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Abstract: The organic ligand (1-methyl-1H-benzo[d]imidazol-2-yl)methanol (HL) was used to react
with CoX2·6H2O (X = Cl and Br) under solvothermal conditions to obtain the complex [Co4(L)6(X)2]
(1, X = Cl; 2, X = Br). The butterfly-shaped structure of complex 1 and 2 suggest that Co(II) ions
have two different coordinated modes, which are five coordination with O3NX environment and six
coordination with O4N2 environment. In addition, the electrospray ionization mass spectrometry
(ESI-MS) analysis indicated that the ion molecular fragment of highest intensity was [Co4(L)6]2+,
and there existed a high nuclear fragment peak of [Co7(L)12]2+. Interestingly, it was basically completely
transformed into [Co7(L)12]2+ two days later, so those two complexes were relatively stable in CH3OH.
Magnetic characterization exhibited that complex 1 and 2 display field-induced single-molecule
magnetic behavior, of which the energy hills Ueff/kB were 28 and 20 K under direct-current field of
0.1 T, respectively.
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1. Introduction

Since the find of “single-molecule magnets” (SMMs), the design and synthesis of magnetic
material clusters have attracted wide attention in recent decades [1–7]. Many methods to control
the cluster and magnetic characterization of these structures have been explored [8–10]. The early
results suggest that for SMM behavior to be observed, the molecular clusters have to contain an
Ising magnetic aeolotropism (Dmol < 0) and large ground-state spin multiplicity [2,11]. Synthesizing
molecular structures with SMM behavior poses a serious defiance due to the hardships in assembling
divinable magnetic characterizations of predetermined structures [9]. The major hurdle is that the
magnetoanisotropy is a vector, and for a cluster it is suggested to be vector sum of all its moment carriers;
thus, the aeolotropism tends to cancel them in the more symmetric system [2–4]. It is probable that weak
interaction is one of factors to induce the magnetic properties of SMMs [12]. To date, many cobalt-based
SMMs are known [2,13–16]. The tetranuclear butterfly cobalt(II) clusters have been the subject of
several papers, but only a few butterfly cobalt clusters expressed SMMs [17]. It is therefore a big
challenge to synthesize SMMs of cobalt with low symmetry and in particular displaying large spin and
magnetic aeolotropism [18]. Because of the large Dion > 0 of CoII, compared with manganese and iron,
only a limited number of high nuclear clusters are considered to be Co(II) [19,20]. Here, other researchers
questioned this challenge and used all their extensive experiences in synthesizing SMMs [21].

Herein, we choose the organic ligand HL ((1-methyl-1H-benzo[d]imidazol-2-yl)methanol)
(Scheme 1) and CoX2·6H2O (X = Cl and Br) to synthesis at 140 ◦C to obtain [Co4(L)6(X)2] (X = Cl (1)
and Br (2)). For complexes 1 and 2, every five-coordinative Co(II) core is encompassed by two µ2-O−,
one µ3-O− ions and one N atom from the three organic ligand molecules, and one X− ion, and every
six-coordinative Co(II) is coordinated by two µ2-O−, two µ3-O− ions, and two N atoms from the four
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organic ligand molecules. Electrospray ionization mass spectrometry (ESI-MS) data show that they are
steady in CH3OH. The AC susceptibilities indicate that complexes 1 and 2 display clearly dependent
frequencies in 0.1 T dc-field.
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Scheme 1. The ligand of (1-methyl-1H-benzo[d]imidazol-2-yl)methanol (HL).

