Supporting Information

Two Tetranuclear Butterfly Shaped Co(II) Complexes:

Structure, Mass Spectrometric, and Magnetism

Qian-Jun Deng,^{*,1} Min Chen,¹ Dong-Chu Chen,^{*,1} Chang-Ai Chen¹ ¹School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China

Supporting Tables				
Table S1	Correlative bond distances (Å) and angles (°) of 1 and 2 .			
Table S2	Major peaks distributed in the ESI-MS of 1 and 2 in positive mode.			
Table S3	Table S3Selected parameters from the fitting results of the Cole-Cole plots for 1 and 2 under 1000 Oe field.			
Supporting Figures				
Figure S1	ESI-MS peaks of dissolved crystals of 1 and 2 in methanol.			
Figure S2	The overlapped calculative and experimental spectra of some peaks for 1 (In-Source CID 0 eV).			
Figure S3	The overlapped calculative and experimental spectra of some peaks for 2 (In-Source CID 0 eV).			
Figure S4	The process of transformation from complex 1 to high nuclear peaks.			
Figure S5	Alterable frequencies ac-susceptibilities ($H_{dc} = 1000$ Oe) at the limit of temperatures for (a and b) 1 and (c and d) 2.			

1					
Co3—O1	2.106 (6)	Co1—O3	1.954 (6)	Co4—O5	1.923 (6)
Со3—Об	2.087 (6)	Co1—O2	1.934 (6)	Co2—O1	2.099 (6)
Co3—O4	2.098 (6)	Co1—N2	2.058 (7)	Co2—O6	2.098 (6)
Со3—О3	2.068 (7)	Co4—Cl2	2.465 (6)	Co2—O2	2.072 (6)
Co3—N8	2.136 (7)	Co4—O6	2.288 (6)	Co2—N10	2.129 (7)
Co3—N6	2.110 (6)	Co4—O4	1.942 (6)	Co2—O5	2.085 (6)
Co1—Cl1	2.372 (4)	Co4—N12	2.043 (7)	Co2—N4	2.123 (8)
Co1—O1	2.271 (6)				
O1—Co3—N8	96.3 (2)	02—Co1—O1	77.8 (2)	O2—Co2—O1	79.0 (2)
O1—Co3—N6	156.6 (3)	O2—Co1—O3	121.7 (3)	O2—Co2—O6	104.2 (3)
O6—Co3—O1	79.3 (2)	O2—Co1—N2	119.5 (3)	O2—Co2—N10	98.5 (3)
O6—Co3—O4	80.4 (2)	N2—Co1—Cl1	104.5 (2)	O2—Co2—O5	175.6 (3)
O6—Co3—N8	154.8 (2)	N2—Co1—O1	77.1 (3)	O2—Co2—N4	77.6 (3)
O6—Co3—N6	97.5 (3)	O6—Co4—Cl2	177.3 (2)	O5—Co2—O1	101.6 (3)
O4—Co3—O1	106.6 (2)	O4—Co4—Cl2	99.0 (2)	O5—Co2—O6	80.3 (2)
O4—Co3—N8	77.1 (3)	O4—Co4—O6	78.9 (2)	O5—Co2—N10	77.1 (3)
O4—Co3—N6	95.7 (3)	O4—Co4—N12	120.4 (3)	O5—Co2—N4	102.5 (3)
O3—Co3—O1	80.4 (2)	N12—Co4—Cl2	105.6 (3)	N4—Co2—N10	94.4 (3)
O3—Co3—O6	99.6 (3)	N12—Co4—O6	77.1 (3)	Co3—O1—Co1	93.7 (2)
O3—Co3—O4	172.8 (3)	O5—Co4—Cl2	100.6 (2)	Co2—O1—Co3	100.4 (2)
O3—Co3—N8	104.1 (3)	O5—Co4—O6	79.1 (2)	Co2—O1—Co1	93.5 (2)
O3—Co3—N6	77.2 (3)	O5—Co4—O4	120.3 (3)	Co3—O6—Co4	93.2 (2)
N6—Co3—N8	95.9 (3)	O5—Co4—N12	107.3 (3)	Co3—O6—Co2	101.1 (2)
O1—Co1—Cl1	177.78 (19)	O1—Co2—N10	99.3 (3)	Co2—O6—Co4	93.5 (2)
O3—Co1—Cl1	99.1 (2)	01—Co2—N4	154.4 (3)	Co4—O4—Co3	103.9 (3)
O3—Co1—O1	78.9 (2)	O6—Co2—O1	79.2 (2)	Co1—O3—Co3	105.1 (3)
O3—Co1—N2	105.9 (3)	O6—Co2—N10	156.5 (3)	Co1—O2—Co2	105.3 (3)
O2—Co1—Cl1	102.5 (2)	O6—Co2—N4	96.5 (3)	Co4—O5—Co2	105.8 (3)
2					

Table S1. Correlative bond distances (Å) and angles (°) of 1 and 2.

