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Abstract: In this work, hierarchical three-dimensional (3D) urchinlike WO3 microspheres with
a self-assembled nanorod core, and a connected and quasiconnected nanothorn network shell
were synthesized with the hydrothermal method. For the surface or near-surface regions of
pseudocapacitive materials that are involved in the Faradaic reaction, the urchinlike WO3 special
microstructure provided more effective charge-storage area, exhibiting a high specific capacitance of
488.78 F g−1, low average equivalent-series resistance of 0.966 Ω cm−2, and excellent cycling stability
(84.75% of its initial value after the 10,000 cycles). This performance indicates the urchinlike WO3

microspheres are promising electrode materials for high-performance supercapacitors.
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1. Introduction

Due to their characteristics of high-power density, long cycling stability, high conversion efficiency,
and easy maintenance, supercapacitors have become a promising candidate for renewable-energy
conversion and storage devices, especially for photovoltaic- and wind-power generation and
transition [1,2]. However, the relatively low specific capacitance and relatively high average
equivalent-series resistance caused by the preparation technique limit further applications in the
renewable-energy field [3]. It is well known that pseudocapacitive materials obtain higher specific
capacitance than double-layer capacitive materials due to their unique energy-storage method, which
depends on the Faraday reactions on the surface or near-surface regions of the microstructure of
the materials to charge and discharge. Thus, methods to control the structures of pseudocapacitive
materials (i.e., morphology and crystal structure) should be found to improve charge and ion-transfer
efficiency, and to enhance the utilization of the pseudoactive material. Designing and synthesizing
high-performance transition metal-oxide electrode materials with various nano-/micromorphologies
and spatial structures can significantly improve the electrochemical performance of supercapacitors [4,5].
For example, Gao et al. [6] designed hierarchical hollow MnO2 nanostructures by using polyaniline
spheres as reactive templates that revealed a specific capacitance of 308 F g−1. Xiao et al. designed
rough NiCo2S4 nanorod arrays with open-top electrode materials that exhibited a specific capacitance
of 497 F g−1 [7]. Zhang et al. synthesized and prepared Zn–Co–S rhombic dodecahedral-cage electrode
materials that demonstrated a specific capacitance of 1266 F g−1 [8]. In recent years, tungsten oxides have
received extensive attention from scholars as transition metal oxides. For example, Yao et al. [9] reported
that nanowires assembled sub-WO3 urchinlike nanostructures for a superior room-temperature alcohol
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sensor. Li et al. [10] introduced a type of excellent catalytic tungsten oxide nanostructure. They have
also been researched as supercapacitor electrodes because of their characteristics of multiple oxidation
states, high electronic conductivity, and fast ion insertion/deinsertion. Xu et al. [11] prepared nanofiber
self-assembled mesoscopic WO3 microspheres with the hydrothermal method, which revealed a
specific capacitance of 797.05 F g−1. Yoon et al. [12] synthesized ordered mesoporous tungsten oxide
electrode materials with the template method that exhibited a specific capacitance of 199 F g−1. Though
remarkable progress has been made, transition metal-oxide electrode materials are still limited by
the relatively short cyclic life caused by expansion/contraction during the charging and discharging
process [13].

In this study, hierarchical 3D urchinlike WO3 microspheres with a self-assembled nanorod core and
a connected- and quasiconnected-nanothorn network shell were synthesized with the hydrothermal
method. The unique microstructures could minimize structural damage during the charging and
discharging process, and provide numerous active sites for Faradaic reactions, which increases the
utilization of pseudocapacitive materials. Different from other WO3 materials, urchinlike WO3 is
composed of numerous WO3 nanorods that can still show excellent performance even when using the
traditional wafer electrode fabrication process. Hence, the prepared WO3 electrode exhibited high
specific capacitance, low average equivalent-series resistance, and excellent stability, demonstrating
great potential in practical applications.

2. Materials and Methods

All reagents used in the experiment were purchased from Sinopharm Chemical Reagent Co. Ltd.
The 3D urchinlike WO3 microspheres were hydrothermally prepared following an annealing process.
In brief, 15 mmol of Na2WO3·2H2O was dissolved in 100 mL deionized water (DI) and stirred for
20 min at room temperature (25 ◦C). Then, 9 mL of a 3 M HCl solution was dropwise added into the
Na2WO3·2H2O solution under magnetic stirring. Subsequently, 42 mmol H2C2O4 was added in to the
above solution with 5 min magnetic stirring. Then, the mixture solution was diluted to 250 mL. Next,
50 mL of the previous solution was transferred to a 100 mL beaker, and 2.5 g of (NH4)2SO4 was added
into the solution and stirred for 2 h at 60 ◦C. Subsequently, 30 mL of the precursor was transferred into
a Teflon-lined stainless autoclave, sealed, and maintained at 180 ◦C for 16 h. After the hydrothermal
treatment, the blue–green solid product was centrifuged and rinsed thoroughly with DI and ethanol.
Finally, the 3D urchinlike WO3 microsphere sample was obtained by annealing at 450 ◦C for 1 h.

