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Abstract: This work discusses the heat transfer process through a particular form of porous media:
an inorganic-based intumescent coating in full-expansion state. Although the thermal mechanism in
porous media has been vigorously studied for polymeric/ceramic/metallic foams, less information
is available on its application with intumescent-type polymers. This examination demonstrates
the procedure of (1) the optimisation of the coating’s internal multicellular structure for numerical
modelling, based on topological analyses; (2) the finite element simulation for the coating-sample
tested with cone calorimetry; and (3) the quantitative evaluation of the thermal insulation performance
of its porous structure by adopting effective thermal conductivity. The modelling technique was
verified using measurable data from the cone calorimeter tests. Consistent agreement between the
numerical predictions and experimental measurements was achieved over the whole steel-substrate
temperature history, based on the clarified thermal boundaries of the specimen and modelling
of the combined conduction-radiation transfer. This numerical approach exhibits the impacts of
porosity, pore-size, and external thermal load on the medium’s performance, as well as the individual
contributions of the component heat transfer modes to the overall process. The full understanding of
this thermal mechanism can contribute to the enhancement and optimisation of the thermal insulation
performance of a porous-type refractory polymer.

Keywords: intumescent coating; cone calorimeter; heat transfer; porous media; effective thermal
conductivity; finite element analysis

1. Introduction

In the field of structural steelwork, improvements in fire resistance have long been a critical issue,
as steel members cease to retain their strength and stiffness at elevated temperatures. This inherent
weakness is conventionally addressed through the application of insulation materials to exposed
surfaces. Such insulation acts to retard heat transmission to the core structural parts so that the time
required for the steel members to reach their critical temperatures can be delayed. Several options
are available for passive fire protection such as boards, sprays, blanket systems, and concrete
encasement [1]. Among them, intumescent-type coatings have a competitiveness of use given
their ability to deliver equivalent fire protection with a reduced thickness, along with a quicker
application and better aesthetic finish [1,2]. This type of coating can be categorised into two types:
organic-based and inorganic-based (or mineral-based). Although the two groups both have advantages
and disadvantages, the traditional organic-type produce toxic fumes upon exposure to heat [3–5].
The inorganic-based coating is therefore a viable alternative in compartments where non-toxic products
are necessary due to limited ventilation [6].
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The aim of this research project was to understand the thermo-physical behaviour of a particular
inorganic-type of intumescent coating, tested with a bench-scale cone calorimeter (CC), and to evaluate
its thermal insulation performance. This refractory system remains as a thin polymer layer overlying
a substrate at ambient temperature, as shown in Figure 1a. Under high temperature conditions,
however, it volumetrically expands due to the generation of thermo-chemical decomposition reactions
in its internal volume, and in turn becomes a multicellular microstructure, as illustrated in Figure 1b.
This distended medium is a rigid foam with a whitish colour (known as the coating residue), rather
than black carbonaceous char, due to its main mineral-based ingredients: sodium silicate, kaolinite,
aluminium oxide, and titanium dioxide [7]. This foam physically remains until the end of the cone
calorimeter tests as it does not reach any of the melting or transforming points of the components
(approximately above 1000 ◦C) during testing. We acknowledge that such geometric formations
contribute to the enhancement of the polymer’s ability to retard the heat penetration from its exposed
surface area across the distended porous body to the underlying substrate (e.g., the structural steel
member). This cognisance notwithstanding, there is a lack of comprehensive interpretation of the heat
transfer mechanism through the internal porous structure of this type of fire proofing system.
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Figure 1. Thermo-physical behaviour of an inorganic-based intumescent coating tested with cone
calorimetry: (a) in the initial state and (b) in the fully-expanded state, where `, h, and SEM refer
to the thickness of the coating, the distance between the heater and the coating’s exposed surface,
and scanning electron microscopy while the subscript 0 indicates the initial state.

Heat transfer in porous media has been a popular research topic associated with several
engineering applications such as polymeric, ceramic, and metallic foams. This thermal mechanism has
been examined by conventionally adopting the principle of the unidirectional transfer of conductive
heat flux through porous structures, which is represented by effective thermal conductivity (keff).
The derivation of this theoretical measure with its verification has thus been a primary objective in
relevant studies. This specific topic was of importance in this project and is a prerequisite that must be
examined before discussing the overall intumescence of the inorganic polymer. The comprehensive
subject of intumescence was thoroughly scrutinised in a companion paper by Kang et al. [8]. As part
of the project, we resolved the particular issues associated with understanding the heat transfer
mechanism through the intumescent porous medium. To quantitatively analyse its thermal insulation
performance, a series of numerical simulations were primarily conducted using finite element analysis
(FEA) software (i.e., Abaqus/Standard with user subroutines, Dassault Systemes). To support FEA
simulations and their verification, we completed several tests on the characteristics of the polymeric
material using bench-scale instruments such as an electric furnace (EF), scanning electron microscopy
(SEM), and CC [7]. By using the verified numerical modelling technique, a quantitative analysis was
then performed in terms of the individual contributions of the combined heat transfer modes to the
overall mechanism.
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2. Theoretical Background

