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Abstract: In this paper, we focus on the relaxation dynamics of a polymer network modeled by
a fractal cactus. We perform our study in the framework of the generalized Gaussian structure
model using both Rouse and Zimm approaches. By performing real-space renormalization
transformations, we determine analytically the whole eigenvalue spectrum of the connectivity
matrix, thereby rendering possible the analysis of the Rouse-dynamics at very large generations of
the structure. The evaluation of the structural and dynamical properties of the fractal network in the
Rouse type-approach reveals that they obey scaling and the dynamics is governed by the value of
spectral dimension. In the Zimm-type approach, the relaxation quantities show a strong dependence
on the strength of the hydrodynamic interaction. For low and medium hydrodynamic interactions,
the relaxation quantities do not obey power law behavior, while for slightly larger interactions they do.
Under strong hydrodynamic interactions, the storage modulus does not follow power law behavior
and the average displacement of the monomer is very low. Remarkably, the theoretical findings
with respect to scaling in the intermediate domain of the relaxation quantities are well supported by
experimental results from the literature.
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1. Introduction

In the analysis of polymer dynamics, one of the central questions is in which way the observed
complex diffusion patterns and the mechanical response relate to the underlying microscopic geometry.
The fact that already simple topological changes, such as the insertion of branch points, leave their
trace on dynamical properties of the polymer is well known. The problem of relating the dynamical
features of macromolecules with their structure has a long standing history, starting from the landmark
works of Rouse [1] and Zimm [2] who focused on the investigation of dilute solutions of linear
polymers. With the continuous advancement in polymer synthesis and analysis, the attention
turned to macromolecules with more and more complex architectures like star polymers [3–5],
dendrimers [5–13], hyperbranched polymers [5,14–22], and polymer networks [23–30]. Nowadays,
available experimental techniques in supramolecular chemistry allow for synthesizing a large variety
of polymers with precisely controlled molecular structures such as the spherical and cylindrical
supramolecular dendrimers [31], the gel-like supramolecular networks [32], and the honeycomb
lattices [33], culminating with molecular fractals [34–38].

Fractals, structures with self-repeating patterns at any length scale and a non-integer dimension, are
pervasive in nature and emerge in a wide variety of research areas. In physics and chemistry, the fractals
are used for describing the dynamics of different polymer networks [39], porous systems [40], stretchable
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electronics [41], energy storage [42], disordered systems [43], growth phenomena [44], chemical reactions
controlled by diffusion [45], and energy transfer [28]. The recourse to the principles of fractal geometry
has enabled revealing that most biological elements, either at cellular, tissue or organic level, have
self-similar structures within a defined scaling domain which can be characterized by means of the
fractal dimension. Nowadays, modern neurosciences recognize the presence of fractal properties in
the brain at various levels, i.e., anatomical, functional, pathological, molecular, and epigenetic [46].
Hierarchically organized assembly has been made evident in the formation of protein fibers [47] related
to neurodegenerative diseases (Parkinson’s, Alzheimer’s, and Huntington). Applications of fractal
measures to pathology and oncology suggest that fractal analysis provides reliable information; fractal
analysis helps in discriminating benign from malignant neoplasms [48], and low from high grade
tumours [49]. Moreover, fractal analysis of the interface between cancer and normal tissues helps in
understanding how cell detachment from the primary mass and infiltration into adjacent tissue occurs
through a non-mutational mechanism [50].

Regarding the chemical synthesis of molecular fractals, outstanding results have been reported by
Newkome et al. [34] and by Shang et al. [35]. The first results have succeeded the chemical synthesis of
the Sierpinski hexagonal fractal, while the second results have reported the achievement of a whole
series of molecularly assembled and defect-free Sierpinski triangles, up to the fourth generation.
Very recently, the chemical synthesis of the Sierpinski triangles at the fifth generation has been reported
by Li et al. [36]. The recent remarkable progress achieved in the design and chemical synthesis of
the molecular fractals and the particular relevance of the fractals in many fields of science are solid
arguments for further research on the synthesis and analysis of other polymer systems with fractal
architectures.

In this work, we analyse the mechanical relaxation dynamics and the structure properties of
a fractal polymer network. Its construction stems from that of Sierpinski triangle gaskets. While for the
Sierpinski gaskets one uses a building procedure based on face-to-face connectivity of the equilateral
triangles, the fractal structure on which we focus is built by using a vertex-type connectivity between
the equilateral triangles. The resulting fractal structure has a cactus-like shape and, to a large extent,
it can be considered as a structure lying between Husimi cactus [51,52] and the triangular Kagome
lattice [53]. Remarkably, the chemical synthesis of the fractal cactus at smaller generations has already
been performed [38].

Since we aim to understand the basic features such as the impact of the geometry of the
structure on the relaxation dynamics, we prefer to work within the generalized Gaussian structures
(GGS) model [5,54–60], which represents the extension of the Rouse–Zimm chain models [1,2] to
polymer systems of arbitrary topologies and which highlight both the connectivity of the molecules
under investigation, as well as the influence of hydrodynamic interactions (HI) [2,55]. This leads
to a dynamical theory in which the excluded volume effects and the entanglement constrains are
neglected. However, in dry polymer networks, the excluded volume effects are often screened,
similarly to polymer melts; furthermore, the entanglement constraints should be quite small for
sufficiently high cross-link densities and thus short enough network chains. The dynamical quantities
on which we focus are the averaged monomer displacement (stretching of the macromolecule under
local external forces) and the mechanical relaxation moduli (storage and loss modulus), while, for the
structure, we investigate the behavior of the mean-square radius of gyration. These are readily
measurable quantities in rheological measurements.

The GGS model offers the possibility to determine, in the Rouse-type approach (the interactions are
considered only between nearest neighbour monomers), the full dynamical behavior of the relaxation
quantities only by making use of the eigenvalues of the connectivity matrix of the structure. Such great
advantage may be lost when dealing with very large structures, hence very large connectivity
matrices for which the numerical diagonalizations are practically impossible to perform or are very
time-consuming. On the other hand, such hurdles cannot be avoided when precise information about
the structure is needed and the numerical diagonalization is the only tool at hand. This is due to the
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fact that the topological details of the polymer material under investigation are revealed only in the
intermediate time/frequency region of the relaxation quantities and this region is always bounded
by large crossover domains. Therefore, in order to be able to extract precise information about the
structure, its size has to be very large. Remarkably, we avoid the problem by developing an analytical
procedure, whereby the whole eigenvalue spectrum of the connectivity matrix is determined iteratively.
In the Rouse-type approach, based on the iterative method for obtaining the eigenvalues, we are able
to study the relaxation dynamics of the fractal network at very large generations. For instance,
the whole eigenvalue spectrum for a fractal network consisting of several hundred millions monomers
is obtained in a couple of minutes. The interdisciplinary character of the connectivity matrix is
worth commenting on. Examples are provided from many research areas; in graph theory applied to
biological systems [61], reaction–diffusion systems [62], in the study of fluorescence depolarization
under dipolar quasiresonant energy transfer [28], in the analysis of dynamic processes occurring
on networks or inferring many properties related to the networks themself [63,64], for determining
the energy levels in Pariser–Parr–Pople (molecular orbital) quantum calculations [65], the dielectric
relaxation functions [17], and the NMR relaxation functions [29,66]. Therefore, knowledge of the
eigenvalue spectrum is of great importance and leads to interdisciplinary scientific advances. Our goal
in the Rouse model is to emphasize that the intermediate time/frequency region of the relaxation
quantities is governed by power laws and the main parameter that describes the dynamics is the
spectral dimension of the fractal.

