic units along
both directions of a 2D space. This structure holds four-fold symmetry. Mobility analysis shows
that this structure is deployable with one degree of freedom (m = 1). Typical configurations during
deployment of the structure are shown in Figure 3. It verifies that the structure keeps its original
symmetry during transformations.

Crystals 2019, 9, x FOR PEER REVIEW 4 of 9 

 

joint is adopted for the structures. Otherwise, two different types of connecting joints are needed for 
assembling the desired deployable structure. Note that the case n1 = 6, n2 = 3 and the case n1 = 3, n2 = 6 
reveal the same type of deployable structures. 

  
(a) (b) 

Figure 2. Feasible solutions to the compatibility conditions of the members given by Equations (3) 
and (4): (a) Three-dimensional (3D) view; (b) typical solutions marked by the dots. 

3.1. Feasible Deployable Structures with Different Types of Joints and Configurations 

3.1.1. Case I: n1 = n2 = 4 

To verify the feasibility of the obtained solutions, four links connected by a common joint is 
taken as a basic unit, whereas n1 = n2 = 4. Then, according to the periodic symmetry, a simple 
deployable structure with 2 × 2 basic units can be assembled by repeating and combining two basic 
units along both directions of a 2D space. This structure holds four-fold symmetry. Mobility analysis 
shows that this structure is deployable with one degree of freedom (m = 1). Typical configurations 
during deployment of the structure are shown in Figure 3. It verifies that the structure keeps its 
original symmetry during transformations. 

   
(a) (b) (c) 

Figure 3. Motion of a deployable structure assembled by 2 2×  basic units, with n1 = n2 = 4: (a) 
Folded configuration; (b) partially deployed configuration; (c) deployed configuration. 

3.1.2. Case II: n1 =2 and n2 = 4 

Note that a joint will be connected to only two links when n1 = 2. Then, this type of joint is 
equivalent to the traditional revolute joint for deployable structures, where both of the two 
connected links rotate in the same plane. 

For the case with n1 = 2 and n2 = 4, the basic unit consists of four straight links, an intersecting 
joint for connecting four links, and four joints for connecting two adjacent links. For example, Figure 
4 shows a crystal-inspired deployable structure assembled by 6 × 6 basic units. It keeps four-fold 
symmetry, and shows smooth transformations along the motion path. With the mobility m = 1, this 

Figure 3. Motion of a deployable structure assembled by 2× 2 basic units, with n1 = n2 = 4: (a) Folded
configuration; (b) partially deployed configuration; (c) deployed configuration.

3.1.2. Case II: n1 =2 and n2 = 4

Note that a joint will be connected to only two links when n1 = 2. Then, this type of joint is
equivalent to the traditional revolute joint for deployable structures, where both of the two connected
links rotate in the same plane.

For the case with n1 = 2 and n2 = 4, the basic unit consists of four straight links, an intersecting joint
for connecting four links, and four joints for connecting two adjacent links. For example, Figure 4 shows
a crystal-inspired deployable structure assembled by 6 × 6 basic units. It keeps four-fold symmetry,
and shows smooth transformations along the motion path. With the mobility m = 1, this structure
exhibits a satisfactory folding ratio. This can be observed from Figure 4 that the structure is compactly
folded and then deployed into a much larger-scale structure.
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Figure 4. Motion of a deployable structure assembled by 6 × 6 basic units, with n1 = 2 and n2 = 4:
(a) Folded configuration; (b) partially deployed configuration; (c) deployed configuration.

3.1.3. Case III: n1 = n2 = 3

Another basic unit is formed by connecting three links to a common joint, on the condition that
n1 = n2 = 3. This type of structures shows three-fold symmetry, where each joint is connected to three
links. For example, a symmetric deployable structure is shown in Figure 5, which is assembled by 8 × 8
basic units. This structure exhibits strong regularity, and can be smoothly deployed from a compacted
state. Kinematic analysis indicates that such a type of deployable structures has a single mode of finite
mechanism (m = 1), and thus it is a feasible deployable structure.
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configuration; (b) partially deployed configuration; (c) deployed configuration.

3.1.4. Case IV: n1 = 3 and n2 = 6

For the fourth case with n1 = 3 and n2 = 6, the structural configuration is complex and composed
of many more link members. The corresponding basic unit is formed by six links, which are intersected
at the same joint, where the other end of each link is connected to two different links. For instance,
Figure 6 shows typical configurations of a deployable structure with n1 = 3 and n2 = 6, which is also
assembled by 8 × 8 basic units.
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As expected, this structure exhibits three-fold symmetry and strong regularity. Notably, Figure 6
shows that this symmetric deployable structure can be smoothly transformed from the folded state to



Crystals 2019, 9, 421 6 of 9

the fully deployed state, and the motion process is reversible. and can be smoothly deployed from a
compacted state. During transformation, the joints attached on the two ends of a link member rotate
on two different planes, where the rotation axes are parallel to each other. Moreover, because of the
many more connected links, this type of structure shows much stronger stiffness than the structures
presented above.