Br1—Co2	2.515 (2)	Co1—O3 ⁱ	2.054 (9)	Co2—N2	2.025 (9)
Co1—O1	2.080 (7)	Co1—O2	2.123 (9)	Co2—O3	1.935 (8)
Co1—O1 ⁱ	2.119 (7)	Co1—N4	2.097 (9)	Co2—O2	1.954 (9)
Co1—N6 ⁱ	2.100 (9)	Co2—O1	2.278 (8)	01—Co1 ⁱ	2.119 (7)
N6—Co1 ⁱ	2.100 (9)	O3—Co1 ⁱ	2.054 (9)		
01—Co1—O1 ⁱ	79.1 (3)	O3 ⁱ —Co1—O2	175.7 (3)	O3—Co2—N2	117.7 (4)
O1—Co1—N6 ⁱ	94.5 (3)	O3 ⁱ —Co1—N4	98.9 (4) O3—Co2—O2		119.4 (4)
O1—Co1—O2	80.1 (3)	N4—Co1—O1 ⁱ	96.1 (3)	O2—Co2—Br1	98.9 (3)
O1 ⁱ —Co1—O2	100.5 (3)	N4—Co1—N6 ⁱ	99.1 (4)	O2—Co2—O1	79.0 (3)
O1—Co1—N4	155.2 (4)	N4—Co1—O2	76.9 (4)	O2—Co2—N2	111.9 (4)
N6 ⁱ —Co1—O1 ⁱ	155.3 (4)	O1—Co2—Br1	177.39 (19)	Co1—O1—Co1 ⁱ	100.9 (3)
N6 ⁱ —Co1—O2	101.9 (4)	N2—Co2—Br1	103.9 (3)	Co1—O1—Co2	95.0 (3)
O3 ⁱ —Co1—O1 ⁱ	80.4 (3)	N2—Co2—O1	78.4 (3)	Co1 ⁱ —O1—Co2	92.5 (3)
03 ⁱ —Co1—O1	104.2 (3)	O3—Co2—Br1	100.8 (3)	Co2—O3—Co1 ⁱ	105.6 (4)
O3 ⁱ —Co1—N6 ⁱ	78.1 (4)	O3—Co2—O1	79.0 (3)	Co2—O2—Co1	104.1 (3)

Figure S1. ESI-MS peaks of dissolved crystals of 1 and 2 in methanol.

1					
Peaks	Relative Intensity	Obs. m/z	Calc. <i>m/z</i>		
$[Co_3(L)_4]^{2+}$	0.499	410.55	410.54		
$[HCo_3(L)_5]^{2+}$	0.316	491.58	491.58		

Table S2. Major peaks distributed in the ESI-MS of 1 and 2 in positive mode.

[Co4(L)5(CH3O)] ²⁺	0.187	536.05	536.06
$[H_2Co(L)_3]^+$	0.457	544.16	544.16
$[H_2Co_3(L)_6]^{2+}$	0.125	572.62	572.62
$[Co_4(L)_6]^{2+}$	1	601.08	601.08
$[HCo_2(L)_3Cl]^+$	0.090	637.06	637.06
$[HCo_2(L)_4]^+$	0.175	763.16	763.16
$[H_2Co_2(L)_4Cl]^+$	0.049	799.14	799.14
$[Co_3(L)_4Cl]^+$	0.091	856.05	856.05
$[HCo_3(L)_4Cl_2]^+$	0.025	892.03	892.03
$[HCo_3(L)_5Cl]^+$	0.036	1018.13	1018.13
[Co7(L)11(CH3O)] ²⁺	0.035	1108.17	1108.17
$[Co4(L)5Cl_2]^+$	0.026	1111.03	1111.03
$[Co7(L)12]^{2+}$	0.161	1173.19	1173.20
$[\mathrm{Co4}(\mathrm{L})_6\mathrm{Cl}]^+$	0.024	1237.13	1237.13
	2		
Peaks	Relative Intensity	Obs. m/z	Calc. m/z
$[Co_3(L)_4]^{2+}$	0.338	410.54	410.55
$[HCo_3(L)_5]^{2+}$	0.068	491.58	491.58
$[Co4(L)6]^{2+}$	1	601.08	601.08
[Co ₃ (L) ₄ Br] ⁺	0.248	900.01	900.00
[Co7(L)12] ²⁺	0.118	1173.19	1173.20
$[Co_4(L)_6Br]^+$	0.160	1283.06	1283.08

Figure S2. The overlapped calculative and experimental spectra of some peaks for 1.

Figure S3. The overlapped calculative and experimental spectra of some peaks for 2.

Figure S4. The process of transformation from complex 1 to high nuclear peaks.

Figure S5. Alterable frequencies ac-susceptibilities ($H_{dc} = 1000$ Oe) at the limit of temperatures for (a and b) 1 and (c and d) 2.

Table S3. Sele	ected parameters	from the fitting	g results of the	Cole-Cole pl	ots for 1 and	L
2 under 1000 (De field.					

	1				2	
Temp.(K)	τ	α	residual	τ	α	residual
1.8	8.70E-04	0.166	1.27E-01	2.49E-03	0.206	3.87E-02
1.9	5.85E-04	0.168	1.31E-01	1.80E-03	0.205	3.90E-02
2.0	3.53E-04	0.179	1.26E-01	1.17E-03	0.195	5.78E-02
2.1	1.88E-04	0.208	9.88E-02	7.19E-04	0.172	6.94E-02
2.2	1.02E-04	0.222	4.85E-02	4.78E-04	0.153	6.59E-02
2.3	6.44E-05	0.233	7.73E-02	3.31E-04	0.143	5.65E-02
2.4	4.51E-05	0.232	9.17E-02	2.22E-04	0.147	4.92E-02
2.5	3.13E-05	0.228	1.12E-01	1.40E-04	0.164	4.07E-02
2.6	2.30E-05	0.217	9.88E-02	8.34E-05	0.194	3.36E-02