The situation changes when one considers the hydrodynamic interactions (HI). These are taken
into account in the Zimm fashion by using the preaveraged Oseen tensor [2,55]. In the Zimm-type
approach, the dynamical quantities are calculated based on the eigenvalues and the eigenvectors of the
product matrix between the connectivity matrix and the hydrodynamic matrix. The Zimm model allows
us to solve the eigenvalue problem only numerically, a fact that restricts considerably the possibility
to access large size structures. Previous works have shown that, in the Zimm model, the dynamical
quantities do not obey power-laws in their intermediate time/frequency domain for fractal networks
containing loops on loops (as dual Sierpinski gaskets [39] and Sierpinski hexagon [25]), whereas,
for loopless fractals (as Vicsek fractal [17,21]), they do obey power laws. In these works [17,21,25,39],
the HI parameter ranged from 0.05 to 0.25. The lost of scaling was attributed to the presence of loops
and chiefly loops on loops that produce a position-dependent shortening of the effective bond lengths
inside the structure, and thus impair scaling. Our fractal structure contains loops, but not loops on
loops; therefore, its study will highlight how the simple loops influence the dynamic behavior of the
relaxation quantities under the consideration of the hydrodynamic interactions. Furthermore, we show
for our structure that dynamic behavior of the relaxation quantities depends strongly on the value
of the HI parameter. The relaxation quantities obey scaling for certain values of the HI parameter,
while, for other values, the scaling disappears. The advantage that the small generations of the fractal
are already synthesized experimentally, the fact that it contains only loops, the search for scaling
in Rouse case, and the dependence of the response functions on the strength of the hydrodynamic
interaction in the Zimm case fully justify the choice to investigate this fractal structure.

2. Generalized Gaussian Structures

Gaussian models are very valuable because they allow one to study static and dynamic quantities
in the framework of linear algebra. The method of choice in this paper is that of the generalized
Gaussian structures [5,54–60], which, as we already mentioned in the Introduction, successfully
extended the classical Rouse and Zimm models [1,2] to polymeric systems with more complex
architectures. Given that the procedure of GGS was explained in detail in Ref.s [5,54–60], here we
mainly summarize the basic concepts and the main formulas. As a generalized Gaussian structure,
we consider an assembly of identical beads connected by harmonic springs with a force constant
K between topological nearest neighbors. In the framework of the GGS model, the solvent or the
surrounding medium is replaced by a continuum, which is felt by the beads through the viscous friction
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and the stochastic (or random) forces. Here, we consider the homogeneous situation, i.e., each bead
experiences the same friction constant ζ with respect to the surrounding viscous medium. The elastic
(entropic) springs obey Gaussian statistics. As in the theory for flexible chains, a bead and a spring can
be considered as a Kuhn segment [67]. The springs are the representatives of the elastic tensile forces,
while the beads play the role of centers on which friction forces apply. The conformation of a polymer
is described by the set of position vectors {Ri}, where Ri(t) = (Xi(t), Yi(t), Zi(t)) denotes the position
vector of the ith monomer (bead) at time t. The GGS assumption is that the potential energy is built
only of harmonic terms, involving monomers directly bound to each other; in addition, by including
the interactions with external forces {Fn}, it follows:

U({Ri}) =
K
2 ∑

β,m,n
Rβm AnmRβn −∑

β,n
FβnRβn. (1)

In the first sum on the right-hand side of Equation (1), all bonds are treated as equal with a thermal
equilibrium length l. In Equation (1), K = 3T/l2 is the entropic spring constant, where T denotes the
temperature in units of the Boltzmann constant kB; β runs over the Cartesian coordinates x, y, and z,
and the topology of the GGS is accounted by N × N connectivity matrix A = (Aij). The connectivity
matrix, a discrete version of the Laplacian operator, is constructed according to the following rules:
a diagonal element Aii equals the number of bonds emanating from the site i and the off-diagonal
elements Aij are equal to −1 if the sites i and j are topological neighbors (i.e., connected by a bond)
and zero otherwise. We note that the matrix A is real and symmetric.

We now turn to the interaction mediated by the solvent. First one has, as in all Rouse-type models,
a viscous component and there are hydrodynamic couplings between the beads, which depend on
the interbead distances. Following Kirkwood and Riseman [68] and Zimm [2], the hydrodynamic
couplings between the beads may also be taken into account; one introduces the HI tensor
(mobility matrix) H = (Hij) [54,55,69] whose components in the preaveraged picture are

Hij = δij + ζr < l/Rij > (1− δij). (2)

The mobility matrix H is three-dimensional and Rij = |Rij| = |Ri − Rj| represents the mutual
separation (interbead distance) between the centers of the beads i and j. Furthermore, the strength of
hydrodynamic interactions can be expressed in terms of an effective hydrodynamic interaction radius
a ζr = ζ/6πη0l = a/l, where ζ is the friction coefficient and η0 the solvent’s viscosity. Moreover,
taking Gaussian distributed interbead distances, one has

〈
R−1

ij

〉
=

(
6

π < R2
ij >

)1/2

. (3)

The polymer is subjected to random forces fi(t) with a zero average, 〈 fi(t)〉 = 0, and the
force autocorrelation function is given by 〈 fi(t) f j(t′)〉 = 2kBTζH−1

i,j δ(t − t′), where H−1 is the
inverse of the matrix H = (Hij) and δ(t − t′) is the Dirac delta function. It is now a relatively
straightforward matter to compute the dynamical properties, since the GGS problem is linear and
the different components (Xi, Yi, Zi) decouple. With coordinates Y = (Y1, Y2, . . . , YN)

T and forces
f = ( f1, f2, . . . , fN)

T , the corresponding Langevin equation reads in matrix notation [54,55]

∂Y(t)
∂t

+ σHAY(t) =
1
ζ

H[f(t) + F(t)], (4)

with σ = K/ζ being the inverse of the monomeric relaxation time. Equation (4) has the following
formal solution:

Y(t) =
1
ζ

∫ t

−∞
dt′exp[−σ(t− t′)HA]H[f(t′) + [F(t′)], (5)
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as can be verified by differentiating the right-hand side with respect to t. In order to bring Equation (5)
to a more convenient computational form, one proceeds by diagonalizing the product matrix HA,
i.e., by determining N linearly independent eigenvectors Qi of HA, so that HAQi = λiQi, where λi are
the eigenvalues of HA. For a completely connected structure and for a physically reasonable inclusion
of the HI (i.e., the stability of the Zimm approach [70]), the inverse HA−1 exists, and the matrix HA
has only one vanishing eigenvalue which we denote by λ1, the other eigenvalues all being positive [71].
Equation (5), representing the motion of individual monomers in external fields, an idealized case
of micromanipulation experiments [72,73], can be further simplified. We let the external force start
to act at t = 0 on one monomer contained in the GGS; then, we average over all possibilities of
choosing this monomer randomly. The resulting (quenched) ensemble doubly averaged << Y(t) >>

(averaged over the thermal forces and over all monomers in GGS) reads:

<< Y(t) >>=
FH11t

Nζ
+

F
σNζ

N

∑
i=2

1− exp(−σλit)
λi

Hii, (6)

where Hii = ∑k,l Q−1
ik HklQli, so that H11 is simply H11 =

√
N ∑k Q−1

1k Hk1. It is noteworthy that
Equation (6) contains only the eigenvalues, λi, of the product matrix HA and its eigenvectors
through the elements Hii. In the Rouse-type approach, which neglects the hydrodynamic interactions,
the hydrodynamic matrix reduces to the unitary matrix, H = I, i.e., Hij = δij for all i and j, leading to
further simplification of averaged monomer displacement form:

<< Y(t) >>=
Ft
Nζ

+
F

σNζ

N

∑
i=2

1− exp(−σλit)
λi

. (7)

From Equation (7), we remark that, in the Rouse model, for determining the motion of individual
monomers in external fields, we need only the eigenvalues of the connectivity matrix A. In addition,
we note that, in Equation (7), due to λ1 = 0, the motion of the center of mass has separated
automatically from the remaining sum. From Equations (6) and (7), the behavior of the motion for
extremely short and for very long times is obvious: in the limit of very short times << Y(t) >>= Ft/ζ,
while, for very long periods, one has << Y(t) >>= FH11t/Nζ. Physically, this means that, at very
short times, only one bead is moving, whereas, for very long periods, the whole structure drifts. These
very general features make clear that the particular structure of the GGS is revealed in the intermediate
time domain [5,17,18,21], depending on the whole eigenvalue spectrum of the connectivity matrix A
(for Rouse model) or of HA (for Zimm model).