2. Results and Discussion

2.1. Crystal Structure

The X-ray diffraction conclusion exhibits that complex 1 crystallizes in P21 space group with the
monoclinic crystal system (Table 1), which every five-coordinative Co(II) ion is encompassed by one
µ1-N atom, one µ3-O ion and two µ2-O ions from three L ligand, and one Cl− ion; every six-coordinative
Co(II) is coordinated by two µ2-O, two µ3-O ions, and two µ1-N atoms from four L ligands (Figure 1a).
The Co-O bond length distances are within the limit of 1.932–2.302 Å, the Co-N bond length is within
the limit of 2.035–2.155 Å, and the Co-Cl bond lengths are 2.376 and 2.476 Å (Supplementary Materials,
Table S1). Moreover, complex 2 crystallizes in the P-1 space group with the triclinic crystal system
(Table 1), and the six-coordinative Co1 is enveloped by two µ2-O− ions, two µ3-O− ions, and two µ1-N
atoms from four L ligands. The five-coordinative Co2 is enveloped by one µ1-N atom, two µ2-O−

and one µ3-O− ions from three L ligands, and one Br− ion (Figure 1c). The Co-O bond length are
within the limit of 1.935–2.279 Å, the Co-N bond length are within the limit of 2.024–2.100 Å, and
the Co-Br bond distance is 2.514 Å (Table S1). By analyzing the weak interactions, two different
type interactions (hydrogen bond or/and C-H···π interaction) were determined between the Co4L6
molecules (Figure 2a,b). Complex 1 contains C50-H50···Cl1 hydrogen bond, its bond distance is 2.820 Å
(red dotted line). Complex 2 contains C19-H19A···Br1 hydrogen bond with 2.835 Å (red dotted line)
and C3-H3···π(Ph) with 2.748 Å (blue dotted line). The link modes of Co4L6 cores through interaction
lengths and all interaction distances were all varying from a logical range. Therefore, it can be deemed
as 8-connected fcu net formation (Figure 2c) with length of 12.043–12.699 Å for 1 and 11.741–12.747 Å
for 2 (Figure 2d) [22]. In 2016, Sun’s group reported two similar type structures [Co4L6X2] [X = Cl, Br].
Compared with this work, their structures had the same coordinated environment of cobalt [23],
and in 2017, Baruah’s group reported the other butterfly-type structure when we compared with our
work. In Baruah’s work, all Co(II) ions have six-coordinative environments in all structures [17].
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Table 1. Crystallographic data of the complex 1 and 2.

Complex 1 2

Formula C54H49Cl2Co4N12O6 C57H66Br2Co4N12O9
Formula weight 1268.67 1456.08

T (K) 293(2) 293(2)
Crystal system Monoclinic Triclinic

Space group P21 P-1
a (Å) 12.5470(6) 11.7411(10)
b (Å) 19.9240(9) 12.3673(10)
c (Å) 12.6993(5) 12.7465(8)
α (◦) 90.00 98.212(8)
β (◦) 103.403(4) 93.842(6)
γ (◦) 90.00 117.605(9)

V (Å3) 3088.2(2) 1604.5(3)
Z 2 4

Dc (g cm−3) 1.364 1.488
µ (mm−1) 1.197 9.915

F(000) 1294.0 728.0
Reflns coll. 17333 8924

Unique reflns 10017 5199
Rint 0.0419 0.0866

a R1 [I ≥ 2σ(I)] 0.0875 0.1101
b wR2(all data) 0.2678 0.3229

GOF 1.037 1.072
a R1 = Σ||Fo|−|Fc||/Σ|Fo|, b wR2 = [Σw(Fo

2
−Fc

2)2/Σw(Fo
2)2]1/2.Crystals 2019, 9, x FOR PEER REVIEW 3 of 9 
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2.2. Electrospray Ionization Mass Spectrometry 

Figure 2. (a) Molecular structure of complexes 1 (a) and 2 (b) showing the supramolecular interactions:
H bonds and C-H···π bond; the connecting ways of Co4L6 cores through hydrogen bonds/C-H···πand
hydrogen bond in 1 (c) and 2 (d).