Heat transfer through a porous medium has been conventionally considered as combined heat
flows [9], such as thermal conduction along its solid matrix, thermal radiation across internal pores,
and either thermal convection by or conduction through gases filling the pores. With respect to the latter
unavoidable selection between convective and conductive heat flux in gas-filled pores, convective heat
transfer is suppressed within pores smaller than approximately 10 mm [9,10]. As such, the majority of
the pores of the coating-residue studied in this article are expressed on the micron scale, as shown in
Figure 1b. In addition to this simple approach, the either/or choice can be completed based on the
principle of temperature-fluid motion relations. A previous study [11] stated that the temperature of
the heat source in CC (i.e., the spiral coil of the conical heater) remained in the range of approximately
579 to 752 ◦C at standard irradiance between 25 and 50 kW/m2. Under these temperature conditions,
the gaseous phase had a Rayleigh number lower than 102, and thus had an average Nusselt number
close to unity [12–14]. This indicates that the interred generation of buoyancy-induced fluid motions
was negligible within the micro-scale pores of the coating-residue. In other words, this heat transfer
mode can be regarded as a ‘pure’ conduction through motionless gases. Therefore, in this work,
the total heat flux transferring across the fully expanded coating,

.
q′′eff, is specified as the heat transfer

via solid conduction,
.
q′′c_solid; void conduction,

.
q′′c_void; and void radiation,

.
q′′r_void, as follows:

.
q′′eff =

.
q′′c_solid +

.
q′′c_void +

.
q′′r_void (1)

Based on the principle of unidirectional conductive heat transfer, these heat flows are represented
by three properties: conductive conductivity of the solid skeleton (kc_solid); conductive conductivity of
gas-filled voids (kc_void); and radiative conductivity of the voids (kr_void):

− kcff∇T = −kc_solid∇T − kc_void∇T − kr_void∇T (2)

Russell [15] was among the first to use kr_void in defining keff based on the transformation of the
algebraic formula from radiative transfer to unidirectional conductive transfer, as follows:

.
q′′r_void = σε

{
T4(z + dz)− T4(z)

}
= σε(dz)

{
T4(z+dz)−T4(z)
T(z+dz)−T(z)

T(z+dz)−T(z)
(z+dz)−z

}
= σε(dz) ∂T4(z)

∂T(z)
∂T(z)

∂z = 4σε(dz)T3(z) ∂T(z)
∂z = −kr_void

∂T(z)
∂z

(3)

Hereafter, several approximate solutions are proposed to derive correlations of keff with the use
of kr_void for porous media subjected to different conditions: either the pure conduction [16–21] or
radiation [22–25], or both [15,26–35] were considered in the existing solutions. In terms of the coupling
effect between the conduction and radiation modes, this effect is of minor importance for the total heat
transfer through porous media [32]. Based on these previous studies, in this work, we assumed the
three heat flows (

.
q′′c_solid,

.
q′′c_void, and

.
q′′r_void) to be independent, so the corresponding conductivities

for the heat fluxes can be expressed as follows:

keff = kc_solid + kc_void + kr_void (4)

In this study, the keff measurement of a porous medium represents the ability to transfer (or insulate)
heat through the medium’s body, and the components of keff indicate the capabilities to transmit heat
in their respective modes. Note that kc_solid and kc_void do not indicate the true conductivities of the
solid-particle and the gas filling pores; rather, they imply the contributions of solid and void conductions
to the overall heat transfer in porous media, respectively. Thus, the determinations of keff as well as kc_solid,
kc_void, and kr_void, were critical to achieving the objectives of this study.

In general, the thermal conductivity of matter is a function of temperature and is conventionally
measured based on the steady-state guarded hot-plate method (GHM) [36] or the laser flash
method [37]. In the case of a present intumescent substance, the physical measurement of its
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temperature-dependent thermal conductivity is highly problematic, as several thermo-physical
properties that considerably affect the measurement of thermal conductivity vary during the course of
measurement: the swelling as a reaction to a temperature rise, the length of the conduction transfer
path (or thickness) increases, its porosity increases (or density decreases), and its heat capacity per
unit envelope-volume decreases. As an alternative method, in this work, a numerical approach is
introduced to define the keff versus temperature relation for the particular form of porous medium.

