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Abstract: Novel ultra-strong medium entropy bulk metallic glasses composites (BMGCs)
Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and Ti40−xCexNi40Cu20 (x = 0, 1.0), through the martensite
transformation induced plasticity (TRIP effect) to enhance both the ductility and work-hardening
capability, were fabricated using magnetic levitation melting and copper mold suction via high
frequency induction heating. Furthermore, the Ce microalloying effects on microstructure and
mechanical behaviors were studied. The Fe-based BMGCs consisted of face-centered cubic (fcc)
γ-Fe and body-centered cubic (bcc) α-Fe phase, as well as Ti-based BMGCs containing supercooled
B2-Ti (Ni, Cu) and a thermally induced martensite phase B19’-Ti (Ni, Cu). As loading, the TRIP
BMGCs exhibited work-hardening behavior, a high fracture strength, and large plasticity, which was
attributed to the stress-induced transformation of ε-Fe martensite and B19’-Ti (Ni, Cu) martensite.
Ce addition further improved the strengthening and toughening effects of TRIP BMGCs. Adding
elemental Ce enhanced the mixing entropy ∆Smix and atomic size difference δ, while reducing the
mixing enthalpy ∆Hmix, thus improving the glass forming ability and delaying the phase transition
process, and hence prolonging the work-hardening period before fracturing. The fracture strength σf
and plastic stress εp of Ti39CeNi40Cu20 and Fe64.4CeMn14.3Si9.4Cr10C0.9 alloys were up to 2635 MPa
and 13.8%, and 2905 MPa and 30.1%, respectively.

Keywords: bulk metallic glass composites; martensitic phase transformation; mechanical property

1. Introduction

Due to their special structural properties of short-range order and long-range disorder, bulk
metallic glasses (BMGs) exhibit excellent mechanical and functional properties, such as a high strength
and elastic limit, low elastic modulus, and excellent wear-corrosion resistance [1,2]. However, a fatal
drawback of BMGs, the limited ductility and strain softening as loading, restricts its application as an
advanced structural material [3–5]. Recently, some alloy systems have offered the possibility to produce
in situ composites consisting of shape memory crystals and a glassy matrix [6–9]. Bulk metallic glass
composites (BMGCs) can overcome the problems with BMGs using a transformation induced plasticity
(TRIP) effect as loading [10–13]. Besides, in recent years, it has been found that the addition of rare
earth elements can not only effectively improve the ability of amorphous formation, but also play an
important role toward deoxidation, metamorphism, and strengthening alloys [14,15]. As Ce is the most
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abundant rare earth element, being easy to extract and of low cost, it has become the preferred choice
for research and industrial application [16]. In the current work, we developed Fe-based and Ti-based
TRIP BMGCs, which both contain duel crystalline phases besides an amorphous matrix. Furthermore,
we discuss the effect of Ce microalloying on the microstructure and work-hardening behaviors of the
different alloy systems.

2. Materials and Methods

The ingots of the Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and Ti40−xCexNi40Cu20 (x = 0, 1.0) (atomic percent,
at. %) alloys, where x = 0 and 1.0, were prepared by mixing the constituent elements (Trillion Metals Co.,
Beijing, China) in a vacuum high-frequency induction furnace with a water-cooled Cu crucible under an
argon atmosphere. Each ingot was re-melted at least six times to ensure homogeneity. Cylinder samples
with a diameter of 2 mm for Fe-based and 3 mm for Ti-based alloys were prepared using suction
casting into copper mold. The microstructure of the alloys was studied using an X-ray diffractometer
(XRD, D/max-2400, Rigaku Corporation, Tokyo, Japan) with Cu-Kα radiation (40 kV, 30 mA), thermal
field-emission scanning electron microscopy (SEM, Quanta FEG 450, FEI Co., Hillsboro, Oregon, USA)
operated at an acceleration voltage of 10 kV and a working distance of 8 mm, and transmission electron
microscopy (TEM, JEM-2010,JEOL Ltd., Tokyo, Japan) coupled with fast Fourier transform (FFT) of
the selected area under a 200 kV accelerating voltage. For compression tests, the electronic universal
testing machine (Model 3382, Instron Co., Canton, MA, USA) was employed with a strain rate of
5 × 10−4 s−1. The cylinder samples with a height: diameter ratio of 2:1 were fabricated, and both ends
of the samples were polished.