2.2. Electrospray Ionization Mass Spectrometry

For the sake of studying the stability of the compound in solvent, the compounds 1 and 2 were
dissolved in acetonitrile, and their solution behavior was analyzed by ESI-MS [4–7].
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As shown in Figure S1, The ESI-MS peaks of 1 and 2 in methanol can be entirely distributed by
mass charge ratio value and isotopic distribution to recognize all the major ion peaks. Similarly, the MS
spectra of 1 and 2 in methanol showed that [Co4(L)6]2+ (m/z = 601.08) resulting from 1 and 2 losing
two Cl− process at the highest intensity. It can be seen from the Table S2 that Co4L6 undergoes cleavage
under ESI-MS conditions to low nuclear fragment peaks, such as Co3, Co2 and Co1, but also polymerizes
to Co7. It is interesting that the peak [Co7(L)12]2+ has been attained. The results demonstrated that
the fewer fragment peaks assembled by the ESI-MS ionization procedure may experience outspread
assembly procedures, resulting in diversely high nuclear peaks.

Therefore, in order to investigate how 1 actually transforms high nuclear peak, a process tracking
was performed as shown in the Figure 3 and Figure S4. A clean 1 crystal was picked, dissolved in
methanol, and after the dissolution was completed, a mass spectrometry test was performed to analyze
the data. The main frame peak is [Co4(L)6]2+, and after the 1 solution is left for 12 h, the frame
peak of [Co7(L)12]2+ is significantly higher and is accompanied by [Co2(L)3]+. The appearance of
1 indicates that the framework of 1 fragmented into different small fragment peaks in solution, namely
[Co(L)2]+ and [Co2(L)3]+, and then over time, [Co4(L)6]2+ gradually decreases, and [Co(L)2]+ gradually
increases to 32 h, after which [Co7(L)12]2+ becomes the most high peak, and after 48 h, it is almost
completely converted to [Co7(L)12]2+. By analyzing the changes in the molecular fragment peaks,
it is inferred that there may be the following mechanism (Figure 5b): [Co4(L)6]2+ is first fragmented
into [Co(L)2]+ and [Co2(L)3]+, then these two molecular fragments are directly assembled on the one
hand as [Co7(L)12]2+, on the one hand as [Co3(L)5]+, then two [Co3(L)5]+ fragments are assembled
with [Co(L)2]+ as [Co7(L)12]2+ and eventually become [Co7(L)12]2+, which also verified that the single
crystal becomes [Co2(L)3]+ under applied voltage mass spectrometry.
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Figure 3. (a) Positive electrospray ionization mass spectrometry (ESI-MS) spectra of 1 and 2 in CH3OH.
(b) Splitting and recombination mechanism.

2.3. Magnetic Properties.

The polycrystalline samples of 1 and 2 magnetic characterization were tested in a direct-current field
of 0.1 T at 300 to 2 K range of temperature (Figure 4a,b). The χmT values at 300 K were 14.4 cm3

·K·mol−1

for 1 and 14.0 cm3
·K·mol−1 for 2, suggesting orbital contribution for Oh Co(II) ion [2]. With the decrease

of temperature, χmT went up to around 110 K before adopting tiny minima at approximately 50 K.
A highest peak was finally inspected below 15 K. By using the Curie–Weiss law, analysis of the χm

−1

vs. T data above 150 K gave estimated Curie constants of 13.86 and 14.31 cm3
·K·mol−1, and the
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Weiss constants (θ) were 5.4 and 3.9 K for complex 1 and 2 (Figure 4a,b). The Curie constants were
characteristic for Oh Co(II) ion and the plus Weiss constants suggested intracluster ferromagnetism.
The M/H of each complex was tested at 2 K with regard to epactal field through to 7 T. In each case, the
magnetization exhibited a fleet increase under 1 T and was followed by an adagio increase to high
fields. The uppermost magnetizations are 4.87 Nβ for 1 (Figure 4c) and 5.59 Nβ for 2 at 2 K and 7 T
(Figure 4d), consonant with the calculated value for four free Co(II) ions.
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The temperature-dependent moment was quite compound, but it has been found in some
complexes comprising Oh Co(II) ions. The high temperature is commanded by the ferromagnetic
coupling in the nearest neighborhood and increases with the decrease of temperature. The existence of
the uppermost value is related to the spin-orbit linkage effect of each Co(II) center, which is the result
of the decrease of the excited state Kramers doublet. At lower temperatures, the final peak is induced
by two influences: One is single ion aeolotropism, the other is magnetization saturation. Because these
parameters are related to each other, it is a difficult task to extract them from sensitive data. Up to now,
due to the correlation between the data and the failure to give multidimensional global minimum
space, several attempted fitting data have neglected to give logical and accredited parameters.

