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Abstract: The present work addressed the creep behavior of quasi-unidirectional E-glass fabric
reinforced polypropylene composites under off-axis tensile loading. A series of creep tests were
performed on the composite at three different loading stress levels. The creep response of off-axis
samples of quasi-unidirectional composites under a constant loading level can be clearly observed.
A phenomenological viscoplasticity model was built for describing the creep behavior of the composite.
To improve the accuracy of prediction, cyclic loading-unloading tests were adopted to determine the
material constants in the model. The predicted results in terms of the strains after a load over a period
of time were found to be satisfactory, compared with the experimental results. In addition, same
failure mechanism was found in off-axis samples under quasi-static and creep loading cases.
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1. Introduction

Fiber reinforced thermoplastic composites (FRTCs) have been widely used in many applications.
As the matrix for composites, thermoplastic polymers exhibit many advantages over thermosets,
like short processing time and intrinsic recyclability [1]. The durability of FRPCs is required in their
service life. The long service time in combination with the viscous properties in the thermoplastic
polymers emphasize the requirement of the investigation of long-term behavior of FRTCs [2]. Creep
behavior is one of the time-dependent responses of material, which is a continuous deformation
under a constant load [3,4]. For advanced fiber reinforced polymer composites, fibers are usually
assumed as linearly elastic and do not creep. Therefore, the creep behavior observed in composites
originates from the matrix [5]. Polymers generally undergo significant creep behavior even at room
temperature [6]. However, it is demonstrated that fiber reinforcement can limit the creep behavior
of matrix in FRTCs [7,8]. In the past years, most of research on the creep behavior of FRTCs has
mainly focused on discontinuous fiber reinforced thermoplastic composites (short fibers [7,9] and long
fibers [10,11]). The experimental results showed that the creep behavior of composites is affected by
the factors such as the creep behavior of matrix, the geometry, the distribution of reinforcement and
the fiber-matrix interfacial properties.

So far, some investigations have carried on the creep behavior of continuous fiber reinforced
thermoplastic composites (C-FRTCs) through experimental and numerical methods [2,4,12]. Liou
and Teng [4] conducted a systematic investigation of the creep behavior of unidirectional (UD)
carbon fiber /nylon 6 composites in the fiber direction as well as off-axis direction at three different
temperatures. They found that the composite was linear viscoelastic if the off-axis angle was smaller
than 30°, whereas, nonlinear viscoelastic behavior was observed when off-axis angle was increased
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and subjected to high stress level. The Findley power [13] was used to describe the viscoelastic creep
behavior of composites. Brauner et al. [2] carried out creep tests on C-FRTCs with respect to both
loading temperature and loading stress level. The extended Burgers model was used to predict the
long-term viscoelastic creep behavior of composites.

On the other hand, some phenomenological viscoplasticity models were proposed in
literatures [5,14-17] to predict both rate-dependent nonlinear behavior and creep behavior of polymeric
composites. It should be noted that, in contrast to metals, polymeric composites do not have the
plasticity mechanical behavior. However, the macro-mechanical constitutive models for polymeric
composites use the terminology that is more familiar and originally developed in viscoplasticity
theory [18]. The strain rate-dependent inelastic deformation including viscous and viscoelastic parts
in polymeric composites are characterized by viscoplasticity. These proposed phenomenological
viscoplasticity models were developed based on the one-parameter plasticity model proposed by
Sun [19]. However, as illustrated by our previous work [20], the one-parameter plasticity model
overestimates the plastic strain since the model fails to identify the contributors (i.e., damage and
plasticity) to nonlinearity in composites. Thus, it leads to a less accurate prediction of creep strain,
especially for high creep stress levels.

