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Abstract: Polymer degradation is a common problem in the extrusion process. In this work, Raman
spectroscopy, a robust, rapid, and non-destructive tool for in-line monitoring, was utilized to in-line
monitor the degradation of polypropylene (PP) under multiple extrusions. Raw spectra were pretreated
by chemometrics methods to extract variations of spectra and eliminate noise. The variation of Raman
intensity with the increasing number of extrusions was caused by the scission of PP chains and
oxidative degradation, and the variation trend of Raman intensity indicated that long chains were more
likely to be damaged by the extrusion. For the quantitative analysis of degradation, the partial least
square was used to build a model to predict the degree of PP degradation measured by gel permeation
chromatography (GPC). For the calibration set, the coefficient of determination (R2) and the root mean
square error of cross-validation (RMSECV) were 0.9859 and 1.2676%, and for the prediction set, R2 and
the root mean square error of prediction (RMSEP) were 0.9752 and 1.7228%, which demonstrated the
accuracy of the proposed model. The in-line Raman spectroscopy combined with the chemometrics
methods was proved to be an accurate and highly effective tool, which can monitor the degradation of
polymer in real time.
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1. Introduction

The extrusion process is a highly efficient, continuous, and low-cost process that is widely used in
polymer processing and is one of the most important forms of plastic material processing. During the
extrusion process, polymer degradation is a common problem. The unavoidable thermo-mechanical
effect induces a change in the properties, which have a strong influence on the polymer lifetime.
The polymer is influenced by mechanical stress, oxygen and heat, and, therefore, polymer degradation
during extrusion is caused by a combination of mechanical, chemical, and thermal degradation, and is
quite a complex process [1].

In the case of polypropylene (PP), the scission of the molecular chain is primarily induced by the
mechanical stress, including shear and tensile stresses during the extrusion process, and the dramatic
variation of the PP backbone will lead to the decrease of molecular weight [2]. Moreover, during
the extrusion process, chemical degradation is mainly induced by oxygen, which usually results in
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the oxidative reaction of the polymer. Free radicals, initiated in the initiation, react with other PP
backbones, and in the termination stage, they are oxidized as ketone or ester functional products [3].
Thus, based on the oxidative degradation mechanism of PP, the degradation of PP is terminated with
products of oxygen-containing functional groups. These products, split from the PP backbone, also
lead to the decrease in molecular weight. In addition, the inherent stabilization of the polymer is
destroyed by the heat provided from the extrusion [4], and the oxidation reaction occurring in the
extrusion is accelerated by the elevated temperature. Therefore, during the extrusion process, thermal
degradation is one of the important parts in polymer degradation when the polymer undergoes
elevations in temperature.

To protect the mechanical properties of the product, the number of extrusions must be limited
to preserve the desired properties of the polymer. The degradation of the polymer under multiple
extrusions has been evaluated by traditional measurements, such as the mechanical properties
test [5,6], gel permeation chromatography (GPC) [7,8], and rheological measurement [9–11]. In order to
characterize the degradation mechanism of the polymer, a combination of several off-line measurement
methods is often required. However, these measurements are all off-line methods, which are destructive,
hysteretic, time- and cost-consuming. In recent work, in-line measurements for monitoring polymer
degradation during the extrusion have been widely researched. Wang et al. [12] use ultra-violet/visible
(UV-vis) spectroscopy to in-line monitor the degradation of poly (L-lactic acid) (PLLA) in the twin screw
extruder, and they find a good correlation between the degradation rate and the UV-vis absorption of
PLLA. Montano-Herrera et al. [13] predict the degree of polyhydroxyalkanoate (PHA) degradation
in the laboratory-scale extruder using the Near-Infrared (NIR) spectroscopy. Hamester et al. [14]
develop an in-line colorimeter, which can in-line quantify and measure the color change in PP due to
multiple extrusion degradations. In-line measurements can characterize the molten polymer in real
time and, ultimately, guide the adjustment of processing parameters to preserve the desired properties
of products.