The dynamic magnetic properties of the four complexes were studied through three sets of
measurements of the ac-susceptibilities, (a) with regard to temperature for limit of frequencies spanning
1–889 Hz, (b) with regard to frequencies using an oscillating field of 2.5 × 10−4 T in direct-current 0.1 T.
Under zero T dc field, in contrast, 1 (Figure 5a) and 2 (Figure 5b) display no frequencies-dependent χ”
constituents of the ac-susceptibilities in direct-current of 0 T for frequencies with 1 and 997 Hz above
2 K. This suggests there is no dependent frequencies above 2 K. Using direct current of 0.1 T, complex
1 (Figure 5c) and 2 (Figure 5d) exhibited non-linear magnetic behaviors, i.e., χ”. The frequencies
dependence emerged below 3 K for whole frequencies within the limits of 1–889 Hz. There is a successive
tendency of the ac susceptibilities towards high temperature with raising frequencies. This allowed
clarification of the nature of the relaxation process from the frequency dependence. Whether this is
because of the aeolotropism of the magnetic field in the cluster and the magnetic field outside the
cluster or the elimination of the backslide of the α and β spin states remains to be confirmed.

The Cole–Cole plots (Figure 6a,b and Figure S5) were generated from the ac-susceptibilities
using a generalized Debye model. The fitting parameters τ and α were scheduled in Table S3.
The single semicircles in the Cole–Cole plots for both complexes indicated the single-relaxation process.
The parameter α for 1 and 2 were within the limit of 0.1–0.35, which was typical for field-induced
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CoII-based SMMs. The temperature dependence of relaxation time data were analyzed by using
an Arrhenius law (τ = τ0 exp(Ueff/kBT)). Under direct-current field of 0.1 T, the energy hills and
extrapolated relaxation time were Ueff = 28.36 K and τ0 = 1.5 × 10−10 s for 1 (Figure 6c), Ueff = 21.11 K
and τ0 = 3.0 × 10−8 s for 2 (Figure 6d). Compared with the magnetic properties of the same type of
structure, it is found that the work has the highest energy hill under the condition of applied magnetic
field [17,23].
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3. Conclusions

In summary, we favorably attained two tetranuclear butterfly-shaped Co(II) complexes, in which
every five-coordinated Co(II) core is surrounded by two µ2-O−, one µ3-O− ions and one µ1-N atom
from three L ligand, and one X− ion, and every six-coordinated Co(II) is surrounded by two µ2-O−,
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two µ3-O− ions, and two µ1-N atoms from four L ligand. Electrospray mass spectrometry (ESI–MS)
showed that those two complexes were unstable in CH3OH, and there existed a high nuclear fragment
peak with [Co7(L)12]2+. Two days later, it was basically completely transformed into [Co7(L)12]2+.
Magnetic susceptibility shows that complexes 1 and 2 are antiferromagnetic complexes and display no
χ” component of the ac-susceptibilities in 0 dc-field. However, under 0.1 T dc field, those two complexes
show much clear single-molecule magnetic behavior.