3. Results and Discussion

3.1. Microstructure of the Fe-Based and Ti-Based TRIP BMGCs

Figure 1 shows the high-resolution TEM (HRTEM) image and fast Fourier transform (FFT)
patterns of selected area for the as-cast Fe65.4Mn14.3Si9.4Cr10C0.9 and Ti40Ni40Cu20 BMGCs, respectively.
The disordered atomic arrangement of the amorphous phase, the ordered face-centered cubic
γ-austenite, and the body-centered cubic α-ferrite in Fe-based BMGC; and the B2-Ti (Ni, Cu) austenite
and B19’-Ti (Ni, Cu) martensite in Ti-based BMGC can be observed.
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Figure 2 gives the X-ray diffraction patterns of as-cast and loading-fracture samples of 
Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and Ti40−xCexNi40Cu20 (x = 0, 1.0) alloys. Amorphous diffuse scattering peaks 
can be observed in the XRD patterns of four alloys from 2θ = 40–50°, as well as the crystalline phases 
that were precipitated and superimposed on the diffuse scattering peaks, verifying that the 
composites consisted of duel crystal phases and an amorphous matrix. The diffuse scattering peak 
widths of the as-cast XRD images of Fe64.4Ce1.0Mn14.3Si9.4Cr10C0.9 and Ti39Ce1.0Ni40Cu20 alloys with rare 
earth element Ce were higher than those without a rare earth element alloy, indicating that the 
addition of rare earth elements increased the volume fraction of the amorphous phase and enhanced 
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Figure 1. High-resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT)
of (a) the as-cast Fe65.4Mn14.3Si9.4Cr10C0.9 and (b) Ti40Ni40Cu20 alloys.

Figure 2 gives the X-ray diffraction patterns of as-cast and loading-fracture samples of
Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and Ti40−xCexNi40Cu20 (x = 0, 1.0) alloys. Amorphous diffuse scattering
peaks can be observed in the XRD patterns of four alloys from 2θ = 40–50◦, as well as the crystalline
phases that were precipitated and superimposed on the diffuse scattering peaks, verifying that the
composites consisted of duel crystal phases and an amorphous matrix. The diffuse scattering peak
widths of the as-cast XRD images of Fe64.4Ce1.0Mn14.3Si9.4Cr10C0.9 and Ti39Ce1.0Ni40Cu20 alloys with



Crystals 2019, 9, 483 3 of 8

rare earth element Ce were higher than those without a rare earth element alloy, indicating that the
addition of rare earth elements increased the volume fraction of the amorphous phase and enhanced
the amorphous forming ability. Meanwhile, the precipitated crystal phases of the two Fe-based
as-cast alloys were a supercooled shape memory austenite phase face-centered cubic (fcc) γ-Fe and
ferrite phase body-centered cubic (bcc) α-Fe, indicating that both microstructures of the alloys were
composed of an amorphous matrix and duel crystalline phases (Figure 2a). The precipitated crystals
of the two Ti-based as-cast alloys were confirmed to be supercooled shape memory austenite phase
B2-Ti (Ni, Cu) and thermally induced martensite phase B19’-Ti (Ni, Cu) (Figure 2b). As the addition
of Ce elements can reduce the temperature of martensitic transformation, the austenite phase was
stabilized during solidification. As can be seen from the as-cast XRD patterns, the volume fractions
of the γ-Fe and B2-Ti (Ni, Cu) supercooled austenite were more than those of the alloys without the
Ce addition. Furthermore, from the XRD patterns of loading fracture samples, the stress-induced
hexagonal closed-packed (hcp) ε-Fe martensite and the B19’-Ti (Ni, Cu) martensite diffraction peaks
can be clearly identified from the as-cast amorphous hump and crystalline peaks. Regarding loading,
the local stress increased with the increase of dislocation density in the local region, and ultimately
induced the martensite transformation.
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Figure 2. X-ray diffraction patterns of (a) Fe65.4−xCexMn14.3Si9.4Cr10C0.9 and (b) Ti40−xCexNi40Cu20

(x = 0, 1.0) alloys.