Raman spectroscopy, as a robust, rapid, and non-destructive analytical technique, is a reliable tool
for in-line monitoring. During the hot-melt extrusion, the in-line Raman spectroscopy can monitor
melt characteristics, such as component content [15,16], molecular interactions [17,18], and phase
state [19,20]. However, the above studies have been published in the field of pharmaceuticals, the
in-line Raman spectroscopy has not been widely used in the field of polymers. Raman spectroscopy, the
measurement of the Raman scattering intensity and wavelength, provides abundant information about
molecular vibrations [21]. The intensity of Raman scattering is proportionate to the number of molecules
excited by stimulated light, which is the basis for quantitative analysis of Raman spectroscopy [22].
Therefore, the in-line Raman spectroscopy can monitor the degradation of the polymer during the
extrusion. In combination with the chemometrics methods, the degree of the polymer degradation can
be also measured by the in-line Raman spectroscopy to monitor the quality of PP in real time.

The purpose of this work is to utilize the in-line Raman spectroscopy with the chemometrics
methods to monitor the degradation of PP under multiple extrusions in real time. For this purpose,
at first, we set up a system of in-line Raman spectroscopy to monitor the melt during the extrusion.
To ensure that Raman spectra can be collected in a high-temperature and -pressure environment, the
temperature–pressure-resistant shell was designed to protect the Raman probe. Then, raw spectra were
pretreated by the chemometrics methods to extract variations of spectra, and off-line measurements
were utilized to prove the correctness of these variations. At last, combined with the PLS model,
in-line Raman spectra were utilized to predict the degree of PP degradation, as measured by gel
permeation chromatography.
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2. Experimental

2.1. Materials and Sample Preparation

The raw material PP (HD822CF) was supplied by Borealis, with a melt-flow rate (MFR) of
7.1632 g/10 min (230 ◦C, 2.16 kg) and the weight average molecular weight (Mw) of 383,352.

The PP was repeatedly extruded 15 times in the triple-screw extruder (IEGTC-25/40, POTOP,
China). In parallel, the extrusion processing temperature was set at 190 ◦C and the screw speed was set
at 200 rpm. After each extruding process, 16 granular samples were collected (including raw materials
PP), in preparation for measurements to be carried out.

2.2. In-Line Raman Spectroscopy Measurement

In-line Raman spectra of 16 melting samples were collected by the in-line monitoring system of
Raman spectroscopy, including a Raman spectrometer (QE65 Pro, Ocean Optics Inc., FL., Largo, USA),
a 785 nm single longitudinal mode laser (Laser785-5HSB, BIAOQI, Guangzhou, China) and a Raman
fiber-optic probe (RamanProbe II, InPhotonics, MA., Norwood, USA).

The granular sample was melted and stably delivered to the slit sample cell, which was installed
on the front of the extruder. Because of the high-temperature and -pressure environment inside an
extruder, a high-temperature/pressure-resistant shell (Figure 1) equipped with a water channel was
designed to protect the Raman probe. The high-temperature/pressure-resistant shell is composed of
pressure-bearing parts (external) and cooling parts (internal). A quartz glass window is adhered to
the stainless-steel parts at the front with epoxy resin. The high-temperature/pressure-resistant shell
not only cooled the Raman probe to ensure its regular operation, but also provided a window for the
acquisition of the Raman signal in the extruder. The laser from the 785 nm laser was irradiated onto
the molten sample through the window of the high-temperature/pressure-resistant shell along the
excitation fiber of the Raman probe. The Raman signal generated from the sample passed through the
window into the collection fiber of the Raman probe, and was, subsequently, collected by the Raman
spectrometer. The Raman spectrum of each sample was averaged over 20 scans with a resolution of
4 cm−1 over the wavenumber range from 1600 cm−1 to 600 cm−1. In addition, the power of the laser
was at a rate of 400 mW. To obtain a high signal-noise ratio (SNR), the distance of the laser spot to
the melt surface was set 0 mm, and the single scan time was set to 3 s [23]. The raw spectrum was
pretreated by the chemometrics methods to correct baselines and eliminate unwanted noise.
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Figure 1. The high-temperature/pressure-resistant shell. (a) The physical photo, (b) the schematic diagram.

