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Abstract: Electronic devices are increasingly dense, underscoring the need for effective thermal
management. A polyimide (PI) matrix nanocomposite film combining boron nitride (BN)-coated
copper nanoparticles (CuNPs@BN) and nanowires (CuNWs@BN) was fabricated by a flexible and
fast technique for enhanced thermal conductivity and the dielectric properties of nanocomposite
films. The thermal conductivity of (CuNPs-CuNWs)@BN/PI composite comprising 10 wt % filler
loading rose to 4.32 W/mK, indicating a nearly 24.1-fold increase relative to the value obtained for
pure PI matrix. The relative permittivity and dielectric loss approximated 4.92 and 0.026 at 1 MHz,
respectively. The results indicated that the surface modification of CuNPs and CuNWs by introducing
a ceramic insulating layer BN effectively promoted the formation of thermal conductive networks of
nanofillers in the PI matrix. This study enabled the identification of appropriate modifier fillers for
polymer matrix nanocomposites to improve electronic applications.

Keywords: electrical properties; polymer matrix composite; thermal properties; coating

1. Introduction

Surface modifications of fillers in polymer matrix composite films attract increasing attention
because of as-created core-shell structures possessing extraordinary features, including their use
as biocatalysts, phase change materials, and other potential applications [1–3]. To comprehensively
ameliorate compatibility and stability between polymer and filler interfaces while decreasing resistance
of the thermal interface in polymer matrix composites, surface modifications seem to represent an
optimal choice. However, surface modifications are mostly challenging, and the modification effect may
not be as strong as expected, making it difficult to take advantage of most fillers’ superiority. Therefore,
additional intrinsic parameters, including filler type, size, shape, and orientation, should be taken
into consideration [4–11]. Of these, orientation represents an essential and easily amenable parameter,
notably for one-dimensional tubes or wires and two-dimensional platelet fillers. Filler orientation
in the heat flow direction is broadly used to yield an elevated thermal conductivity in polymer
composites. Recent studies have shown that metal nanowires have a higher efficiency in improving
thermal conductivity to decrease the percolation threshold in comparison with other nanostructures
because of their inherent continuity and elevated aspect ratio [4,5]. Copper (Cu) is one of the
most important metals in modern technology because of its inherent continuity, elevated thermal
conductivity, and affordability. Therefore, copper nanoparticles (CuNPs) and copper nanowires
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(CuNWs) are excellent candidates for orientation fillers in polymer matrix composite films with high
thermal conductivity [6–13]. Unfortunately, elevated electrical conductivity and relative permittivity
hamper the application of copper-based materials for electronic packaging, which requires electrical
insulation. Hence, the properties of copper, including elevated thermal conductivity and low relative
permittivity, still need improvement for more applications as a filler of polymer matrix composites.
Thermal resistance at the filler–filler or polymer–filler interface also plays a key role in polymer
composites. Based on the above, we hypothesized that the thermal conductivity of composite films
containing BN-coated copper orientation fillers could be increased via the reduction of interfacial
thermal resistance, which still needs to be investigated.

In this study, a novel approach was developed through the surface modification of CuNPs
and CuNWs using synthetic BN to generate flexible polyimide (PI) nanocomposites displaying
elevated thermal conductivity but minimal relative permittivity. The BN nanolayer on CuNPs and
CuNWs (denoted as CuNPs@BN and CuNWs@BN, respectively) formed a barrier that prevented
the generation of conductive paths, effectively reducing the dielectric constant of composites.
This “point-line” structure is considered to play a bridging role for copper nanoparticles with copper
nanowires in enhancing the filler interaction to reduce interfacial thermal resistance. Furthermore,
the multilayer-structure comprised CuNPs@BN and CuNWs@BN, providing a network efficiently
improving the thermal conductivity of composites. The thermal management of PI nanocomposites
according to the multilayer-structure comprising BN-coated CuNPs and CuNWs is scarcely studied.

