Supporting Information

Facile Fabrication of Superhydrophobic Copperfoam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation

Yu-Ping Zhang ^{1,*}, Jing-Hua Yang ^{1,2}, Ling-Li Li ¹, Cheng-Xing Cui ¹, Ying Li ¹, Shan-Qin Liu ¹, Xiao-Mao Zhou ^{2,*} and Ling-Bo Qu ³

- ² Hunan Academy of Agricultural Sciences, Changsha 410128, China; (X.-M. Z.)
- ³ College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, China; (L. B. Q.) qulingbo@zzu.edu.cn
- * Correspondence: zhangyuping@hist.edu.cn (Y. -P. Z.); beijing2017xmz@163.com (X. -M. Z.)

Scheme S1. Illustration for the fabrication process of the superhydrophobic copper foams using 4 sulfhydryl compounds.

Figure S1. The images of etched copper foams after water washing in the presence of nitrogen blowing for drying (a) and absence of nitrogen blowing (b-d, after stay in 5-6 h). The etched process was carried out using 0.01g/ml FeCl₃ about 15min.

Table S1. The absorption capacity of gasline engine oil using different concentration of FeCl₃.

Figure S2. The Optimization of FeCl₃ (mg/mL) concentration in the chemical etching process.

Figure S3. SEM characterization of copper foams after modification by ODE ethanol solution with a different time of 5,10,15,20 and 25 min, respectively.

Figure S4. Change of absorption amount for CCl₄ using the as-prepared copper foam during 10 cycles.

Figure S5. Upper: SEM characterization of foam copper after modification of ODE immersed

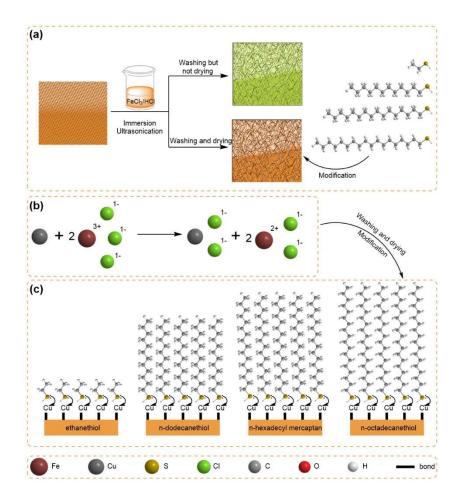
about 12h in some rigid conditions. Below: The changes of WCAs in different rigid

¹ Henan Institute of Science and Technology, Xinxiang 453000, China; (Y. -P. Z.); (J. -H. Y.); (L. -L. L.); (C. -X. C.); (Y. L.); (S. -Q. L.) chengxingcui@hist.edu.cn

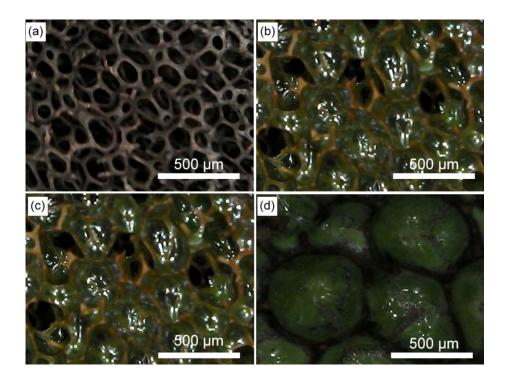
conditions.

Video 1: Superhydrophobicity of Cu foams modified by EE, DE, HDE and ODE.

Video 2: Determination of the WSA with a sliding angle of 0°.


Video 3: Determination of the WSA with a sliding angle of 5°.

Video 4: Determination of the WSA with a sliding angle of 10°.


Video 5: Test to absorb the oil.

Video 6: Oil-water separation.

Supplementary files

Scheme S1. Illustration for the fabrication process of the superhydrophobic copper foams using 4 sulfhydryl compounds.

Figure S1. The images of etched Cu foams after water washing in the presence of nitrogen blowing for drying (a) and absence of nitrogen blowing (b-d, after stay in 5-6 h). The etched process was carried out using 0.01g/ml FeCl₃ about 15min.

oncent	tration of FeCl ₃ .						
	C (mg /mL)	2.5	5	10	20	40	-

47.1

227.5

3.8

m1 (mg)

m2 (mg)

Ac

57.2

275.9

3.8

31.9

201.8

5.3

0

/

/

5.6

/

/

Table S1. The absorption capacity of gasline engine oil using different concentration of FeCl₃.

The absorption capacity is calculated according to $A_c = (m_2 / m_1) \times 100\%$, where m_1 and m_2 were the Cu foam mass before and after absorbing the oil, respectively.