2.3. Off-Line Methods and Measurement

Gel permeation chromatography (GPC) was carried out by PL-GPC220 (Agilent Technologies, CA.,
Santa Clara, USA) at 150 ◦C with a sample concentration of 0.10 mg/mL. The columns used were three
PLgel 10 mm Mixed-B type columns and set length of 950 mm. The RI detector was used. The eluent
was trichlorobenzene (TCB). The injection volume was 200 µL and the flow rate was 1.0 mL/min.
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Calibration was made by narrow standard. The Mark-Houwink coefficients, K and alpha, of the
samples were 14.1 × 10−5 mL/g and 0.70, respectively.

According to ASTM D1238, MFR was measured by the Melt Indexer (MP993, Tinius Olsen, PA.,
Horsham, USA) at 230 ◦C, 2.16 kg with the die diameter of 2.095 mm and the tube length of 8 mm.

The Fourier-Transform Infrared (FTIR) spectrum was observed from the 50 µm thin film of the
sample by the Fourier-Transform spectrometer (Nexus 670, Thermo Nicolet Corporation, WI, Madison,
USA). Infrared spectrum of the sample was recorded over the wavenumber range from 4000 cm−1 to
400 cm−1 at a resolution of 4 cm−1.

The mechanical tensile test was carried out to acquire the tensile property with dumbbell-shaped
tensile specimens (5 specimens of each sample), using an Electronic Universal Material Testing Machine
(5566, Instron, MA, Canton, USA), in accordance with ASTM D638, at a speed of 50 mm/min.

3. Results and Discussion

3.1. Analysis of In-Line Raman Spectra

The fluorescent background and the baseline drift are ubiquitous phenomena in the Raman
spectroscopy measurement and can adversely affect the feature extraction of Raman spectral signals.
Furthermore, it is difficult to distinguish the difference between Raman spectral intensities of various
spectra only from the raw data. Therefore, an excitation wavelength of 785 nm is chosen, in which case,
the excitation energy is generally insufficient to excite strong fluorescence [24]. It is also necessary
to conduct baseline correction pretreatment. Baseline correction is performed through subtraction of
a linear or polynomial fit of the baseline from the raw spectrum to remove tilted baseline variation
caused by various noises. Before the analysis of Raman spectra, the automatic baseline correction
(OMNICTM, version 8, Thermo Scientific, MA, Waltham, USA) of chemometrics methods is chosen to
pretreat the raw spectrum to ensure the accuracy of spectral characteristic bands (Figure 2).
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Vibrational modes for Raman characteristic Bands of PP are shown in Table 1. Variations of Raman
intensity in PP main characteristic bands with different numbers of extrusions are shown in Figure 3.
Raman intensities of 1324 and 1454 cm−1 bands gradually decrease with an increasing number of
extrusions, indicating the decrease in the –CH2– group. In addition, the similar variation in spectral
intensity has been observed in bands of 832, 967 and 1150 cm−1, suggesting the decrease of the C–C.
These spectral variations show that chains of PP are damaged by the mechanical stress during the
extrusion process. By means of multiple extrusions, the scission of the PP chain mainly results in
the decrease in molecular weight [25,26]. As shown in Figure 4, it can be found that Mw decreases
with the increasing number of extrusions, which indicates the scission of the PP chain. The molecular
weight decreases as the degree of degradation increases, the number of chain scissions increases as
the number of extrusions increase. Macroscopically, the scission of the molecular chain is reflected
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in the increase of the MFR [27] and the decrease of the tensile properties [5] as well. As shown in
Figures 5 and 6, with the increasing number of extrusions, the MFR increases and the tensile properties
decreases, suggesting the scission of the molecular chain.