The objective of this work is characterizing the tensile creep behavior of quasi-unidirectional
E-glass fabric reinforced polypropylene composites (quasi-UD E-glass/polypropylene composites) both
experimentally and constitutively. For this purpose, tensile creep tests were firstly performed at three
different loading stress levels on quasi-UD E-glass/polypropylene composites. By taking a similar
approach with the viscoplasticty model proposed by Sun et al. [21], a phenomenological viscoplasticity
model was developed for quasi-UD E-glass/polypropylene composites. In this model, the plastic strains
of composites were determined through cyclic loading-unloading tensile tests. It was found that the
predicted creep strains of this model were in good agreement with the experimental results. In addition,
the failure mechanisms of composites under quasi-static loading and creep loading were also discussed.

2. Modeling of Creep Behavior

The strains of composites induced by a constant stress over a long period of time are composed
of time-independent initial strains and time-dependent creep strains. In terms of the incremental
formulation, it can be written as [5]

dey = de;y, + de. 1)

where ¢; are the total strains over a long period of time ¢. The initial strains ¢;,, are assumed to occur
instantaneously as the load is applied. ¢, are the creep strains.

For quasi-UD E-glass/polypropylene composite under a constant stress oy, the time-independent
initial strain €;,, can be determined from a coupled damage-plasticity model proposed in our previous
work [20]. According to the continuum damage mechanics (CDM) developed by Ladeveze [22],
the material stiffness loss in composites is characterized by the damage variable. The emergence
of permanent strains is described as plasticity theory. Thus, the axial strain increments of quasi-UD
E-glass/polypropylene composites under quasi-static loading are composed of the elastic and plastic parts

doy

A-DIE + del )

dey = de’, +del, =

where ¢, and 0y are axial strain and stress, respectively. ¢ is the elastic strain, and ¢} is the plastic
strain. Subscript x refers to the loading direction. D is the damage variable. Ey is the elastic modulus
of virgin material.

Based on the associated flow rule, the incremental plastic strains dsfj can be written as

dsf]. = id)\ 3)
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where the stresses 0;; (i,j = 1,2,3) refer to the principal material directions; 1-direction coincides
with fiber direction; 2-direction is perpendicular to fiber direction; f is the plastic potential function
proposed by Cho [23] and dA is a proportionality factor.

Since there is no plastic deformation in the fiber direction of quasi-UD E-glass/polypropylene
composite [24], the plastic potential function in the case of plane stress state can be simplified as

f= 6120'222 + 0'122 ~+ bro 4)

where a; and b; are the plasticity parameters.
The effective stress 7. is defined as

c=f ©)

Following [20], it can be shown that
dA = dg, (6)

in which g, is the effective plastic strain.
For orthotropic composites subjected to off-axis tension, the effective stress and effective plastic
strain are related to the applied axial stress and plastic strain as

7 = h(8)oy @)
P
&
= 1) ®)
with
h(0) = \/az sin* @ + sin? 0 cos? 6 + by 9)

Plastic strain €} under the applied stress oy can be directly obtained after the axial loading stress
vanishes upon unloading, as shown in Figure 1. The master effective stress-effective plastic strain
relationship can be fitted approximately with a power law [19]

g = A[@)" (10)

where A and n are parameters to be determined from experimental results.
Finally, a coupled damage-plasticity model for quasi-UD E-glass/polypropylene composite under
quasi-static loading is determined as

Ox
eral (%

The parameters in Equation (11) are listed in Table 2. The time-independent initial strains in

+ Aox)"[h(6)]" ! 11

Ex =

Equation (1) under a constant stress oy can be obtained as

i = % + Aoo)"[n(0)]" (12)
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Figure 1. Cyclic loading-unloading tests for measuring damage variable and plastic strain [20].