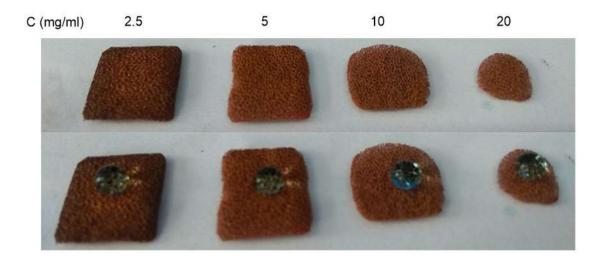
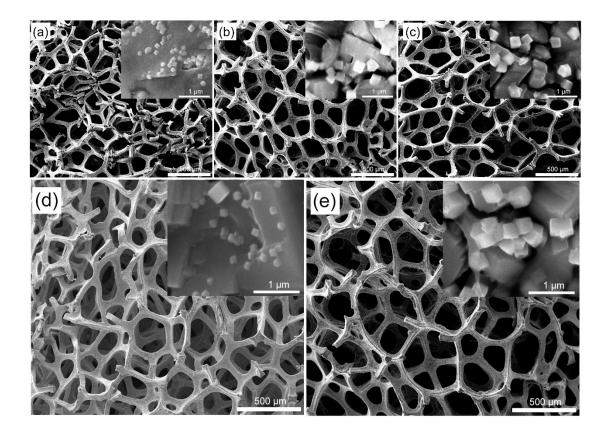
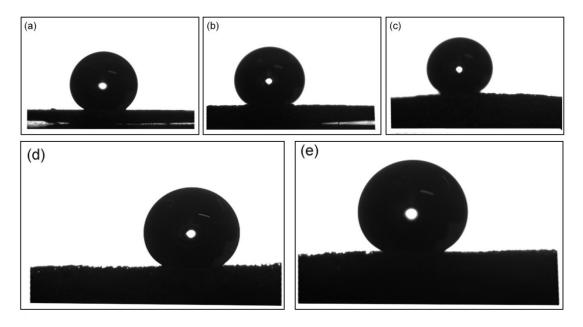




Figure S2. The Optimization of FeCl₃ concentration in the chemical etching process.

Figure S3. SEM characterization of copper foams after modification by 1 mM ODE ethanol solution with a different time of 5,10,15,20 and 25 min.

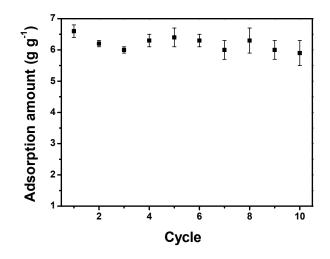
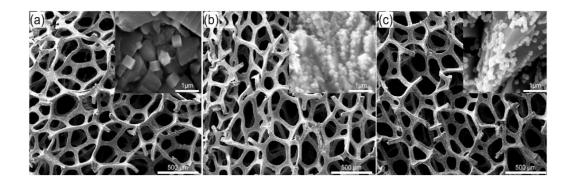
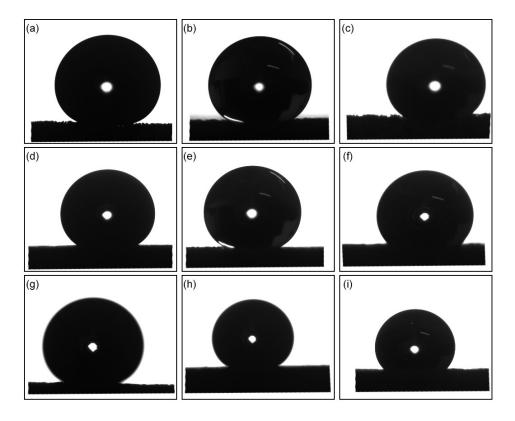




Figure S4. Change of absorption amount for CCl₄ using the as-prepared copper foam

during 10 cycles.

Figure S5. Upper : SEM characterization of foam copper after modification of ODE immersed about 12h in some rigid conditions. (a)-(c) stand for the condition of pH=1, pH=13 and 3.5% NaCl, respectively. Below: The changes of WCAs in different rigid conditions, (a)-(c) stand for the WCAs after the porous Cu is immersed about 5 min, 10 min and 12h, respectively, in a solution with a pH of 1. (d) - (f) stand for the WCAs after the porous Cu is immersed about 5 min, 10 min and 12h, respectively, in a solution with a pH of 1. (d) - (f) stand for the WCAs after the porous Cu is immersed about 5 min, 10 min and 12h, respectively, in a solution with a pH of 13. (g) - (i) stand for the WCAs after the porous Cu is immersed about 5 min, 10 min and 12h, respectively, in a solution with a 3.5% NaCl.