An experimentally readily accessible quantity is the complex dynamic modulus, G∗(ω), which is
usually determined by applying an external harmonic strain to the system. Even more familiar are the
storage G′(ω) and the loss G′′(ω) moduli, which represent the real and the imaginary components of
G∗(ω). For very dilute solutions and for ω > 0, the storage and loss mechanical moduli are given by
(see also Equations 4.159 and 4.160 of Ref. [55]):

G′(ω) =
C
N

N

∑
i=2

ω2

ω2 + (2σλi)2 (8)

and

G′′(ω) =
C
N

N

∑
i=2

2σωλi
ω2 + (2σλi)2 . (9)

For very dilute solutions, one has C = νkBT, with ν being the number of polymer segments (beads)
per unit volume. In Equations (8) and (9), ω represents the frequency and λi are the eigenvalues
of the connectivity matrix A in the Rouse-type approach and of the matrix HA in the Zimm-type
approach, respectively. In addition, for concentrate solutions (when the entanglement effects are
negligible), Equations (8) and (9) are still valid, the only change being in the value of the constant
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C [74]. The factor 2 arises from the second moment of the displacements involved in computing the
stress [55]. These relaxation quantities are intimately related to other dynamic quantities, such as the
dielectric and the magnetic relaxation.

A basic structural feature of a polymer is its radius of gyration. In the framework of the GGS model,
the mean-square radius of gyration depends only on the eigenvalue spectrum of the connectivity
matrix [54]

R2
g =
〈l2〉
N

N

∑
i=2

1
λi

. (10)

3. The Fractal Cactus Network and the Eigenvalue Spectrum

The general topology on which we focus is displayed in Figure 1, which shows schematically in
2D the first three generations of the cactus-like fractal. As in the case of Sierpinski gasket, the first
generation is a simple equilateral triangle. Using a vertex-type connectivity, a new triangle emerges
from all the nodes of this central triangle, thus forming the object at second generation. The third
generation of the fractal, shown on the right-hand side of Figure 1, is built by binding with an
equilateral triangle three identical objects of the second generation. As a general rule, the fractal cactus
at any generation, say g, is built by linking in regular manner with a triangle three identical fractal
objects of generation g− 1. Hence, the fractal structure at generation g will consist of N = 3g beads
(monomers). Note that the regular pattern of Figure 1 (embedded in the 2D-Euclidean space) has the
same geometric fractal dimension as the Sierpinski triangles [39], namely:

d f =
ln 3
ln 2

= 1.58496..., (11)

since each generation creates three self-similar objects and the ratio between lengths of the objects from
successive generations can be approximated to 2 (for large generations). However, since we deal with
a Gaussian model, a much more useful measure will be the Gaussian fractal dimension, d f g. The d f g

of the polymeric fractal, defined by the size-mass scaling, R
d f g
g ∼ N, is given by [75,76]

d f g =
2ds

2− ds
, (12)

where ds is the spectral dimension of the fractal structure. The spectral dimension is an intrinsic
parameter, which is determined only by the connectivity of the monomers.

g=1

g=2

g=3

Figure 1. The fractal cactus polymer network at generations 1, 2, and 3.

As we already mentioned in the Introduction, real structures with the shape of our fractal
cactus already exist; the first three generations of the present fractal cactus have been experimentally
synthesized [38]. They are the branched [4] triangulane and the branched [n] triangulanes (BTs).
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Furthermore, the fractal cactus can be seen as a very regular structure interpolating between two
non-fractal structures, the triangular Kagome lattice [53] and Husimi cactus (the dual structure
of the perfect dendrimer) [51,52], being closer to the latter. Moreover, if each small triangle is
replaced with a bead and then each such bead is connected with springs to its nearest neighbors,
the resulted hyperbranched loopless structure is very similar to that of the recently synthesized
internally functionalized dendrimers [77]. These new dendrimers contain groups that are protected
from reaction, so that they do not branch out further.

In what follows, we outline the iterative procedure that allows one to obtain the whole eigenvalue
spectrum of the fractal cactus at any desired generation. The detailed calculations are given in
Appendix A. The determination of the eigenvalues, i.e., the solution of

(A− λI)Φ = 0, (13)

starts from realizing that the structure of the fractal consists of two types of beads: four-coordinated
beads and two-coordinated beads; hence, each of the beads of fractal cactus has either four or two
nearest neighbors. In the following, we write explicitly Equation (13) for each type of bead and we
denote the components of the eigenvector Φ by φj. For any four-coordinated bead, the eigenvalue
equation reads

(4− λ)φi =
4

∑
j=1

φj, (14)

where φi is the eigenvector component of the four-coordinated bead and φjs are the eigenvector
components of its nearest neighbors, which may be either four-coordinated or two-coordinated.
For any two-coordinated bead, one has

(2− λ)φk = φm + φn, (15)

where φk is the eigenvector component of the double-coordinated bead and φm and φn are
the eigenvector components of its nearest neighbors, one being two-coordinated and the other
four-coordinated.

We can now use two specific real-space renormalization transformations to reduce the fractal
cactus from generation g to generation g − 1. These transformations are presented in detail in
Appendix A. The result of these is that, in the decimated structure (i.e., the structure at generation
g − 1 that was obtained by the reduction of the structure of generation g through the real-space
transformations), Equations (14) and (15) get replaced by (see Equations (A32) and (A14))

[4− P(λ)]ψi =
4

∑
j=1

ψj (16)

and
[2− P(λ)]ψk = ψm + ψn, (17)

where ψi, ψj, ψk, ψm, and ψn are the eigenvector components in the decimated structure and the
polynomial P(λ) is given by

P(λ) = −λ2 + 6λ. (18)

As can be seen from Appendix A, each eigenvector component from Equations (16) and (17)
is, in fact, a sum of three eigenvector components coresponding to either four-coordinated or
two-coordinated beads of the structure before decimation. The iterative procedure, which is based
on the fact that the fractal cactus rescales under the real-space renormalization transformations,
can now be iterated k times, by which P(λ) gets replaced by pk(λ) = P(pk−1(λ)). For finite fractal
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cactus structures, this iteration permits (except for the vanishing eigenvalue λ1 = 0) determining the
eigenvalues at generation g from those at generation g− 1 through the relation:

P(λ(g)
i ) = λ

(g−1)
i . (19)

Now, by simply solving Equation (19) with P(λ) given by Equation (18), one finds the relationship
between the eigenvalues belonging to successive generations

λ
(g)
± =

6±
√

36− 4 · λ(g−1)

2
. (20)

Evidently, in this way, each eigenvalue of generation g − 1 gives rise to two new ones at
generation g. This procedure also makes it clear that the new eigenvalues keep the degeneracy
of their predecessors.