In the present paper, the creep deformation is assumed to be time-dependent plastic deformation
gp(t), which is composed of time-dependent viscoelastic deformation and time-dependent viscous
deformation. Sun and his coworkers [21] proposed a relationship between the plastic parameter A and

effective plastic strain rate ¢, as
—\m
A=y (&) (13)

where x and m are material constants.
Thus, the effective stress-effective plastic strain relationship for quasi-UD composite can also be

rewritten as

& = X(%) @) (14)
and .
PR (15)
10

The differential equation is represented as

=)

Finally, the time-dependent strains ¢,(t) at a constant loading stress oy can be evaluated as

3
|

B
—

@™ (gp)" (16)

m—1 (1\" /o)) AT
) = | (3) o) T @F | 1)
Based on Equations (12) and (17), the sum of strains in Equation (1) can be rewritten as
e = —— e +9.27 X 1078(03) ** (1(6))°
Boexp[~(%2) ]
m-1(1 m (1=n)/(m-1) —n % m (18)
1 (3) O ()T e

The material constants in the model can be determined through cyclic loading-unloading tensile

tests. Comparison with experimental results will be shown in Section 4.
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3. Experiments

3.1. Materials and Samples

The material systems investigated in the present study are quasi-UD E-glass/polypropylene
composites. The reinforcement is quasi-UD E-glass fabric (as shown in Figure 2) provided by P-D
Glasseiden GmbH, Germany. It consists of 92% fibers in the warp direction and 8% of fibers in the
weft direction. The matrix material is copolymer polypropylene (Moplen EP500V) supplied in granule
form by LyondellBasell company, which is used to produce polypropylene film. The flat film of
polypropylene was extruded using a single-screw extruder (Collin E30M; screw diameter D = 30 mm,
length-to-diameter ratio L/D = 25, and the width of coat-hanger die W = 250 mm) in combination with
a chill-roll (Collin CR 136/350). The thickness and width of polypropylene film are about 0.2 mm and
210 mm, respectively.

Quasi-UD E-glass/polypropylene composites were fabricated by means of hot compression from
the stacked structure, which consists of three layers of polypropylene film and two layers of quasi-UD
E-glass fabric. The thickness and fiber volume fraction of composite are 0.95 £ 0.07 mm and 33.3%
+ 0.5%, respectively. Correspondingly, the fiber volume fraction in the warp and weft direction are
approx. 30% and 3%, respectively.

a 5.0 mm

warp fibers weft fibers

z X

Figure 2. Quasi-UD E-glass fabric: (a) observed on the top sight (z direction), (b) cross-section of fabric
along the warp fiber direction and (c) cross-section of fabric along the weft fiber direction.

Four kinds of off-axis samples (0 =10°, 20°, 45° and 90°) were cut from quasi-UD composites using
a water-cooled sawing machine. The shape and dimensions of testing samples are according to Type 2
sample of ISO 527-4. The end tabs were attached on both ends of testing samples using the Loctite
406 instant adhesive and Loctite 770 Primer. More specifically, the conventional rectangular-shaped
tabs were used for 90° off-axis samples. In order to reduce the end-constrain effect induced by rigid
clamps [25], the oblique end-tabs [26,27] were applied for 10°, 20° and 45° off-axis samples.

3.2. Experimental Procedure

Tensile creep tests were carried on 10°, 20° and 90° off-axis samples at room temperature. A testing
machine of Zwick 1484 with a 100 KN load was used. The extensometer with the gauge length of
50 mm was adopted to measure strains. The testing machine was set as the position control mode
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when the load reached the desired creep loading stress. In this initial stage, the loading speed of
1 mm/min was used. After reaching the desired load, the testing machine was switched to the load
control mode to maintain a constant loading stress. The duration of the creep test at each loading
stress was 12 h if the sample did not damage before that. For each off-axis sample, the creep loading
stress was set as 50%, 60% and 70% of its axial tensile strength, which were obtained from our previous
work [20]. The details are listed in Table 1. In addition, to investigate damage accumulation effect on
the creep strain, the elastic modulus of each testing sample after creep loading was compared with its
initial elastic modulus before creep loading.

Table 1. Tensile creep testing plan for off-axis samples of quasi-UD E-glass/polypropylene composite.