3.2. Avoiding Singularity by Novel Joints with Bevel Gears

It is important to note that these crystal-inspired deployable structures can be singular when the
links intersected at the same joint become coplanar [2,18,26]. Thereafter, the compatibility matrix and
the Jacobian matrix shown in Equation (5) become singular, and some additional mechanism modes
are induced. Consequently, it is difficult to maintain synchronous motion of adjacent link members.
Then, involved bifurcation paths lead these structures to get into singular configurations, which is
known as the singularity of a deployable structure [18,27].

To avoid singularity of these deployable structures, a novel type of connecting joints with bevel
gears is designed. Figure 7a illustrates an example of the joint with four pairs of bevel gears, which
can ensure four connected links maintain synchronous motion. For clarity, Figure 6b describes the
assembly of the joint.
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Figure 7. Design of a joint with four pairs of bevel gears and connected to n1 = 4 link members: (a) Sketch
of the joint model; (b) basic components, including base, cover plate, bearing, rotary, and bevel gears.

As shown in Figure 7, this type of novel joint is generally assembled by the main base of the joint,
n1 couples of L-shaped cover plates, n1 T-shaped rotary, and n1 pairs of bevel gears. The integer n1 ≥ 2
denotes the number of links connected to the joint. The n1 couples of L-shaped cover plates keep
n-fold symmetry. Each T-shaped rotary is located between the two couples of L-shaped cover plates.
In addition, each pair of the bevel gears meshes tightly, where the dihedral angle between the top
surfaces of the gears is θ = 2π/n1. In Figure 7, n1 = 4 and θ = 0.5π. Notably, to allow the connected
links to be compactly folded, a total of n1 U-shaped notches are symmetrically set on the base of the
connecting joint.

To verify the feasibility of the design of these novel joints, a specific joint connected by four links
is assembled and evaluated, as shown in Figure 8. It turns out that the members maintain synchronous
motion due to the intersecting joint with bevel gears, and the whole system keeps four-fold symmetry.
The connected members are able to smoothly transform from one folded state to the other folded
state. The whole process is reversible and repeatable, without singularity induced. These deployable
structures are robust, and can obtain potential applications for retractable roof structures, medical
devices, solar panels, and masts [1,28]. In addition, they can guide the construction and destruction
process for engineering structures (e.g., cable domes and frame structures) [29,30].
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4. Discussion

This study presents an innovative design of a variety of periodic deployable structures, inspired
by the geometry of typical Bravais lattices in 2D space. It should be explained that there are many
kinds of crystals (e.g., the known cubic ice and hexagonal ice crystals) [20,25], which include regular or
nonregular geometry in 2D/3D space. On the condition that the complexity of joints or the regularity
is weakened, certain types of joints and members with different lengths can be included in the unit
cells of a deployable structure. Thereafter, many more crystal-inspired deployable structures can be
proposed. However, a key point is that most of the joints should be under constraint and connected to
a limited number of links [5,24] to guarantee the mobility of the proposed structures.

On the other hand, Section 3.2 briefly illustrates the concept design of novel joints with a number
of pairs of bevel gears. Importantly, each joint is not limited to being connected by four or six links,
as this can be adjusted for different joints. For example, by modifying the base of the joint (see
Figure 9), the angle between the bevel gears, and the other assembly, the joint can be designed to
respectively connect three and five link members. Through comprehensive comparisons among the
above-mentioned configurations, the structure with n1 = 3 and n2 = 6 has a better structural stiffness
and redundancy. However, the difficulty of fabricating its joints and folding its links slightly increases.
From practicality and feasibility points of view, the structure with n1 = n2 = 4 is favorable, as it exhibits
satisfactory folding performance and rigidity.
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link members; (b) connected to five link members.

In comparison with conventional joints for deployable structures, the presented joints have certain
advantages. Because of the bevel gears, the connected link members can maintain synchronous
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rotations along the rotation axes. Then, potential singularity induced by the coplanarity of the links
can be prevented. In addition, the U-shaped notches are helpful for improving the folding ratio of the
structures. However, when the motion process calls for high precision, the accuracy of the bevel gear
should be deliberately improved for the synchronous motion.

5. Conclusions

This study demonstrated the design of novel revolute joints with bevel gears to realize singularity
avoidance and better deployment performance for crystal-inspired deployable structures. We showed
that a number of innovative deployable structures can be developed by considering regular and
symmetry, and adopting the geometry of typical 2D crystals. Singularity occurs frequently along
the motion process of a deployable structure, which leads to bifurcated configurations. To avoid
singularity, some connecting joints with bevel gears were presented. The obtained results verified
that the proposed joint design has a satisfactory singularity avoidance capability and deployment
performance. These crystal-inspired deployable structures can potentially play a positive role in design
and engineering applications for deployable structures.
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