Dynamically crosslinked tannin as a reinforcement of polypropylene and UV protection properties

Jingjing LIAO¹, Nicolas BROSSE^{1*}, Antonio PIZZI¹ and Sandrine HOPPE²

Supplementary materials

Figure S1 (a)PP+10% crosslinked tannin; (b) PP+ 30% crosslinked tannin

Cample	Young's modulus Tensile strength		Elongation
Sample	(GPa)	(MPa)	(%)
PP	1.53±0.08	34±3	52±28
PP+10T+PPMA	1.41 ± 0.08	33±1	21±8
PP+10TH+PPMA	1.80 ± 0.05	31±1	32±10

Table S2 Comparation of tensile property with or without compatibilizer (MAPP)					
Commite	Young's modulus	Tensile strength	Elongation		
Sample	(GPa)	(MPa)	(%)		
PP	1.53±0.08	34±3	52±28		
PP+10TH	1.60 ± 0.05	30±1	15±2		
PP+10TH+MAPP	1.84 ± 0.05	31±1	32±10		

Figure S2 FTIR	spectra	of pre-reacted	tannin-hexamine	(TH)
----------------	---------	----------------	-----------------	------

Tab	le S3	Assign	nment (of FT-I	IR spect	ra of m	imosa	tannin	and	pre-reacted	ΤH
-----	-------	--------	---------	---------	----------	---------	-------	--------	-----	-------------	----

Peak(cm ⁻¹)	Assignment
3000-3700	O-H stretching of benzene nucleus, methylol groups of tannins
2700-2800	C-H stretching, -CH2- and -CH2OCH2- bridges
1604,1598	C=C aromatic rings stretching
1506	C=C aromatic rings stretching
1450	C=C aromatic rings stretching
1309	C-C frame stretching
1197	C-OH bending
1156	C-O groups of the A-ring resorcinol-like structure
1024	C–H aromatic rings in-plane bending
840	C–H deformation in plane
1344	the C-O stretching of the B-ring of pyrogallic moieties.
1234	antisymmetric deformation of C-O-C in ether groups
1007	C-N groups
807	Deformation vibrations CH bonds