Off-Axis Sample Creep Loading Stress (MPa) Loading Time (h)
10° 20, 25, 30
20° 25, 30, 35 12
90° 50, 60, 70

To characterize the viscoplastic behavior of quasi-UD E-glass/polypropylene composite, cyclic
loading-unloading tensile tests were performed on 10°, 20°, 45° and 90° off-axis samples at the
loading speed of 1 mm/min, 10 mm/min and 100 mm/min. The gauge length is 50 mm. Hence,
the aforementioned crosshead speed corresponds approximately to the strain rate of 3.33 x 1074,
3.33 x 1072 and 3.33 x 1072 1/s, respectively. Off-axis samples were loaded and unloaded for four
cycles with a gradually increasing peak stress level.

4. Results and Discussion

4.1. Creep Behavior

Figure 3a—c shows the experimental strain-time curves for 10°, 20° and 90° off-axis samples
at three different loading levels (0.50%, 0.60%, 0.70%). The creep strains for 90° off-axis samples are
inappreciable compared with the initial strains, regardless of stress level. The creep curves seem to get
to a steady state with an almost constant creep strain rate after a transitional period. It is as expected
since the plastic deformation is small when 90° off-axis samples loaded under cyclic loading-unloading
tests. Whereas, for 10° and 20° off-axis samples, the creep strains are appreciable compared to the
initial strains. Moreover, the loading stress level has a significant influence on the creep strain rate of
10° and 20° off-axis samples.

a)4.0 b) 4.0 .
(@) 4 o Experiment (b) 1 o= Experiment
3.5+ o Experiment 07c 3.5 4 o Experiment 0.70,,
1 2 Experiment . Joo 1 Experiment
3.0 1—— Model 45o00° 3.0
225 _
£ . *
% 2.0 i =
] - o
15 ] AAAAAAAAAAAAAAAAAAAAAAAAA 5
1.0 H
0.5 - 0 =10° 0.5 g=20°
0.0 T T T T T T T 0.0 T l T T T T T T
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Time [s] Time (s)
Figure 3. Cont.
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Figure 3. Strain-time curve for quasi-UD E-glass/polypropylene composite under off-axis loading with
three creep loading levels: (a) 10° off-axis samples; (b) 20° off-axis samples and (c) 90° off-axis samples.

The fracture surfaces of 90° off-axis samples under quasi-static and creep loading were
comparatively observed using a scanning electron microscopy (SEM), as shown in Figure 4. For 90°
off-axis samples after quasi-static tensile loading, naked fibers and fibers covered with polypropylene
can be observed in Figure 4a. Meanwhile, polypropylene was split along the transverse direction
directly. These failure details indicate that the fracture modes belong to adhesive and matrix failure.
On the other hand, 90° off-axis samples under creep loading exhibit similar fracture behavior but more
flexible /ductile behavior, as shown in Figure 4b.

Figure 4. The fracture surface of 90° off-axis samples: (a) quasi-static loading and (b) creep loading.

4.2. Identification of Material Parameters for Creep Model

Figure 5 gives representative cyclic loading-unloading curves of quasi-UD E-glass/polypropylene
composite at different strain rates. One can notice that plastic strain (permeant strain) occurs in
the off-axis samples after removing the applied stress for all the strain rates. Correspondingly;,
the experimental data of axial loading stress-axial plastic strain of composites at different strain
rates can be directly achieved from cyclic loading-unloading tests. By means of Equations (7) and (8),
the coalesced effective stress-effective plastic strains at different strain rates were determined with
parameters a; and b; listed in Table 2, which are shown in Figure 6. As seen in Figure 6, the master
effective stress-effective plastic strain curve for quasi-UD composite at different strain rates can be
fitted with Equation (13) with the parameters A and n shown in Table 2. It can be found the parameter
n is independent of strain rate.

Figure 7 shows the plastic parameter A in Equation (10) as a function of effective plastic strain rate
for the off-axis samples of quasi-UD composite on a log-log scale. Furthermore, there is appreciable
scatter in the data for the effective plastic rate. The fitting parameters x and m are listed in Table 3.
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Figure 5. Representative cyclic loading-unloading curves for quasi-UD E-glass/polypropylene
composite under different strain rates: (a) 8 = 10°; (b) 6 = 20°; (c) ® = 45° and (d) 6 = 90°.
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Figure 6. Effective stress-effective plastic curves for quasi-UD E-glass/polypropylene composite at

different strain rates.