2. Experimental Section

2.1. Materials

Copper nitrate trihydrate [Cu(NO3)2·3H2O], sodium hydroxide (NaOH), hydrazine
hydrate (N2H4·H2O 85%), 2,4,6-Tris(dimethylaminomethyl)phenol, ethylenediamine (EDA),
and Tris(hydroxymethyl)aminomethane were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Dopamine (DA, 98%), polyvinylpyrrolidone (PVP, MW ≈ 40,000, powder), boric
acid (H3BO3, 99%), urea [CO(NH2)2, 96.5%], tetraethylorthosilicate (TEOS, 99.0%), and ammonium
hydroxide (NH4OH, 28 wt %) were manufactured by Alfa Aesar Co. (Beijing, China). Polyimide (PI)
and the N,N-dimethylacetamide (DMAc) solvent were purchased from Sigma (Shanghai, China).
Copper (Cu, ~200 nm) nanopowder was purchased from Beijing DK Nano Technology Co. Ltd.
(Beijing, China). The remaining chemicals were of analytical grade.

2.2. Synthesis of CuNPs@BN and CuNWs@BN

The synthesis of CuNWs was performed as previously reported [14]. The CuNWs@BN core-shell
structure was prepared by direct impregnation. First, H3BO3 particles and 200 proof ethanol were
mixed in a 500 mL round-bottom flask followed by sonication for 1 h in ambient conditions. After the
H3BO3 had gradually been dissolved, urea was added under ultrasonication for 1 h. The resulting
taupe powder was vacuum-dried at 60 ◦C for ≥12 h. After purging with nitrogen gas for ≥20 min,
the furnace was heated to the operating temperature at 5 ◦C/min, with ammonia flowing at 200
mL/min. Samples were heated at 900 ◦C for 3 h and cooled under ammonia. Finally, core-shell
CuNPs@BN and CuNWs@BN nanopowders were obtained.

2.3. (CuNPs-CuNWs)@BN/PI Composite Film Preparation

Figure 1 shows a schematic diagram outlining the experimental procedure for preparing
(CuNPs-CuNWs)@BN/PI. Firstly, the PI matrix dissolution was carried out in acetone, followed by the
CuNPs@BN and CuNWs@BN dispersion under ultrasonication to homogeneity. Then, the samples
were mixed and vacuum-dried at 60 ◦C. Subsequently, the obtained mixtures were spread onto glass
with thermal imidization under vacuum at 80 ◦C for 2 h followed by 150, 200, 250, and 350 ◦C for 1 h.
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Finally, (CuNPs-CuNWs)@BN/PI composites with a multilayer structure were obtained. As controls,
PI composite films comprising untreated CuNPs and CuNWs were obtained as described above.
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Figure 1. Preparation of multilayer-structured (CuNPs-CuNWs)@BN/PI film.

2.4. Characterization

CuNPs, CuNWs, CuNPs@BN, and CuNWs@BN were assessed for microstructure and
morphology by high-resolution transmission electron microscopy (HRTEM; JEOL JEM-1230, Tokyo,
Japan) and scanning electron microscopy (SEM; JEOL 7401F, Tokyo, Japan). SEM was performed with
a voltage of 3 kV, with the specimens sputter-coated using a thin layer of gold. Thermal conductivity
assessment was performed on a thermal constant analyzer (HOT DISK TPS-2500s, Uppsala, Sweden).
Bulk densities of specimens were determined by the water displacement method on an electronic
densimeter (METTLER TOLEDO, XPE205, Zurich, Switzerland). Resistance indexes, such as volume
resistivity and surface resistivity, were measured on a high-resistance meter (16339, Hewlett Packard,
Palo Alto, CA, USA) in ambient conditions. Low frequency dielectric features for composite films were
determined from 1 kHz to 1 MHz on a 4980-A impedance analyzer (Agilent, Palo Alto, CA, USA) with
a 16034B dielectric test fixture. Triplicate experiments were carried out.