The general and detailed morphologies and nanostructures were examined by field-emission
scanning electron microscope (FESEM; JEOL JEM 6700F, JEOL, Ltd, Tokyo, Japan). The composition
and phase of the samples were evaluated by X-ray diffraction (XRD, Shimadzhu 6000, Shimadzu Co.,
Ltd, Kyoto, Japan) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250, ThermoFisher Scientific
Co., Ltd, Massachusetts, USA).

The working electrode was prepared by mixing as-prepared WO3 powder with
polytetrafluoroethylene and acetylene black at a weight ratio of 8:1:1, and then the slurry was
pasted onto the 1.0 × 1.5 cm2 stainless-steel mesh (the pasted zone was 1.0 × 1.0 cm2). The resulting
paste was pressed under 10 MPa and dried at 40 ◦C overnight. Each WO3 electrode contained
about 10 mg of electroactive material. The prepared sample was tested in a 3-electrode cell on
CHI-760E electrochemical station by cycle voltammetry (CV) and galvanostatic charge–discharge
(GCD) measurements.

3. Results and Discussion

The XRD patterns of the 3D urchinlike WO3 sample are presented in Figure 1a. All the sharp
peaks could be well-indexed to the monoclinic WO3 (JCPDS No.071-2141), and no other diffraction
peaks could be observed, revealing the high purity and high crystallinity of the sample. In the XRD
patterns, some characteristic peaks were found at 2θ ≈ 23.1◦, 23.58◦, 24.39◦, 26.6◦, 28.95◦, 33.27◦, 33.59◦,
34.19◦, 35.67◦, 41.45◦, 41.91◦, 44.29◦, 44.92◦, 45.4◦, 47.26◦, 48.24◦, 49.96◦, 50.34◦, 53.48◦, 54.16◦, 54.78◦,
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55.8◦, 57.64◦, 58.19◦, 60.98◦, 61.89◦, 62.27◦, 66.66◦, 67.28◦, 69.85◦, 71.36◦, 71.99◦, 73.03◦, 76.84◦, and
78.61◦, which could unambiguously be indexed to the (002), (020), (200), (120), (112), (022), (−202),
(202), (122), (−222), (222), (320), (132), (−312), (004), (040), (140), (−114), (024), (042), (240), (142), (−332),
(332), (043), (105), (340), (234), (324), (044), (144), (035), (−441), (424), and (600) planes of the monoclinic
WO3. Figure 1b and c shows the SEM images of the surface morphologies of the urchinlike WO3

sample from low to high magnification. In Figure 1b, the WO3 microspheres with diameters of 3–6 µm
were like sea urchins, exhibiting spherical and thorniness characteristics.
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Figure 1. (a) X-ray diffraction (XRD) patterns (WO3 JCPDS No.071-2141); (b,c) low to high magnification
scanning-electron-microscopy (SEM) images of 3D urchinlike WO3 microsphere sample.

The individual and high magnification SEM images of the WO3 microstructure are shown in
Figure 2c,d. The unique microstructure was self-assembled by nanorods with diameters of 70 to 100 nm
forming surface roughness and a porous core with radially standing nanothorns, with an average
length of 400 to 1000 nm, and it showed an urchinlike hierarchical microstructure. Meanwhile, some
nanothorns randomly overlapped, forming the connected and quasiconnected networks, and the
surface of the nanothorns was rough and uneven. Unlike other WO3 materials, the sea urchin-shaped
WO3 was composed of numerous WO3 nanorods. Even if more active materials were bonded to the
current collector, this microstructure could provide a more effective working area to obtain better
charge-storage capacity. Those structures together provided a significantly number of active sites for
redox reactions, shortening electron transfer pathways, and reducing crystal-structure failure during
the ion-insertion/-desertion processes.