The inherent thermodynamic properties dominated the state and properties of the amorphous and
crystalline phases. According to Boltzmann’s equations [17,18], it is assumed that there are N atoms
mixed in an alloy, where n0, ni, . . . , nr are the numbers of different elements and k is the Boltzmann
constant; then, the mixing entropy ∆Smix of an alloy is:

∆Smix = k ln(
N!

n0!n1! · · · nr!
) (1)

When the atomic ratios are non-equal:

∆Smix = −R
i∑

i=1

xilnxi (2)

where xi is the atomic percentage of components, and R is the gas constant.
The mixing enthalpy ∆Hmix can be calculated by using the mixture enthalpy ∆Hmix

AB of a binary
system, which is shown in Table 1 [19]:

∆Hmix =
N∑

i=1,i, j

4∆Hmix
AB xix j (3)
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Table 1. ∆Hmix
AB of the binary elements [20].

Element Fe Mn Si Cr C Ti Ni Cu Ce

Fe 0 −35 −1 −50 3
Mn 0 −45 2 −66 1
Si −35 −45 −37 −39 −73
Cr −1 2 −37 −61 15
C −50 −66 −39 −61 −116
Ti −35 −9 18
Ni −35 4 −28
Cu −9 4 −21
Ce 3 1 −73 15 −116 18 −28 −21

Thus, ∆Smix and ∆Hmix of the four alloys could be calculated using Table 2. All the four TRIP
BMGCs were confirmed to be medium entropy materials. Furthermore, the addition of the rare earth
element Ce increased ∆Smix, improving the chaos degree of the alloy system, as well as promoting
the formation of the denser disordered stacking arrangements. In addition, the reduction of ∆Hmix
reduced the driving force of crystallization, that is, it improved the amorphous forming ability of the
two alloy systems.

Table 2. ∆Smix and ∆Hmix of TRIP BMGCs.

Alloy ∆Smix (J·mol−1·K−1) ∆Hmix (kJ·mol−1) δ (%)

Fe65.4Mn14.3Si9.4Cr10C0.9 1.05R −14.34 3.69
Fe64.4Ce1.0Mn14.3Si9.4Cr10C0.9 1.08R −14.43 5.62

Ti40Ni40Cu20 1.06R −23.72 7.01
Ti39Ce1.0Ni40Cu20 1.10R −24.12 7.85

Moreover, the parameter Ω, which can combine the effects of ∆Smix and ∆Hmix on the stability of
multicomponent solid solution, is defined as [21–23]:

Ω = Tm∆Smix/|∆Hmix| (4)

Tm =
n∑

i=1

xiTi (5)

∆Hmix =
n∑

i=1,i, j

Ωi jcic j (6)

where n is the number of elements, xi is the mole fraction of each element, Ti is the melting temperature
of each element, and Tm is the average melting temperature of the n-element alloy. Furthermore,
a lower Ω and smaller n improve the glass-forming ability (GFA) of the BMGC [24].

Table 3 shows the atomic radius ratio ψ between the Ce element and the other components of the
alloys. The atomic size differences were much larger than 12%, which promoted the formation of a
denser and more uniform disordered stacking structure, as well as enhancing the solid–liquid interface
energy. As the viscosity of the supercooled liquid increased and made the long-range diffusion of
atoms more difficult, the GFA of the alloy was improved [25]

Table 3. Atomic radius ratio ψ between Ce and alloy elements.

Element Fe Mn Si Cr C Ti Ni Cu

ψ 1.43 1.38 1.36 1.43 2.12 1.26 1.47 1.42
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Figure 3 gives the relationships between phase selection, atomic size difference δ, and ∆Hmix. δ is
defined as [26]:

δ =

√√√√√ n∑
i=1

xi

1− di/
n∑

j=1

x jd j


2

(7)

where di and dj are the atomic diameters of the components i and j, respectively. From Figure 3, the TRIP
BMGCs were located in the BMG formation zone, that is, −40 < ∆Hmix < −5 kJ/mol, and 6% < δ <18%.
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Moreover, elemental Ce, which can be used as an oxygen adsorbent, preferentially reacts with
residual O in the atmosphere to form a stable compound, thereby purifying the melts and suppressing
the heterogeneous nucleation and crystal growth, thus improving their glass forming ability [3,14].