Table 1. Vibrational modes for Raman Bands of PP [28].

Raman Characteristic Band (cm−1) Vibration Modes

832 C–C stretching, CH3 rocking
967 C–C stretching, CH3 rocking

1150 C–C stretching, CH bending
1324 CH stretching, CH2 wagging, CH3 bending
1454 CH2 bending, CH3 asymmetric bending
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A similar variation in spectral intensity is observed in the band of –CH3 vibration. As shown in
Figure 3, Raman intensities of 832, 967, 1324 and 1454 cm−1 bands show a clear decrease, suggesting
the decrease of the –CH3 group. Because of the low activation energy of the alkyl radical of PP
(80–110 kJ/mol), free radicals are easily initiated in an aerobic environment [29]. Considering that
the extrusion process of PP is performed in a natural atmosphere, the decrease of the –CH3 group
indicates that free radicals may be terminated with oxygen-containing functional groups instead of
–CH3 groups. Therefore, oxidative degradation may happen in the extrusion. According to Figure 7,
FTIR spectra of degraded PP for different numbers of extrusions, the ester functional group has a clear
peak (1740 cm−1) in the sample of the fifteenth extrusion [3]. This result indicates that the PP has
undergone oxidative degradation and esterification of carboxylic acids with alcohol has occurred at
the termination stage.
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Furthermore, as shown in Figure 3, the Raman intensity in all bands sharply decrease at first, and
the difference of the Raman intensity decreases with the increasing number of extrusions. Decreases of
the –C–C– and –CH2– group demonstrate the scission of the PP chain, thus, a similar variation trend is
observed in the scission of the PP chain. This variation indicates that the rate of degradation gradually
decreases with the increasing number of extrusions. Considering that long chains are more likely to be
damaged by mechanical stress [30], the decrease of the degradation rate is explained as the scission of
long molecular chains with an increasing number of extrusions [31]. According to Figure 4a, with an
increasing number of extrusions, the molecular weight distribution curve shifts toward a low molecular
weight, which shows a decrease in long molecular chains and an increase in short molecular chains.
The result demonstrates that long molecular chains are more likely to be changed by the mechanical
stress during the extrusion process.

An in-line Raman spectroscopy measurement can show the variation of PP degradation in
the extrusion, and the correctness of these variations is proved by various off-line measurements.
This proves that an in-line Raman spectroscopy measurement can monitor the degradation in the
extrusion in real time.

3.2. Degradation Assessment of PP

To assess the degradation of PP, it is necessary to specifically quantify the degree of degradation.
Since the degradation in the extrusion mainly results in the decrease of the molecular weight, the degree
of degradation was defined as the degree of molecular weight degradation, which was measured by
the GPC, according to Equation (1).

The degree of degradation =
Mwi

Mw0
× 100% (1)

In Equation (1), MWi is the weight average molecular weight of the i-th extrusion. To eliminate
undesired information and noise, using chemometric methods, the automatic baseline correction is
chosen to pretreat the raw spectra before building the model. The intensity of Raman scattering is
proportionate to the number of molecules excited by stimulated light. As shown in Table 2, linear
correlation coefficients between Raman intensity of PP main characteristic bands and the degree of
degradation are greater than 0.9, which shows a highly linear positive correlation between the Raman
intensity of the PP main characteristic band and the degree of degradation. Thus, it is feasible that the
degree of degradation is measured by in-line Raman spectroscopy. Since Raman main characteristic
bands of PP are mainly concentrated in the 1600–600 cm−1, the range of 1600–600 cm−1 is chosen
to develop the model. Sixteen samples are kept separate for model building and prediction testing.
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The 1st, 4th, 7th, 10th and 13th samples function as a blind dataset for testing the model accuracy, and
the rest of the samples are used to build the model.

Table 2. The linear correlation coefficient between the Raman intensity of the PP main characteristic
band and the degree of degradation.