At any generation g of the fractal cactus, the whole eigenvalue spectrum of its connectivity matrix
is determined as follows: a part of the eigenvalue spectrum is calculated from the eigenvalues
of generation g − 1 by employing Equation (20); these eigenvalues are complemented by the
nondegenerate vanishing eigenvalue λ1 = 0 and by ∆g degenerate eigenvalues equal to 3 each,
where the degeneracy, ∆g, is given by

∆g = 1 + 3g−1. (21)

At the first generation, the eigenvalue spectrum consists of vanishing eigenvalue λ = 0 and of
the eigenvalue λ = 3, which is two times degenerate. We call this eigenvalue principal eigenvalue
(λp = 3) because all the others are obtained from it based on Equation (20). It is worth mentioning
that the eigenvalue spectrum of the fractal cactus consists of only persistent eigenvalues, and the term
persistent eigenvalue means an eigenvalue that appeared at one generation and continues to appear in
all subsequent generations. In addition, all eigenvalues of the spectrum are degenerate, except the
eigenvalue λ1 = 0. It is now a simple exercise to prove that the above outlined procedure gives the
whole eigenvalue spectrum. The total number of eigenvalues at generation g is

N =
g−1

∑
i=0

2i · ∆g−i = 3g. (22)

Focusing on the spectral region of small eigenvalues allows one to determine the so-called spectral
dimension ds of the fractal cactus. The starting point is the observation that, in the limit of very small
λs, one can linearize Equation (18) and obtain as an iteration scheme from Equation (19)

6λg+1 − λg = 0. (23)

Let ρg(λ) be the density of modes at gth stage. Since the number of eigenmodes in a given interval
dλ of the gth stage is compressed into an interval dλ′ of the (g + 1)th stage, we must have

ρg(λ)dλ = 3 · ρg+1(λ
′)dλ′. (24)

Denoting λ/λ′ = k and using the relation for the density of modes ρg(λ) ∼ λ
ds
2 −1, we get

ds =
2 ln 3
ln k

. (25)

From Equation (23) we get k =
λg

λg+1
= 6 and then inserting this value into Equation (25) we obtain

ds =
2 ln 3
ln 6

= 1.226294... (26)
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Inserting the value of the spectral dimension given by Equation (26) into Equation (12) we get the
Gaussian fractal dimension, d f g = 3.169925.

A graphical representation of the eigenvalue spectrum of the connectivity matrix, A, which we
have determined through the iterative method is displayed in Figure 2. The eigenvalue spectrum
of the fractal cactus at generation g = 12 (i.e., N = 531441) is shown as a histogram, the number of
eigenvalues in intervals of width dλ = 0.001. The spectrum is limited between 0 and 6. Particularly
striking from the figure is that fractal cactus does not have a smooth eigenvalue spectrum; it is highly
discontinuous with a multitude of forbidden bands and inherent symmetries.This type of spectrum is
multifractal. Nonetheless, as will become clear in the next section, such type of spectrum gives rise to
rather smooth relaxation patterns, which scale according to relations based on the spectral dimension.

0 1 2 3 4 5 6
λ

0.0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

ρ(
λ

)

Figure 2. Histogram of the eigenvalues of the connectivity matrix A for the fractal cactus network of
size N = 312. The width of the bins is 0.001.

4. Relaxation Patterns

4.1. Results Obtained in the Rouse Approach

In this subsection, we will make use of the eigenvalues determined by iterative means in order
to calculate the different quantities introduced in Section 2. The first quantity on which we focus
is the mean-square radius of gyration, R2

g. This represents a measure of the size of the polymer,
and, in the GGS model, it is expressed by Equation (10). In what follows, we derive an alternative
exact analytical expression for the mean square-radius of gyration. Based on the recursive relation
Equation (19), the sum from Equation (10) can be evaluated analytically. Equation (19) written explicitly
for generation g is:

(λ
(g)
i )2 − 6λ

(g)
i + λ

(g−1)
i = 0. (27)

According to the Vieta’s formulas, the two roots (i.e., λ
g
i,1 and λ

g
i,2) of Equation (27) satisfy the

following two relations: λ
g
i,1 + λ

g
i,2 = 6 and λ

g
i,1 · λ

g
i,2 = λ

g−1
i ; thus,

1
λ

g
i,1

+
1

λ
g
i,2

=
6

λ
g−1
i

. (28)

The above procedure is iterated g− 1 times backwards until one reaches the principal eigenvalue,
λp, and the sum of the reciprocal of all non-zero eigenvalues becomes:

N

∑
i=2

1
λi

=
1

λp

[
(

8
15

) · 6g − 3g−1 − 1
5

]
. (29)
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Now, the mean-square radius of gyration at generation g is given by:

R2
g =

1
N

[
(

8
15

) · 6g − 3g−2 − 1
15

]
. (30)

This expression is very useful because it can be evaluated only knowing the size of the fractal
network. We also remark that the sum of the reciprocal of all non-zero eigenvalues (Equation (29)) is
intimately related to the mean-first-passage time of a random walk [16] that represents the expected
time to hit a target node for the first time for a walker starting from a source node.

Equations (10) and (30) give identical values of the R2
g. Besides its simplicity, the advantage of

expression (30) is that it allows for large fractal networks (g � 1) to display the scaling behavior
of R2

g in an analytical form. For large fractal networks, the first term from Equation (30) brings the
largest contribution to R2

g and we cancel the second and the third terms. Recalling N = 3g, we have
6g = Nln 6/ ln 3 that enables one to write

R2
g =

8
15

Nln6/ln3−1. (31)

By setting c1 = 8/15 and relating the exponent with the spectral dimension from Equation (26),
the mean-square radius of gyration has the following the power-law form:

R2
g = c1 · N

2−ds
ds . (32)

In order to check the validity of the scaling relation predicted by Equation (32), we plot in Figure 3
the results obtained for the mean-square radius of gyration given by Equation (10) and evaluated for
fractal cactus structures whose sizes extend from N = 36 to N = 318. In this model, all bonds have the
same length equal to one, thus the mean squared bond length 〈l2〉 = 1. In the double logarithmic scales
of Figure 3, the mean-square radius of gyration appears as a straight line, thus obeying a power-law,
R2

g ∼ Nθ . The best approximation to our data leads to θ = 0.631, the value being very close to the
prediction of (2− ds)/ds = 0.63093. The achieved results confirm the validity of the derived formula
for the radius of gyration.

2 3 4 5 6 7 8 9
log

10
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3

4

5

lo
g 10

R
g2

Figure 3. The mean-squared radius of gyration of the fractal cactus network calculated in the Rouse model.