4. Experimental Section

Materials and Measurements: All agents (Aladdin, Shanghai, China) were obtained from mercantile
origins and could be used without more purifying. Elementary analysis for C, H, and N were tested on
a Vario Micro Cube (Elementar, Frankfurt, Germany). Infrared spectra used the PE Spectrum FT-IR
spectrometer (Gangdong, Tianjin, China) (4000–400 1/cm). Magnetic characterizations were measured
for pleomorphic crystals between 2–300 K and 7 T using a Quantum Design VSM-SQUID magnetometer
(Quantum Design, San Diego, CA, USA). AC susceptibilities (Quantum Design, San Diego, CA, USA)
were tested frequencies (1–1000 Hz) and as function temperatures in a vibrating 2.5 × 10−4 T field of
employing the identical measurement.

Synthesis: We weighed CoX2 (Aladdin, Shanghai, China) (1.0 mmol, X = Cl or Br),
HL (Aladdin, Shanghai, China) [24]. (2.0 mmol, 324 mg), 0.3 mL triethylamine (Aladdin, Shanghai,
China) and 12 mL methanol (Aladdin, Shanghai, China) or ethanol (Aladdin, Shanghai, China),
then sealed and stirred in a 25 mL Polytetrafluoroethylene reaction kettle (Synthware, Beijin, China)
and reacted at 140 ◦C for two days. It was finally cooled down 25 ºC. Purple red block crystals of 1 and
2 were obtained.

1: [Co4(L)6Cl2], Yield, 70% (based on CoCl2); elemental analyses, Calc. (%): C, 50.92; H, 4.27;
N, 13.20; observed (%): C, 51.09; H, 4.12; N, 13.41. selected IR bands (KBr, cm−1), 3252 (vs), 2941 (s),
1499 (m), 1065 (s), 755 (m).

2: [Co4(L)6Br2], Yield, 68% (based on CoBr2); elemental analyses, Calc. (%): C, 47.60; H, 3.99;
N, 12.34; observed (%): C, 48.05; H, 3.58; N, 12.11. selected IR bands (KBr, cm−1), 3244 (vs), 2937 (s),
1453 (m), 1067 (s), 758 (m).

Crystallographic studies: The diffraction data for complex 1 and 2 were gathered in Φ and ω scan
modes on a Bruker SMART CCD diffractometer (λ = 0.71073 Å, Mo Kα radiation). The compound
structures were worked by the immediate means, which succeeded by the difference Fourier synthesis
method, and then the whole-matrix least squares technique on the F2 was refined by the SHELXL.[25]
The hydrogen atom is placed in the calculative position, and the equidirectional refinement is performed
using a horse-riding model. Table 1 provides an overview of the X-ray crystallography data and
refinement details of these complexes. The CCDC reference numbers are 1937212 (1) and 1937213 (2).

ESI-MS Measurement (Thermo Fisher Scientific, Shanghai, China): ESI-MS measurement was
tested at capillaries temperature of 548 K. The equivalent sample of the solvent was ripped into
the installation at a speed of 300 µL/h. The used MS measurement was ThermoExactive, and the
information was succeeded in cationic and anionic patterns. The MS was beforehand aligned with the
specification’s integration blend to give a precision of ca. 2 ppm in the limits of 400−2000 mass charge
ratio. The measurement was using capillaries electric tension (50 V), the pipe lens electric tension
(150 V), and the intake electric tension (25 V). The source ion capacity was set to 0 eV region with the
maximum gas flow speed at 10%.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/9/477/s1,
Figure S1: ESI-MS peaks of dissolved crystals in methanol; Figure S2: The overlapped calculative and
experimental spectra of some peaks; Figure S3: The overlapped calculative and experimental spectra of some
peaks; Figure S4: The process of transformation from complex 1 to high nuclear peaks; Figure S5: Alterable
frequencies ac-susceptibilities at the limit of temperatures; Table S1: Correlative bond length (Å) and angles (◦);
Table S2: Major peaks distributed in the ESI-MS of 1 and 2 in cationic mode; Table S3: Selected parameters from
the fitting results of the Cole–Cole plots.

http://www.mdpi.com/2073-4352/9/9/477/s1
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