Raman main characteristic
band of PP/cm−1 832 967 1150 1324 1454

The linear correlation
coefficient (R) 0.936 0.912 0.955 0.926 0.958

To obtain an accurate prediction of the degree of degradation, the partial least squares (PLS)
is utilized to develop a linear calibration model. PLS, a combination of multiple linear regression,
canonical correlation analysis and principal component analysis, is widely used in spectral multivariate
calibration analysis. PLS modeling includes matrix decomposition and regression. The matrix
decomposition is shown in Equations (2) and (3).

X = TPT + EX =
f∑

k=1

tkpT
k + Ex (2)

Y = UQT + EY =
f∑

k=1

ukqT
k + EY (3)

In Equations (2) and (3), X and Y are the Raman spectral matrix and the degree of degradation
matrix, respectively; T and U are the score matrices of X and Y; P and Q are the load matrices of X and
Y; EX and EY are PLS fitting residual matrices of X and Y; f is the number of the main factor. Then,
according to Equations (4) and (5), the T and U matrices are linearly regressed.

U = TB (4)

B =
(
TTT

)−1
TTY (5)

In the prediction, the Tunknown of the unknown sample spectral matrix Xunknown is obtained from
P, and then, the predicted value matrix is obtained from Equation (6).

Yunknown = TunknownBQ (6)

For a PLS model, according to Equations (7) and (8), the decrease of the value of the root mean
square error of cross-validation (RMSECV) and the root mean square error of prediction (RMSEP)
indicates an increase of the model prediction accuracy.

RMSECV =

√√√√√√ n∑
i=1

(
yi,actual − yi,predicted

)2

n− 1
(7)

RMSEP =

√√√√√√ n∑
i=1

(
yi,actual − yi,predicted

)2

m− 1
(8)
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Therefore, as a good PLS model, values of RMSECV and RMSEP are expected to be as small as
possible. In addition, according to Equation (9), the closer the coefficient of determination (R2) is to 1,
the more accurate the PLS model is.

R2 = 1−

n∑
i=1

(
yi,actual − yi,predicted

)2

n∑
i=1

(
yi,actual − yi,actual

)2 (9)

Reference versus predicted degree of PP degradation based on the PLS model is shown in Figure 8.
The R2 of the calibration is 0.9859, and RMSECV is 1.2676%. In addition, the R2 of the prediction
is 0.9752, and RMSEP is 1.7228%. These results demonstrate the accuracy of the model prediction.
Furthermore, this model prediction ability can achieve the measurement requirements in practical
engineering applications.
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Figure 8. Reference versus predicted degree of PP degradation based on the partial least squares
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4. Conclusions

Raman spectroscopy coupled with chemometrics methods was used to effectively monitor the
degradation of PP under multiple extrusions in real time. The decreases of in-line Raman intensities
of the –CH2– group and the C-C indicated the scission of PP chains. The decrease of in-line Raman
intensities of the –CH3 group demonstrated that free radicals terminated with oxygen-containing
functional groups instead of –CH3 groups. The decreased trend of the in-line Raman intensity of
the -CH2- group showed that long chains were more easily damaged in the extrusion. These results
indicated that an in-line Raman spectroscopy measurement can monitor the degradation in the
extrusion more quickly, cost-effectively and without damage. Besides, in combination with PLS, the
degree of PP degradation under multiple extrusions measured by the GPC was predicted by the in-line
Raman spectroscopy in real time. For the PLS model, R2 of the calibration and RMSECV were 0.9859
and 1.2676%, R2 of the prediction and RMSEP were 0.9752 and 1.7228%, which demonstrated the
accuracy of the model. It proved that the in-line Raman spectroscopy measurement can monitor the
degradation, and what is more, it is capable to quantify the degree of degradation during the extrusion
in real time. Thus, in the extrusion process, the in-line Raman spectroscopy measurement was proved
to be an accurate and highly effective tool for monitoring the quality of products in real time, which
can avoid the production of unqualified products.
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