3.2. Mechanical Behaviors of the Fe-Based and Ti-Based TRIP BMGCs

Figure 4 shows the compressive engineering stress–strain curves of Fe-based and Ti-based TRIP
BMGCs. All the four alloys exhibited excellent comprehensive mechanical properties, such as the high
fracture strength σf, large plastic strain εp, and excellent work-hardening abilities. From Figure 4a,
the fracture strength and plastic strain of Fe65.4Mn14.3Si9.4Cr10C0.9 BMGC were 2321 MPa and 20.7%,
respectively. After adding elemental Ce, the σf and εp went up to 2905 MPa and 30.1%. Furthermore,
the energy stored up to the fracture of the Fe-based BMGCs, found via the integration of the stress
versus strain curves, were 511.85 and 725.64 J/m3, respectively. From Figure 4b, the σf and εp of the
Ti-based BMGC significantly improved from the 2006 MPa and 11.3% of Ti40Ni40Cu20 to 2635 MPa and
13.8% by adding 1% elemental Ce. Meanwhile, the energy stored up to the fracture of the Ti-based
BMGCs improved from 193.22 to 404.49 J/m3.
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Figure 5 gives the work-hardening rate θ versus the true strain curves for the four BMGCs. The θ
can be obtained from dσT/dεT. In the initial stage of deformation, the alloys with no added Ce exhibited
a larger θ and smaller yield strength σy. Since the elemental Ce contributed to the stabilization of
the amorphous matrix, it was difficult to form dislocations when loading. The higher the dislocation
density was, the greater the work-hardening rate.
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From Figure 5a, the θ of Fe-based BMGCs was obviously smaller than that of the Ti-based BMGCs,
which was attributed to the different mixed crystal structure. The existence of ferrite reduced the θ of
Fe-based BMGCs. As austenite exhibits a higher work-hardening ability than ferrite [27], the TRIP
effect dominated the work-hardening behavior of the composites. The alloys with added Ce showed a
longer subsequent strengthening and toughening deformation stage. The enhanced GFA significantly
delayed the proliferation of dislocations. In the last stage, the two curves nearly coincided. The
austenite was almost exhausted by the phase transition, while ferrite played a dominant role.

From Figure 5b, as the GFA improved, Ti-based BMGCs showed a higher work-hardening rate,
larger σy and smaller εp compared with Fe-based alloys. Furthermore, Ce addition decreased the
dislocation density and delayed the phase transition process. When the strain was greater than 6%,
the work-hardening rate was higher than Ti40Ni40Cu20. Ti39CeNi40Cu20 and Fe64.4CeMn14.3Si9.4Cr10C0.9

showed a longer work-hardening period before fracture than the alloys without added Ce. That is,
Ce addition further improved the strengthening and toughening effects of TRIP BMGCs.

3.3. Fracture Morphology of the Fe-Based and Ti-Based TRIP BMGCs

Figures 6 and 7 show the fracture morphology of the Fe-based and Ti-based TRIP BMGCs,
respectively. The edge regions maintained the disordered structure from the frozen liquid metal due to
the high cooling rate. Furthermore, as mentioned, adding elemental Ce can improve the GFA, as well
as further develop the densely disordered clusters. As the final fracture occurred, the sudden rise
of temperature in the locally softened shear bands led to local melting and thus formed numerous
amorphous vein patterns. The densely continuous vein patterns can be seen in Figure 6a,c, and the
distribution is more uniform in Figure 6c. From Figure 6b,d, a large quantity of dimples can be seen in
the center zone of the Fe-based BMGCs, while the dimple distribution of Fe64.4CeMn14.3Si9.4Cr10C0.9

is more uniform. Compared with the Fe-based alloys, the veins in the edge region of the Ti-based
BMGCs were sparse and developed in a river-like pattern, as well as the dimples in the center zone
being relatively shallow. Furthermore, the dimples of the Ti39CeNi40Cu20 alloy were also more evenly
distributed than without Ce addition.
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In the present work, we designed the medium-entropy Fe-based and Ti-based BMGCs via
shape memory crystalline phase transitions induced plasticity to enhance both their strength and
ductility. Adding elemental Ce could stabilize the amorphous phase and enhance the GFA, as well as
improve the TRIP effects. The Ce microalloyed BMGCs with larger ∆Smix and δ, and a smaller ∆Hmix,
exhibited a better GFA, as well as excellent comprehensive mechanical properties. The thermodynamic
parameters of the Fe64.4CeMn14.3Si9.4Cr10C0.9 alloy—∆Smix, δ, and ∆Hmix—changed from 1.05R to
1.08R J·mol−1
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1.10R and 7.01 to 7.85, respectively. Furthermore, ∆Hmix decreased from−23.72 to−24.12, and the σf and
εp improved to 2635 MPa and 13.8% and 2905 MPa and 30.1%, respectively. The novel TRIP BMGCs
can serve as an important guidance for future metastable metals with superior mechanical properties.
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