To further confirm the chemical composition and valence states of the urchinlike WO3 sample,
XPS measurements were conducted. The typical survey spectrum of the sample is shown in Figure 2a,
which indicated the presence of W, C, and O elements; no other elements could be found. Figure 2b
shows the C1s spectrum, which could be fitted to two peaks located at 284.6 and 286.3 eV, caused by
the vacuum oil contamination of the XPS equipment [14–16]. The high-resolution spectrum of the W4f
core level of the urchinlike WO3 sample is shown in Figure 2d, which reveals two main peaks at 35.9
and 38.1 eV, with spin-energy separation of 2.2 eV that can be assigned to the binding energy of W4f 7/2

and W4f 5/2, indicating the presence of W6+ in the sample [17]. Meanwhile, one peak located at 41.7 eV
could be assigned to binding energy of W5p 3/2, which also indicated the existence of W6+ states [18].
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The spectrum of O1s showed one peak at 530.8 eV, as shown in Figure 2c, which could be assigned
to the metal–oxygen bonds of the WO3 phase. These observations, together with the XRD results,
confirmed that the sample was prepared.Crystals 2019, 9, x FOR PEER  4 of 7 
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To evaluate the electrochemical performance of the WO3 electrode, typical CV and GCD
measurements were conducted in a three-electrode configuration with 2 M H2SO4 aqueous solution as
electrolyte. Figure 3a shows the CV curves of the WO3 electrode collected from different scan rates,
from 2 to 50 mV s−1. The profiles of the CV curves were obviously different from the typical rectangular
shape of electrical double-layer capacitors, revealing the pseudocapacitive-capacitance characteristics
of the WO3 electrode. The peak current and integral areas of the WO3 electrode were significantly
increased with the increase of the scan rate, revealing fast charge-transfer and ion-insertion/-desertion
properties. In the meantime, CV profiles at low scan rates could be maintained, and three pairs of
redox peaks could be observed, revealing good reversibility. However, distortion CV profiles could be
observed at high scan rates, and only two unobvious anodic peaks and two broad cathodic peaks could
be observed, indicating the redox mechanism was dominant by the mass transfer [19]. Meanwhile,
the position of anodic peaks cathodic peaks shifted separately to higher and lower potential with the
increase of the scan rates, revealing the fast current response of the material. The properties of the
WO3 pseudocapacitance can be explained by the following equation [20]:

WO3 + xH+ + xe− ↔ HxWO3 (1)

Figure 3b shows the GCD curves of the WO3 electrode at different current densities within a
potential window of –0.35 to 0.1 V. The GCD curves exhibited almost linear properties, with only some
slight curvature changes in the charge curve and at about –1.0 V in the discharge curve, corresponding to
the anodic and cathodic peaks in the CV curves, indicating the Faradaic pseudocapacitive characteristic
of the WO3 electrode. Meanwhile, the discharge curves showed relatively low Vdrop, even at high current
density, revealing the fast I–V response property of the material [21]. The average equivalent-series
resistance of the sample was calculated to only be 0.966 Ω cm−2 according to the Vdrop through all
current densities by Equation (2) [17]:

RESR =
Vdrop

2I
(2)
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The charging and discharging curves exhibited almost symmetric property, accounting for good
redox reversibility. With more linear and smoother charging and discharging curves, the WO3 electrode
may be more suitable in high-energy-storage devices. The specific capacitance values could be
calculated according to the discharge time by using the following equation [22]:

Cs =
I∆t

m∆V
(3)

Where Cs (F g−1) is specific capacitance, I (A) is charge–discharge current, ∆t (s) is discharging time,
∆V (V) is voltage window, and m (g) is the mass of the active material within the electrode. The specific
capacitances were calculated to be 488.78, 425.11, 361.78, 334.67, 285.56, and 191.11 F g−1 at 0.5, 1, 2, 3,
5, and 10 A g−1 (Figure 3c), respectively. Moreover, with excellent capacitance, the 3D urchinlike WO3

electrode revealed excellent long-term cycling stability. As shown in Figure 3d, capacitance reached
106.78% of its initial value during the first 400 cycles caused by the activation of the electrode. In the
rest of the cycling test, capacitance retention was maintained at nearly 100% until 3000 cycles, when it
was then slightly decreased to 84.75% of its initial value after the 10,000 cycle test, which showed better
cycling performance than previously reported [23–25], indicating the excellent cycling stability and the
practical-application potential of the 3D urchinlike WO3 electrode. Based on the above characteristics,
urchinlike WO3 materials may be used as the base material of composite supercapacitor electrode
materials to prepare electrode materials with excellent performance. This work is still in progress.

4. Conclusions

In summary, hierarchical 3D urchinlike WO3 microspheres were synthesized with the hydrothermal
method. Benefiting from a unique microstructure consisting of WO3 nanorods with a porous core and
a connected and quasiconnected nanothorn network shell, compared to previous reports about WO3

enumerated by Pragati A. Shinde et al. [26], the WO3 electrode exhibited a relatively high specific
capacitance of 488.78 F g−1. Unlike other reports, the WO3 in this work was in powder form and
could be combined with the substrate with better application value (including higher mass load,
10 mg/cm2 here) [27–31]. In addition, it had a low average RESR of 0.966 Ω cm−2 and excellent stability.
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These indicate that urchinlike WO3 electrodes would be promising electrodes for supercapacitor
applications and may extend the potential application of transition metal oxide-based devices.
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