Polymers 2018, 10, 661 90f12

Table 2. Plastic parameters for quasi-UD E-glass/PP composite at three different strain rates.

M ial E i Plastic P E i 1
Strain Rate (1/s) aterial Constants (Equation (9)) astic Parameters (Equation (10))

as b, A ((MPa)~™") n
3.33 x 1074 927 x 108
3.33 x 1073 0.08 0.05 3.36 x 1078 45
3.33 x 1072 1.96 x 1078
1E-7 E <
8E-8 3
6E-8
__4E-8
< .
= . e 0=10°
- ] 0=20°
2E-8 - m 9=45° .
1 v e=90°
i Curve fit
1 IIIIIIII 1 IIIIIIII T LA
1E-5 1E-4 0.001 0.01

Log(Effective plastic strain rate)

Figure 7. Plastic parameter A for quasi-UD E-glass/polypropylene composite under different effective
plastic strain rate.

Table 3. Material parameters for quasi-UD E-glass/polypropylene composite in Equation (14).

X —0.36
m —8.7

4.3. The Validation of Model

Based on the material parameters listed in Tables 2 and 3 the strain-time curve of any off-axis
sample of quasi-UD E-glass/polypropylene composite can be predicted by using Equation (18).
The predicted results for 10°, 20° and 90° off-axis samples are plotted in Figure 3. As shown in Figure 3,
a satisfactory agreement between the predicted and experimental results is observed. However, for
90° off-axis samples, Figure 3c, the experimental results are higher than the predicted results from
Equation (18) at three loading levels. Same phenomenon can be found in 10° and 20° off-axis sample
at the loading level of 0.7, as shown in Figure 3a,b. It is supposed that the damage accumulations
in the samples accelerated the creep strain rate, which is not taken into consideration for Equation
(18). As shown in Figure 8, a large amount of damage events in the off-axis samples after tensile creep
loading can be found. In addition, the damage factor (= %) of off-axis samples under three different
creep loading levels is shown in Figure 9, which reflects the reduction in the initial elastic modulus
E; of off-axis samples after creep loading. As seen, the elastic modulus of off-axis samples (E.) after
creep loading is lower compared to the initial elastic modulus (E;). Thus, the deviation between the
experimental and predicted results in Figure 3 may be attributed to the damage accumulations in
samples during creep loading.
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Figure 8. Damage events in off-axis samples after tensile creep loading.
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Figure 9. The comparison of elastic modulus of off-axis samples after creep loading with initial
elastic modulus.
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5. Conclusions

The creep behavior of quasi-UD E-glass/polypropylene composites was investigated both
experimentally and constitutively in this work. First of all, creep behavior was clearly observed
for all the off-axis samples under a constant off-axis tensile loading. For 10° and 20° off-axis samples,
the magnitude of creep strain became larger with increasing creep loading stress. The transient
creep response was dominant in quasi-UD E-glass/polypropylene composite. The creep strain rate
decreased with increasing creep strain. A phenomenological viscoplasticitiy model for quasi-UD
E-glass/polypropylene composites was developed, in which the creep strain was assumed to be
time-dependent plastic deformation. The material constants in the creep model were determined
by using cyclic loading-unloading tensile tests. The predicted results agreed with the experimental
results well. The minor deviation between the experimental and predicted creep behavior at high creep
loading level may be attributed to the damage accumulations in the samples. Same failure mechanism
was found in off-axis samples under quasi-static and creep loading.

Author Contributions: D.D. and Z.Z. conceived and designed the experiments. Z.Z. performed and analyzed the
data. D.D. and B.J. helped with the revision of the paper.

Funding: This research received no external funding.