We now turn to the dynamics of individual monomers in external field and evaluate the averaged
monomer displacement, a quantity which may be accessed experimentally through micromechanical
manipulations [72,73]. Figure 4 displays the results obtained for averaged monomer displacement,
<< Y(t) >>, calculated based on Equation (7) in which we set σ = 1 and F/ζ = 1. The scales of the
figure are double logarithmic to basis 10 and the displayed results have been achieved for fractal cactus
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networks with generations ranging from g = 6 to g = 18; consequently, the total number of beads in
the structure varies from N = 36 to N = 318. What appears immediately in the double logarithmic
scales of Figure 4 is the limiting time behavior; at very short times, << Y(t) >>∼ t meaning that the
monomer does not feel any constraints that arise from the connection to the neighboring monomers,
while, for very long periods, one reaches the domain where << Y(t) >>∼ t/N, which, in the absence
of an external field (based on the Einstein relation for GGS [5,34,59,71]) is the hallmark of simple
diffusion. As a guide to the eye the dashed black lines indicate the slope 1. Due to the N-dependence of
<< Y(t) >> in Equation (7), the curves belonging to fractals of different sizes are shifted with respect
to each other. Typical for the topological details of the structure under investigation is the intermediate
time domain. Given the double logarithmic scales of the Figure 4, this subdiffusive regime appears
as a straight line, a fact which denotes scaling; it obeys << Y(t) >>∼ tγ, with, as we proceed to
show, γ = 1− ds

2 . It is now a simple matter to determine numerically the power-law exponent γ,
which is nothing else than the slope of the curves in the intermediate region. Thus, in the intermediate
times region, we find for the largest fractal considered, namely for N = 318, the exponent γ = 0.389.
This value should be compared with the theoretical γ = 1− ds

2 = 0.38685. This very good agreement
is due to the fact that the value of N is very large; we were able to attain it due to our iterative method
for calculation of the eigenvalues.
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Figure 4. The averaged monomer displacement under the action of an external force in the Rouse
model. Displayed in dimensionless units is the << Y(t) >> for the fractal cactus networks with
N = 36, 39, 312, 315, and 318 from above. For guidance, the black dashed lines indicate that the slope
equals 1.

Most measurements on polymers, however, are not monitored in time but in the frequency
domain. Given the importance of the rheological measurements on polymers, we continue by focusing
on the mechanical moduli, G′(ω) and G′′(ω), given by Equations (8) and (9), which we present in
Figures 5 and 6. In both figures, we have used finite fractal objects ranging from N = 36 to N = 318.
In Figures 5 and 6, we plot Equations (8) and (9) in dimensionless units, by setting σ = 1 and C/N = 1.
The scales in both figures are double logarithmic to basis 10. Evidently from these figures are the
limiting, connectivity-independent behaviors at very small and very large frequencies; for ω � 1,
one has G′(ω) ∼ ω2 and G′′(ω) ∼ ω, whereas, for ω � 1, one finds G′(ω) ∼ ω0 and G′′(ω) ∼ ω−1.
As a guide to the eye, two reference (dashed) lines are plotted at the lower and at the upper limit;
in Figure 5, the dashed black line indicates the slope 2 and the red dashed line indicates the slope 0,
while, in Figure 6, the dashed black line indicates the slope 1 and the red dashed line indicates the
slope −1. Our main focus is again the intermediate frequency region. In both figures, for each fractal
object considered, this in-between region appears as a straight line that indicates power-law behavior.
Going from N = 36 to N = 318, we have a change in the minimal slope from 0.662 to 0.614 for G′(ω),
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(in Figure 5) and from 0.575 to 0.605 for G′′(ω), (in Figure 6), respectively. The values of the slope
obtained for the largest fractal considered should be compared to ds/2 = 0.61315. The agreement
is very good. From the accuracy attained here and also from Figure 4, we draw the conclusion that
the sole fractal parameter of importance for the relaxation dynamics in the Rouse-type approach is
the spectral dimension, ds. We also note that the accuracy obtained for G′(ω) is better than the other
one obtained for G′′(ω). This is because the loss modulus is in general a less sensitive measure of
the relaxation than the storage modulus. Once again, we remark that, if N is small (36 monomers,
for instance), due to the substantial crossover domains, the slope which is inferred from the moduli is
rather far from ds/2; to obtain this value, accurately large structures are needed.
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Figure 5. Storage modulus G′(ω), displayed in dimensionless units for the fractal cactus networks
with N = 36, 39, 312, 315, and 318 from below. For guidance, the dashed black line indicates the slope 2
and the red dashed line indicates the slope 0, Rouse model.
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Figure 6. Loss modulus G′′(ω), displayed in dimensionless units for the fractal cactus networks with
N = 36, 39, 312, 315, and 318 from below. For guidance, the dashed black line indicates the slope 1 and
the red dashed line indicates the slope −1, Rouse model.

4.2. Comparison with Experimental Results from the Literature

To our best knowledge, there is no available experimental data for the averaged monomer
displacement and mechanical relaxation moduli of triangulane [38] structures in order to compare with
our theoretical results. Remarkably, our theoretical findings in the Rouse model are well supported by
mechanical experiments performed on different types of polymers. The comparison with experimental
results is done with respect to scaling in the intermediate frequency domain of the relaxation quantities.
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The authors of Ref. [78] reported power-law behavior in the intermediate frequency domain of the
mechanical moduli for the thermoreversible gelation of poly(methyl methacrylate) containing 80%
syndiotactic triads (sPMMA) and block copolymers of the MXM type, where M is sPMMA and X is
either PBD, hydrogenated PBD (PEB) or poly(styrene-b-butadiene-b-styrene) (SBS) triblock. For these
types of gels, the authors reported values of the exponent ranging from 0.65 to 0.7. The smallest
value is closer to our theoretical values 0.614 (for G′(ω)) and 0.605 (for G′′(ω)) obtained for the largest
fractal considered in Figures 5 and 6. In Ref. [79], the authors studied the influence of different
hydrogen-bonding side groups on the dynamical behavior of functional poly(n-butyl acrylate) melts
and cross-linked networks. One of their samples, the (AP15), has the value of the exponent 0.6
for G′(ω), which is similar to our theoretical value. The authors of Ref. [80] studied the structure
formation and the rheological properties of series of telechelic polyisobutylenes, functionalized with
hydrogen-bonding end groups. They have reported that the behavior of mechanical relaxation moduli
of such supramolecular gels follow a power-law with the value of the exponent of 0.58 which is also
close to our theoretical value. The theoretical results are also in very good accordance with the results
reported in Ref. [81] for the anomalous self-diffusion in associative protein hydrogels. The obtained
scaling exponent for the frequency dependences of the relaxation moduli has the value 0.62. In Ref. [82],
the authors investigated the physical gelation in living polymer networks. They used the aqueous
solution of poly(vinyl alcohol) (PVA) and sodium tetraborate decahydrate (borax) as a model material.
The obtained slopes in the intermediate frequency region of the relaxation moduli of such networks
was 0.59, also in good agreement with our values.

Our theoretical results obtained for the average motion of individual monomer in the Rouse model
are also supported by the experiments. Again, the comparison with the experimental results is made
with respect to scaling in the subdiffusive time regime. In Figure 4, for the largest fractal considered,
we obtained in the intermediate time domain of << Y(t) >> a slope of 0.389. This theoretical value is
in good accordance with 0.42, the exponent of the mean square displacement determined in Ref. [83]
for solutions of water-soluble polyethylene oxide (PEO) with high molecular weight.

4.3. Results Obtained in the Zimm Approach

The fact that the hydrodynamic interactions strongly influence the dynamics of dilute polymer
solutions is well known. While in the Rouse approach a monomer interacts only with its nearest
neighbors, with the hydrodynamic interactions present, the velocity of a monomer affects all the other
monomers through the flow of the solvent. As we already stressed in Section 2, the hydrodynamics
interactions are taken into account by using the preaveraged Oseen tensor [2,55]. In the Zimm model,
preaveraging the forces between the beads may constitute a serious approximation, the stability of the
Zimm approach depends on the strength of the hydrodynamic interaction. The preaveraged scheme
may even lead for large interaction parameters ζr to unphysical behaviors, such as the appearance
of negative eigenvalues, negative diffusion coefficients and related instabilities. For values of the
hydrodynamic interaction parameter below the instability of the Zimm approach, preaveraging is in
general reasonable and leads to qualitatively correct results.