3. Results and Discussion

SEM micrographs of CuNPs, CuNPs@BN, CuNWs, CuNWs@BN, and (CuNPs-CuNWs)@BN/PI
are depicted in Figure 2a–c,e–g, respectively; TEM micrographs of core-shell CuNPs@BN and
CuNWs@BN are displayed in insets of Figure 2b,f, respectively. Optical micrographs of pure PI and
(CuNPs-CuNWs)@BN/PI films are found in Figure 2d,h, respectively. Optical micrographs of pure
PI and (CuNPs-CuNWs)@BN/PI films are found in Figure 2d,h, respectively. The average diameter
of untreated CuNPs approximated 200 nm, while the obtained CuNWs were 50 nm in diameter and
2–4 µm in length (Figure 2a,e). The BN shell was scrupulously coated on CuNPs and CuNWs upon
surface modification, which showed overtly larger diameters post-treatment in comparison with
CuNPs and CuNWs (Figure 2b,f, and insets of Figure 2b,f). The thickness of the BN nanoshell was
about 50 nm, which promoted heat transfer in composite films. Figure 2c,g depict SEM micrographs
of (CuNPs-CuNWs)@BN/PI composites with 10 wt % filler loading. The (CuNPs-CuNWs)@BN/PI
composite films were approximately 5 µm thick; partial enlargement (Figure 2g) indicated a good
CuNPs@BN and CuNWs@BN dispersion in the PI matrix, resulting in a “point-line” structure that
promoted the generation of a thermal conduction network. Figure 2d shows that the pure PI film
was yellowish and transparent, and the Northwestern Polytechnical University logo underneath was
clearly visible. Figure 2g shows that the (CuNPs-CuNWs)@BN/PI film was greenish-black and flexible.
The films with pure PI to 10 wt % (CuNPs-CuNWs)@BN filler content showed 0% transparency.
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Figure 2. SEM micrographs of (a) CuNPs, (b) CuNPs@BN, (c) (CuNPs-CuNWs)@BN/PI film,
(e) CuNWs, (f) CuNWs@BN, and (g) partial magnification of (c); TEM images of core-shell
CuNPs@BN (inset of (b) and CuNWs@BN (inset of (f); optical micrographs of pure PI (d) and
(CuNPs-CuNWs)@BN/PI (h) films.