Acknowledgments: We acknowledge the support from DFG and Friedrich-Alexander-University Erlangen-Niirnberg
(FAU) within the funding program Open Access Publishing. Zhanyu, Zhai also acknowledges the China Scholarship
Council (CSC) for the financial support to her study at the University of Erlangen-Nuremburg.

Conflicts of Interest: There are no conflicts to declare.

References

1. Van den Oever, M.; Peijs, T. Continuous-glass-fibre-reinforced polypropylene composites II. Influence of
maleic-anhydride modified polypropylene on fatigue behaviour. Compos. Part A Appl. Sci. Manuf. 1998, 29,
227-239. [CrossRef]

2. Brauner, C.; Herrmann, A.S.; Niemeier, PM.; Schubert, K. Analysis of the non-linear load and
temperature-dependent creep behaviour of thermoplastic composite materials. J. Thermoplast. Compos. Mater.
2017, 30, 302-317. [CrossRef]

3. Ehrenstein, G.W. Polymeric Materials: Structure, Properties, Applications; Carl Hanser Verlag GmbH Co KG:
Munich, Germany, 2012.

4. Liou, W,; Tseng, C. Creep behavior of nylon-6 thermoplastic composites. Polym. Compos. 1997, 18, 492-499.
[CrossRef]

5. Chung, I; Sun, C.; Chang, I. Modeling creep in thermoplastic composites. |. Compos. Mater. 1993, 27,
1009-1029. [CrossRef]

6. Papanicolaou, G.; Zaoutsos, S. Viscoelastic constitutive modeling of creep and stress relaxation in polymers
and polymer matrix composites. Creep Fatigue Polym. Matrix Compos. 2010, 1-47.

7.  Pegoretti, A.; Ricco, T. Creep crack growth in a short glass fibres reinforced polypropylene composite.
J. Mater. Sci. 2001, 36, 4637-4641. [CrossRef]

8.  Robert, M.; Roy, R.; Benmokrane, B. Environmental effects on glass fiber reinforced polypropylene
thermoplastic composite laminate for structural applications. Polym. Compos. 2010, 31, 604-611. [CrossRef]

9.  Vas, LM.; Bakonyi, P. Creep failure strain estimation of glass fibre/polypropylene composites based on
short-term tests and Weibull characterisation. J. Reinf. Plast. Compos. 2013, 32, 34-41. [CrossRef]

10. Chevali, V.S.; Janowski, G.M. Flexural creep of long fiber-reinforced thermoplastic composites: Effect of
processing-dependent fiber variables on creep response. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1253-1262.
[CrossRef]

11. Fliegener, S.; Hohe, J.; Gumbsch, P. The creep behavior of long fiber reinforced thermoplastics examined by
microstructural simulations. Compos. Sci. Technol. 2016, 131, 1-11. [CrossRef]

12.  Ropers, S.; Kardos, M.; Osswald, T.A. A thermo-viscoelastic approach for the characterization and modeling
of the bending behavior of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 22-32.
[CrossRef]


http://dx.doi.org/10.1016/S1359-835X(97)00089-4
http://dx.doi.org/10.1177/0892705715598359
http://dx.doi.org/10.1002/pc.10301
http://dx.doi.org/10.1177/002199839302701004
http://dx.doi.org/10.1023/A:1017994014128
http://dx.doi.org/10.1002/pc.20834
http://dx.doi.org/10.1177/0731684412453513
http://dx.doi.org/10.1016/j.compositesa.2010.05.008
http://dx.doi.org/10.1016/j.compscitech.2016.05.006
http://dx.doi.org/10.1016/j.compositesa.2016.06.016

Polymers 2018, 10, 661 12 of 12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Findley, W.; Lai, J.; Onaran, K.; Christensen, R. Creep and relaxation of nonlinear viscoelastic materials with
an introduction to linear viscoelasticity. J. Appl. Mech. 1977, 44, 364. [CrossRef]

Gates, T.S.; Sun, C. Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites.
AIAA J. 1991, 29, 457-463. [CrossRef]