The relaxation dynamics of some regular fractal structures has been intensively investigated
in several previous studies [17,21,25,39]. For the dual Sierpinski gaskets and for the Sierpinski
hexagon, the conclusion drawn was that the relevant physical quantities that describe the dynamics
(averaged monomer displacement and mechanical moduli) do not obey power laws in the
Zimm approaches. For these types of fractals, the loops appear at all scales and they lead to
a position-dependent shortening of the effective bond lengths inside the structure, and thus impair
scaling. Instead, for the Vicsek fractals which do not present loops, it has been reported [17,21] that the
dynamical quantities do scale in the Zimm-type approach. In these studies, the HI strength varied
from 0.05 to 0.25.

In what follows, we examine relaxation dynamics of the fractal cactus when HI interactions are
active. Again, we start by focussing on the averaged displacement << Y(t) >>, given by Equation (6)
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in which we set σ = 1 and F/ζ = 1. Parallelling Figure 4 for the Rouse case, the HI-results are
presented in Figure 7 for the finite fractal cactus network with size N = 38 and for ζr ranging from 0.1
to 0.4. Note that all employed values of ζr are below the instability of the Zimm approach, which for
the present fractal starts from ζ∗r = 0.5. From this value, in the eigenvalue spectrum of the product
matrix, negative eigenvalues start to appear. The results obtained for each value of the HI strength
are indicated as follows: black solid line (ζr = 0.1), red solid line (ζr = 0.25), blue solid line (ζr = 0.3),
green solid line (ζr = 0.33), and magenta solid line (ζr = 0.4). As before, for very short times, all curves
merge; this is the domain where << Y(t) >>= Ft/ζ. Furthermore, for long periods, one reaches the
domain << Y(t) >>' FH11t/Nζ. In the logarithmic scales of Figure 7, these two domains appear as
straight lines with slope 1. The two dashed reference lines exhibit the that slope equals 1. In addition,
we find that, under HI, the intermediate time range gets smaller (as was also established in several
previous works [17,21,25,39]). As discussed before, typical for the structure under investigation is
the intermediate regime. In this time domain, no scaling is evident for the curves corresponding to
ζr = 0.1 and 0.25. These curves are not smooth, and they display a concave curvature in the double
logarithmic plot. Such non-scaling behavior is in line with that obtained for the dual Sierpinski gaskets
and also for the Sierpinski hexagon under the same values of the HI strength [25,39]. Surprisingly,
the increasing of the hydrodynamic interaction parameter will completely change the behavior of the
averaged monomer displacement. In the double logarithmic scales of the figure, the curves achieved
for ζr = 0.3 and 0.33 appear as straight lines, thus obeying power law. Linear fits in the intermediate
time ranges of these curves lead to slopes of 0.12 for ζr = 0.3 and 0.1 for ζr = 0.33. By further increasing
the hydrodynamic interaction strength, the slope of the curve in the intermediate time domain tends
to zero. We have obtained for ζr = 0.4 a slope of 0.04. Under strong hydrodynamic interactions,
the displacement of the monomer is very small in the intermediate time domain. The physical meaning
is that, under strong HI, it is not sufficient to pull only one monomer in order to unfold the structure.
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Figure 7. Averaged monomer displacement << Y(t) >> of the fractal cactus network under the action
of external forces in the Zimm model. Displayed in dimensionless units are the results for the network
size N = 38 and hydrodynamic interaction strength ζr = 0.1, 0.25, 0.3, 0.33, and 0.4. For guidance,
the black dashed lines indicate that the slope equals 1.

In order to display a more quantitative analysis and for a better visualization of the dynamical
behavior, we plot in Figure 8 the derivatives (i.e., local slopes), γ = d(ln << Y(t) >>)/d(ln t),
of the curves of Figure 7. To avoid confusion, the derivatives are displayed with the same colors
(see inset) as their correspondents in Figure 7. We note that in the figure the x-axis is logarithmic and
the y-axis is linear. The limiting cases with slope 1 are evident. For the values of ζr = 0.1 and 0.25 (the
black and red solid lines), one can clearly observe that there is no plateau in the intermediate time
region, a fact which indicates unequivocally that there is no scaling. The situation changes vastly with
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increasing the hydrodynamic interaction strength. For the values of ζr = 0.3 and 0.33 (the blue and
green solid lines), one can see clearly in the intermediate time domain the appearance of a plateau
that indicates power law behavior. For ζr = 0.4, the plateau value is around 0.04, meaning that the
monomer in this time domain moves very little.
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Figure 8. Local slopes γ of the curves of Figure 7. The inset gives the considered values of the
hydrodynamic interaction strength. Zimm model.

We continue the analysis with mechanical relaxation modulus G′(ω), which we present in
Figure 9. Here, we used a fractal cactus network consisting of N = 38 monomers and the employed
hydrodynamic interaction parameter extends from 0.1 to 0.4. Plotted are the results obtained by
using Equation (8) in which we set σ = 1 and C/N = 1. In the same fashion as in Figures 7 and
8, the curves obtained for several considered values of ζr are denoted with colors: black solid line
(ζr = 0.1), red solid line (ζr = 0.25), blue solid line (ζr = 0.3), green solid line (ζr = 0.33), and magenta
solid line (ζr = 0.4). As in the Rouse case, the limiting, connectivity-independent behaviors at very
small frequencies G′(ω) ∼ ω2 and at very large frequencies G′(ω) ∼ ω0 are well rendered by the
curves from the figure. This a common point for all generalized Gaussian structures. In the same
manner as in Figure 5, as a guide to the eye, two reference (dashed) lines are plotted at the lower and
at the upper limit; the dashed black line indicates slope 2 and the red dashed line indicates slope 0.
Moreover, as before, the structure-dependent aspects are given by the intermediate regions. The first
clear-cut feature is that, under HI, the intermediate region gets smaller than in the Rouse case. In the
intermediate frequency domain, the storage modulus displays a very interesting behavior as a function
of hydrodynamic interactions strength. For low and medium hydrodynamic interactions (ζr = 0.1
and 0.25), the curves in this in-between frequency region have a slightly concave shape, which in
the double logarithmic scales of the figure means no scaling behavior. Instead, for slightly larger
hydrodynamic interactions (ζr = 0.3 and 0.33), the curves appear as straight lines denoting power
law behavior. The determined values of the slope are 0.988 for ζr = 0.3 and 1.023 for ζr = 0.33.
Under stronger hydrodynamic interactions, the scaling is again lost. For ζr = 0.4, the curve in the
intermediate frequency domain does not develop as a straight line, thus there is no signature of scaling
in this region.

In the same manner as in Figure 8, we proceed to show in Figure 10 the quantity
α = d(ln G′(ω))/d(ln ω), the derivatives of the curves of Figure 9. Immediately apparent are, for very
small and very large frequencies, the limiting theoretically expected values of the slope α, namely 2 and
0. Focusing now in the in-between region, we observe that the derivatives of the curves obtained under
considering low and medium hydrodynamic interactions (ζr = 0.1 and 0.25) display no plateau, a sign
that there is no scaling behavior. Instead of a plateau, we find a quite mild cross-over behavior. On the
other hand, for slightly larger hydrodynamic interactions (ζr = 0.3 and 0.33), one sees clearly the
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appearance of the plateau that indicates scaling behavior. The determined plateau value for ζr = 0.3 is
0.99 and for ζr = 0.33 is 1.02. Under stronger hydrodynamic interactions (ζr = 0.4), the power law
behavior is again lost, and the derivative does not show a plateau in the intermediate frequency region.
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Figure 9. Storage modulus G′(ω), displayed in dimensionless units for the fractal cactus network of
size N = 38 and hydrodynamic interaction strength ζr = 0.1, 0.25, 0.3, 0.33, and 0.4. For guidance,
the dashed black line indicates slope 2 and the red dashed line indicates slope 0. Zimm model.
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Figure 10. Local slopes α of the curves of Figure 9. The inset gives the considered values of the
hydrodynamic interaction strength. Zimm model.