Figure 3a shows the thermal conductivity values for pure PI, CuNPs@BN/PI, CuNWs@BN/PI
and (CuNPs-CuNWs)@BN/PI composites assessed in ambient conditions with 10 wt % filler loading.
The thermal conductivity values for the four films progressively increased with the filler type.
The thermal conductivity of (CuNPs-CuNWs)@BN/PI was elevated compared with those of the
remaining three films, peaking at 4.32 W/mK with 10 wt % filler loading. It should be noted that the
thermal conductivity of the CuNWs@BN/PI composite with 10 wt % was 2.61 W/mK, while that
of the CuNPs@BN/PI composite was only 1.75 W/mK. The results suggested that the “point-line”
structure has some advantages over the normal configuration. CuNWs’ dimensions promoted the
generation of relatively more efficient networks for thermal conductivity in comparison with CuNPs.
It is widely accepted that interfacial thermal resistance results from the contact between phases of
the same or various constituents [15–20]. Copper nanoparticles and nanowires augment the contact
areas in both cases, reducing the interfacial thermal resistance of (CuNPs-CuNWs)@BN/PI composites.
These findings suggest that the thermal conductivity of composite films can be increased by decreasing
the interfacial thermal resistance via filler modification and designing the microstructure of composites.
Therefore, the filler morphology and composite microstructure are critical in defining the thermal
conductivity of polymer-based composite films. The Figure 3a inset shows the impacts of three
fillers on the flexural strengths of composites and pure PI. The flexural strength was 128.0 MPa for
(CuNPs-CuNWs)@BN/PI with 10 wt % filler loading, indicating a 39.1% increase relative to the
value obtained for pristine PI matrix (92.0 MPa). These results indicated that the appropriate filler
loading with an optimal surface modification efficiently promotes stress relaxation under external
forces, thus improving flexural strength in composite films. Relative permittivity and dielectric loss
for CuNPs@BN/PI, CuNWs@BN/PI, and (CuNPs-CuNWs)@BN/PI composites at 1 kHz and 1 MHz
for BN and PI, respectively, are depicted in Figure 3b; the three films had comparable changes in
both parameters with increasing frequency. The relative permittivity and dielectric loss obtained for
(CuNPs-CuNWs)@BN/PI were 4.92 and 0.026, respectively, at 1 MHz with 10 wt % filler loading.
(CuNPs-CuNWs)@BN/PI showed a relative permittivity of 4.92, which is lower and more suitable for
substrates and packaging applications. The dielectric loss also remained low. Generally speaking, the
relative permittivity of a polymer matrix composite increases with filler loading, with the premise that
the fillers have the same morphology. However, at a high filler loading, relative permittivity might be
reduced by voiding from inadequate filler packing and poor preparation methods. In the present work,
the effects on dielectric features could result from space charge polarization in copper nanoparticles
and the network of nanowires generated via junctions among particles, as well as interactions at
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the metal copper conductor to BN ceramic insulator interface. Dielectric loss is mostly composed
of polarization and conduction losses. Conduction loss results from the charge flowing through the
composite and is determined by the composite’s electric conductivity [21,22]. The above findings
suggest the current technique used in BN coating for nanocomposite production has high efficacy in
disrupting aggregated nanoparticles and generating efficient heat conduction networks, while yielding
optimal relative permittivity for composite films. Thermal conductive and electrically insulating
polymer composite films described in the literature are summarized in Table 1, which demonstrates
the superiority of the present work in increasing thermal and dielectric features. Polymer composite
films with the “point-line” structure showed an elevated thermal conduction and electrical insulation
at low filler loading compared with previously published composite films. The above results indicated
that modifying the surfaces of CuNPs and CuNWs via the introduction of a ceramic insulating BN
nanolayer efficiently promotes the generation of thermal conductive nanofiller networks in the PI
matrix. The 50 nm-thick BN nanolayer decreased the discrepancy between the high and low moduli of
CuNP and CuNW fillers and PI matrix, respectively, reducing thermal interfacial resistance.
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Figure 3. (a) Thermal conductivity values and flexural strengths (inset) of pure PI,
CuNPs@BN/PI, CuNWs@BN/PI, and (CuNPs-CuNWs)@BN/PI nanocomposites assessed in ambient
conditions; (b) relative permittivity and dielectric loss for CuNPs@BN/PI, CuNWs@BN/PI, and
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Table 1. Thermal conductivity and dielectric features of the composites generated in this and
other studies.

Filler Content
Thermal

Conductivity
(W/mK)

Electrical
Conductivity

(S/cm)

Dielectric
Constant Reference

LPMs 25 vol % 0.25 2 × 10−12 – [6]
CuNWs 0.9 vol % 2.46 0.04 – [7]
Al2O3@PDA 30 vol % 0.59 – 4.06 [8]
CuNWs@SiO2 15 wt % 1.1 1.13 × 10−6 – [9]
CuNWs@TiO2 2 vol % 1.16 8.1 × 10−8 – [10]
CuNWs@PDA 3.1 vol % 2.87 – – [11]
(CuNPs-CuNWs)@BN 10 wt % 4.32 7.5 × 10−7 4.92 This work

4. Conclusions

Overall, a (CuNPs-CuNWs)@BN/PI composite film combining core-shell CuNPs@BN with
CuNWs@BN was generated using a flexible and fast method for increased thermal conductivity
and dielectric features. The (CuNPs-CuNWs)@BN/PI film at 10 wt % filler loading showed a thermal
conductivity reaching 4.32 W/mK, indicating a nearly 24.1-fold increase relative to pure PI matrix.
The relative permittivity and dielectric loss approximated 4.92 and 0.026 at 1 MHz, respectively.
The maximum flexural strength of the (CuNPs-CuNWs)@BN/PI composite increased to 128.0 MPa.



Polymers 2018, 10, 1412 6 of 7

These results indicated that the morphology of fillers and the microstructure of composites are critical
for the thermal conductivity in polymer-based composite films. The present study provided novel
insights into designing thermally conductive polymer-based composite films, which could be applied
in next-generation electronic packaging.
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