Guedes, R. Viscoplastic analysis of fiber reinforced polymer matrix composites under various loading
conditions. Polym. Compos. 2009, 30, 1601-1610. [CrossRef]

Ogihara, S.; Moriwaki, S. Tensile creep deformation in unidirectional carbon/epoxy laminates under off-axis
loading. . Mater. Sci. 2004, 39, 3465-3467. [CrossRef]

Wang, C.; Sun, C. Experimental characterization of constitutive models for PEEK thermoplastic composite at
heating stage during forming. J. Compos. Mater. 1997, 31, 1480-1506. [CrossRef]

Vasiukov, D.; Panier, S.; Hachemi, A. Non-linear material modeling of fiber-reinforced polymers based on
coupled viscoelasticity—viscoplasticity with anisotropic continuous damage mechanics. Compos. Struct. 2015,
132, 527-535. [CrossRef]

Sun, C.; Chen, ]. A simple flow rule for characterizing nonlinear behavior of fiber composites. J. Compos. Mater.
1989, 23, 1009-1020. [CrossRef]

Zhai, Z.; Jiang, B.; Drummer, D. Characterization of nonlinear response in quasi-unidirectional E-glass
fabric reinforced polypropylene composites under off-axis tensile loading. Polym. Test. 2017, 63, 521-529.
[CrossRef]

Thiruppukuzhi, S.V.; Sun, C. Models for the strain-rate-dependent behavior of polymer composites.
Compos. Sci. Technol. 2001, 61, 1-12. [CrossRef]

Ladeveze, P; LeDantec, E. Damage modelling of the elementary ply for laminated composites.
Compos. Sci. Technol. 1992, 43, 257-267. [CrossRef]

Cho, J.; Fenner, J.; Werner, B.; Daniel, I. A constitutive model for fiber-reinforced polymer composites.
J. Compos. Mater. 2010, 44, 3133-3150. [CrossRef]

Zhai, Z.; Groschel, C.; Drummer, D. Tensile behavior of quasi-unidirectional glass fiber/polypropylene
composites at room and elevated temperatures. Polym. Test. 2016, 54, 126-133. [CrossRef]

Kawai, M.; Morishita, M.; Satoh, H.; Tomura, S.; Kemmochi, K. Effects of end-tab shape on strain field
of unidirectional carbon/epoxy composite specimens subjected to off-axis tension. Compos. Part A Appl.
Sci. Manuf. 1997, 28, 267-275. [CrossRef]

Sun, C.; Berreth, S. A new end tab design for off-axis tension test of composite materials. J. Compos. Mater.
1988, 22, 766-779. [CrossRef]

Sun, C.; Chung, I. An oblique end-tab design for testing off-axis composite specimens. Composites 1993, 24,
619-623. [CrossRef]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1115/1.3424077
http://dx.doi.org/10.2514/3.59922
http://dx.doi.org/10.1002/pc.20733
http://dx.doi.org/10.1023/B:JMSC.0000026952.29053.f1
http://dx.doi.org/10.1177/002199839703101502
http://dx.doi.org/10.1016/j.compstruct.2015.05.027
http://dx.doi.org/10.1177/002199838902301004
http://dx.doi.org/10.1016/j.polymertesting.2017.09.019
http://dx.doi.org/10.1016/S0266-3538(00)00133-0
http://dx.doi.org/10.1016/0266-3538(92)90097-M
http://dx.doi.org/10.1177/0021998310371547
http://dx.doi.org/10.1016/j.polymertesting.2016.07.003
http://dx.doi.org/10.1016/S1359-835X(96)00122-4
http://dx.doi.org/10.1177/002199838802200805
http://dx.doi.org/10.1016/0010-4361(93)90124-Q
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Modeling of Creep Behavior 
	Experiments 
	Materials and Samples 
	Experimental Procedure 

	Results and Discussion 
	Creep Behavior 
	Identification of Material Parameters for Creep Model 
	The Validation of Model 

	Conclusions 
	References