The eigenvalue spectrum of the product matrix is very sensitive to the modification of the
hydrodynamic interaction strength. The obtained behaviors reflect the changes in the eigenvalue
spectrum of the product matrix HA caused by the variation of the HI strength. For the same size N,
an increase of the value of ζr leads to a significant lowering of the eigenvalues, especially the ones that
have larger values. Because in the calculation of the storage modulus (Equation 8) the eigenvalues
enter into the denominator, the increase of ζr leads to larger values of the storage modulus and thus to
larger values of the local slope. In Figure 10, for the same frequency, the local slope in the intermediate
frequency region increases with the increase of the value of ζr. Moreover, for the same eigenvalue
λi, the expression ω2/(ω2 + 4λ2

i ) increases with the increase of the frequency ω, and it tends to 1 for
ω � λi. This produces a further increase in the value of the local slope. Therefore, for very large
values of HI strength (as ζr = 0.4), almost all the eigenvalues have very low values and produce larger
local slopes at higher intermediate frequencies, which together with the aforementioned increase leads
to a maximum in the behavior of the local slope. For low and medium values of ζr, the eigenvalue
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spectrum still contains sufficient larger eigenvalues on its upper part. Nevertheless, when comparing
to curves (ζr = 0.1 and ζr = 0.25), the local slope does not increase uniformly (not equally) in the
intermediate frequency region. There is a more pronounced increase from the medium to the larger
intermediate frequencies than in the region of lower intermediate frequencies. For slightly larger
values of ζr, the faster increase in the region of medium to large intermediate frequencies equals the
slower increase in the region of lower intermediate frequencies and one obtains a plateau.

In the Rouse case, the power law exponent depends on the spectral dimension. In the Zimm
model, the scaling exponent of the storage modulus obtained under the consideration of slightly larger
hydrodynamic interactions can be related to the value of the Gaussian fractal dimension. For the
intermediate domain, a theoretical effective medium approach was developed by Cates [76] to support
a scaling hypothesis for polymeric fractals; in this regime (called by him the high frequency regime),
his approach suggests a power-law behavior for G′(ω). Following this line of thought, the power-law
exponent (slope of the curve in this region) should be

αT =
d f g

d
, (33)

where d represents the Euclidean dimension and it is equal to 3. Practically, the exponent ds/2 from
the Rouse case gets replaced in the Zimm case by d f g/d. Now, from the comparison of the obtained
slopes (especially that obtained for ζr = 0.33) with the theoretical value αT = 1.0566, one observes
a good agreement.

We note that the loss of scaling for the cases of low and medium HI strength parallel the findings
of Ref. [25,39]), where similar non-scaling behavior in the Zimm-type approach for dual Sierpinski
gaskets and Sierpinski hexagon was also reported. These works did not study the dynamics of the
fractal networks under slightly larger or even stronger hydrodynamic interactions. We extend our
study in the Zimm approach by investigating also the dynamical behavior of the storage modulus
for the dual Sierpinski gaskets, insisting mostly on the cases of larger hydrodynamic interactions.
The left-hand side panel of Figure 11 shows the behavior of the storage modulus of the dual Sierpinski
gasket fractal at generation 8 (consequently N = 38) under the influence of hydrodynamic interactions
with strength ranging from 0.1 to 0.45. The storage modulus was calculated based on Equation (8),
in which we set σ = 1 and C/N = 1, and it is presented in dimensionless units. The right-hand side
panel of Figure 11 displays the quantity, α = d(ln G′(ω))/d(ln ω), the derivatives of the curves of
the left-hand side panel. We note that the scales of the left-hand side panel are double logarithmic to
base 10, while in the right-hand side panel the x-axis is logarithmic to basis 10, and the y-axis is linear.
The results obtained for each value of the HI strength are illustrated with color lines as follows: black
solid line (ζr = 0.1), red solid line (ζr = 0.25), blue solid line (ζr = 0.3), green solid line (ζr = 0.36),
brown solid line (ζr = 0.38), and magenta solid line (ζr = 0.45). As in Figure 9, for very high ω, we find
G′(ω) ∼ ω0, which indicates a single-bead mechanical response, whereas, for very low frequencies,
G′(ω) ∼ ω2, which represents the mechanical response of the entire fractal network. In the right-hand
side panel, these regions correspond to α = 0, respectively α = 2. Focusing now in the intermediate
frequency region, we observe no power law behavior for the cases of low and medium hydrodynamic
interactions (ζr = 0.1 and 0.25), exactly as reported in the previous works [25,39]. Even for slightly
larger hydrodynamic interactions, ζr = 0.30, the storage modulus does not obey power law behavior.
These can be better seen in the derivatives, where no plateau is evident. Remarkably, the curves
obtained for much larger HI strength (0.36 and 0.38) develop in the in-between region as straight
lines and they indicate power law behavior. In the right-hand side panel, for each of these values
of ζr, we observe a very clear plateau. The best approximation to our data leads to α = 1.35 for
ζr = 0.36 and α = 1.39 for ζr = 0.38, the last value being in good agreement with the theoretical
value αT = 1.43377, determined from Equation (33). The Gaussian fractal dimension of the dual
Sierpinski gasket needed in Equation (33) was calculated from Equation (12) with spectral dimension
ds = 1.36521 [39]. For much stronger hydrodynamic interactions (ζr = 0.45), the scaling behavior
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of the storage modulus is again lost. This is well rendered by the disappearance of the plateau in
the derivative of the curve. The scaling argument of Equation (33) holds also for the Vicsek fractal.
This loopless structure scales in the Zimm model. In Ref. [17], for Vicsek fractal with functionality
f = 3, the authors have reported for the scaling behavior of the storage modulus a power law exponent
of 0.841. The spectral dimension of the Vicsek fractal ( f = 3) is ds = 1.11577. Inserting this value in
Equation (12), we get d f g = 2.52371 and then, from Equation (33), we obtain α = 0.841, exactly the
value reported in Ref. [17].
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Figure 11. Left-hand side panel: Storage modulus G′(ω), displayed in dimensionless units for the dual
Sierpinski gasket with size N = 38, and the hydrodynamic interaction strength ζr = 0.1, 0.25, 0.3, 0.36,
0.38, and 0.45. For guidance, the dashed black line indicates slope 2 and the red dashed line indicates
slope 0. Right-hand side panel: Local slopes α of the curves of the left-hand side panel. Zimm model.

The relaxation dynamics of the fractal cactus networks, studied in the Zimm model, shows
a very strong dependence on the strength of the hydrodynamic interactions. Even though the
structure contains only loops, under the influence of low and medium hydrodynamic interactions,
the non-scaling behavior of the dynamical quantities is similar to that obtained for fractals that
contain loops on loops. Comparing the dynamical behavior of the fractal cactus with that of dual
Sierpinski gaskets, we observe that the presence of loops on loops practically maintains the non-scaling
behavior for slightly large hydrodynamic interactions, shifting the scaling behavior towards higher
hydrodynamic interaction strength. For the situations where the dynamical quantities obey power
law, the power law exponent can be predicted by Equation (33). This formula turns out to fit also to
other fractals.

5. Conclusions

In this work, we have studied the relaxation dynamics of a polymer network modeled by a fractal
structure with a cactus-like shape. Our study has been performed in the framework of the GGS
model by employing the Rouse and Zimm approaches. Additionally, in the Rouse-type approach,
we have investigated the behavior of the mean-square radius of gyration. In order to be able to
treat the dynamics of very large structures, based on real-space renormalization transformations,
we have developed an iterative method for the determining of the whole eigenvalue spectrum of the
connectivity matrix. With the eigenvalues achieved in the iterative manner, we have calculated the
relaxation quantities for very large generations of the fractal network.

The general picture that emerges in the Rouse-type approach is that the dynamical quantities obey
power law behavior and the sole parameter of importance for the relaxation dynamics is the spectral
dimension. In addition, in the Rouse model, based on the recursive polynomial and using Vieta’s
formulas, we have derived a very useful analytical expression for the determining of the mean-square
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radius of gyration of the fractal cactus network. Only the size of the fractal is needed in order to
calculate the mean-square radius of gyration. Furthermore, we have inferred a simple analytical form
which highlights the scaling dependence of R2

g on the spectral dimension.
The introduction of hydrodynamic interactions, on the other hand, vastly changes the Rouse

picture. Our use of the Zimm formalism, based on the preaveraged Oseen tensor, leads to the conclusion
that the behavior of relaxation quantities shows a very strong dependence on the strength of the
hydrodynamic interactions. For low and medium hydrodynamic interactions, the dynamical quantities
do not obey power law behavior. For slightly larger hydrodynamic interactions, the relaxation
dynamics of the fractal network is governed by power law. Under strong hydrodynamic interactions,
the storage modulus does not follow power law behavior and the average displacement of the monomer
is very low. For the storage modulus, following the scaling argument of Cates, we have shown that
the theoretical expected power law exponent relates to the Gaussian fractal dimension. Moreover,
under the consideration of large hydrodynamic interactions, we have highlighted a scaling behavior
for the storage modulus of the dual Sierpinski gasket. Impressively, the power law exponent predicted
by Equation (33) fits properly for the dual Sierpinski gasket and also for the Vicsek fractal.

Beside the relaxation quantities studied in this paper, many other dynamical processes can be
investigated by making use of the connectivity matrix—for instance, mean first passage time of
a random walk [16], the dielectric relaxation functions [17], the NMR relaxation functions [29,66,84],
and quantum transport in complex networks [85,86]. Therefore, the knowledge of the eigenvalue
spectrum of the matricial form describing the connectivity of the polymer is of great importance,
leading to further interdisciplinary scientific advances.

We have compared our general theoretical features found for the fractal cactus network with
experimental results from the literature. Remarkably, our theoretical findings in the Rouse model
are well supported by mechanical relaxation experiments performed on different types of polymers.
We address the fractal cactus network as a possible theoretical model for the relaxation dynamics of
different polymer systems as cross-linked polymer networks, micelle networks, and polymer gels.
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GGS generalized Gaussian structures

Appendix A. Decimation Procedure

Here, we present the details of the decimation procedure outlined in Section 3. The decimation
procedure relies on two real-space renormalization transformations under which the fractal cactus
network reduces from generation g to generation g − 1. The first transformation is sketched in
Figure A1. Our starting point is Equation (13), which gives the relations between the components φk
of the eigenvector Φ belonging to a certain eigenvalue λk. The main eigenvalue equations which we
need for our calculations are:

(2− λ)φ1 = φ2 + φ3, (A1)
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(2− λ)φ2 = φ1 + φ3, (A2)

(4− λ)φ3 = φ1 + φ2 + φ4 + φ8, (A3)

(4− λ)φ4 = φ3 + φ5 + φ6 + φ8, (A4)

(4− λ)φ8 = φ3 + φ4 + φ7 + φ9. (A5)

Equations (A1) and (A3) can be combined, leading to

[2− (−λ2 + 6λ)]φ1 = −4φ1 + 3φ2 + φ3 + φ4 + φ8. (A6)

2 3

4

5 6

7

8 9

1

2’ 3’

1’

Figure A1. First transformation.

By inserting the expression of φ3 from Equation (A3) into Equation (A2), one gets

[2− (−λ2 + 6λ)]φ2 = 3φ1 − 4φ2 + φ3 + φ4 + φ8. (A7)

Introducing the expressions for φ1 and φ2 given by Equations (A1) and (A2) into Equation (A3) yields

[2− (−λ2 + 6λ)]φ3 = φ1 + φ2 − 2φ3 − φ4 + φ5 + φ6 + φ7 − φ8 + φ9. (A8)

Summing up Equations (A6), (A7), and (A8) and then making use of few algebraic calculations,
one obtains

[2− (−λ2 + 6λ)](φ1 + φ2 + φ3) = φ4 + φ5 + φ6 + φ7 + φ8 + φ9. (A9)

Now, by setting in Equation (A9),

P(λ) = −λ2 + 6λ, (A10)

ψ1′ = φ1 + φ2 + φ3, (A11)

ψ2′ = φ4 + φ5 + φ6, (A12)

ψ3′ = φ7 + φ8 + φ9, (A13)

we get
[2− P(λ)]ψ1′ = ψ2′ + ψ3′ , (A14)

which is exactly Equation (17) from the main text.
The second transformation is displayed in Figure A2. Our starting point is again Equation (13).

The main eigenvalue equations which we use in our calculations are:

(4− λ)φ3 = φ1 + φ2 + φ4 + φ8, (A15)

(4− λ)φ4 = φ3 + φ5 + φ6 + φ8, (A16)

(2− λ)φ5 = φ4 + φ6, (A17)
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(4− λ)φ6 = φ4 + φ5 + φ10 + φ14, (A18)

(4− λ)φ8 = φ3 + φ4 + φ7 + φ9, (A19)

(4− λ)φ10 = φ6 + φ11 + φ12 + φ14, (A20)

(4− λ)φ14 = φ6 + φ10 + φ13 + φ15. (A21)

2 3

4

5 6

7

8 9

1

10

11 12

13

1514
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3’1’

4’ 5’

Figure A2. Second transformation.

Inserting Equation (A15) and (A19) into Equation (A16) and after performing some simple
algebraic calculations leads to

[4− (−λ2 + 6λ)]φ4 = φ1 + φ2 − φ3 + φ5 − φ6 + φ7 − φ8 + φ9 + φ10 + φ14. (A22)

With the expression of φ4 from Equation (A16), Equation (A17) becomes

[4− (−λ2 + 6λ)]φ5 = φ3 + φ4 − 2φ5 + φ6 + φ8 + φ10 + φ14. (A23)

In the same fashion as above, by inserting the forms of φ10 and φ14 given by Equations (A20) and (A21)
into Equation (A18), one has

[4− (−λ2 + 6λ)]φ6 = φ3 − φ4 + φ5 + φ8 − φ10 + φ11 + φ12 + φ13 − φ14 + φ15. (A24)

Summing up Equations (A22)–(A24) and after few algebraic calculations and rearranging terms,
one obtains

[4− (−λ2 + 6λ)](φ4 + φ5 + φ6) = φ1 + φ2 + φ3 + φ7 + φ8 + φ9 + φ10 + φ11 + φ12 + φ13 + φ14 + φ15.
(A25)

Now, by setting in Equation (A25)

P(λ) = −λ2 + 6λ, (A26)

ψ1′ = φ1 + φ2 + φ3, (A27)

ψ2′ = φ4 + φ5 + φ6, (A28)

ψ3′ = φ7 + φ8 + φ9, (A29)

ψ4′ = φ10 + φ11 + φ12, (A30)

ψ5′ = φ13 + φ14 + φ15, (A31)

we obtain
[4− P(λ)]ψ2′ = ψ1′ + ψ3′ + ψ4′ + ψ5′ , (A32)

which is exactly Equation (16) from the main text.
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