First, a value of keff at the maximum porosity (Φmax, in the fully expanded state of the inorganic
intumescent polymer) was numerically calculated and verified by experimental data. Second, the initial
step was expanded into the determination of a global relationship between keff and porosity (Φ, 0 ≤
Φ ≤ Φmax) by adopting the verified numerical technique. Third, the Φ versus temperature relation,
which is dependent on the nature of the inorganic intumescent material, was derived based on both
the experimental observations and the keff(Φ) function determined in this article. The third process
is directly related to the simulation of the overall intumescence, which was demonstrated in the
companion work by Kang et al. [8].

In terms of the technical methodology for the numerical predictions, the combined
conduction-radiation transfer through the multicellular body of the fully expanded intumescent
coating was simulated using the FEA software:

• The irregular porous morphology of the coating-residue was numerically modelled as being
composed of a structured multicellular formation in the solid-phase (i.e., solid skeleton) and clonal
representative elemental cells (REC) in the gas-phase, as illustrated in Figure 2. The solid skeleton
represents the dominant routes of the conductive heat transmitted through the solid-phase.

• The shape and size of the RECs were determined based upon literature reviews of the key
geometrical aspects that affect the determination of keff and the results of a topological analysis
on the coating-residue’s structural characteristics in terms of the probability distributions of pore size
and volume.

• This numerical simulation also considered the influence of radiative heat absorbing into and
emitting from the strut and wall of the pores smaller than the RECs, as illustrated in Figure 2a,b.
RECs were therefore regarded as being filled with a mixture of the strut/wall of these smaller
pores and air (i.e., a semi-transparent medium).

• The tortuosity of the solid skeleton was included by considering two outermost cases: inline and
staggered configurations, as described in Figure 3. This approach enabled the prediction of the
upper and lower limits of keff(Φ), which are applicable to the inorganic intumescent system.

Polymers 2019, 11, x FOR PEER REVIEW 4 of 26 

 

dependent thermal conductivity is highly problematic, as several thermo-physical properties that 
considerably affect the measurement of thermal conductivity vary during the course of measurement: 
the swelling as a reaction to a temperature rise, the length of the conduction transfer path (or 
thickness) increases, its porosity increases (or density decreases), and its heat capacity per unit 
envelope-volume decreases. As an alternative method, in this work, a numerical approach is 
introduced to define the keff versus temperature relation for the particular form of porous medium. 

First, a value of keff at the maximum porosity (Фmax, in the fully expanded state of the inorganic 
intumescent polymer) was numerically calculated and verified by experimental data. Second, the 
initial step was expanded into the determination of a global relationship between keff and porosity (Ф, 
0 ≤ Ф ≤ Фmax) by adopting the verified numerical technique. Third, the Ф versus temperature relation, 
which is dependent on the nature of the inorganic intumescent material, was derived based on both 
the experimental observations and the keff(Ф) function determined in this article. The third process is 
directly related to the simulation of the overall intumescence, which was demonstrated in the 
companion work by Kang et al. [8].  

In terms of the technical methodology for the numerical predictions, the combined conduction-
radiation transfer through the multicellular body of the fully expanded intumescent coating was 
simulated using the FEA software:  

• The irregular porous morphology of the coating-residue was numerically modelled as being 
composed of a structured multicellular formation in the solid-phase (i.e., solid skeleton) and 
clonal representative elemental cells (REC) in the gas-phase, as illustrated in Figure 2. The solid 
skeleton represents the dominant routes of the conductive heat transmitted through the solid-
phase. 

• The shape and size of the RECs were determined based upon literature reviews of the key 
geometrical aspects that affect the determination of keff and the results of a topological analysis 
on the coating-residue’s structural characteristics in terms of the probability distributions of pore 
size and volume. 

• This numerical simulation also considered the influence of radiative heat absorbing into and 
emitting from the strut and wall of the pores smaller than the RECs, as illustrated in Figure 2a,b. 
RECs were therefore regarded as being filled with a mixture of the strut/wall of these smaller 
pores and air (i.e., a semi-transparent medium). 

• The tortuosity of the solid skeleton was included by considering two outermost cases: inline and 
staggered configurations, as described in Figure 3. This approach enabled the prediction of the 
upper and lower limits of keff(Ф), which are applicable to the inorganic intumescent system.  

 
Figure 2. Modelling scheme for heat transfer in porous media: (a) definition of the structural 
components of a cell, (b) conceptual solid skeleton superimposed on an SEM image, and (c) heat flows 
in a representative elemental cell (REC). 
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components of a cell, (b) conceptual solid skeleton superimposed on an SEM image, and (c) heat
flows in a representative elemental cell (REC).
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To support the FEA, laboratory-scale tests on this material were conducted utilising EF, SEM,
and CC. The physical measurements were used to perform the topological analysis on the internal
multicellular structure and verify the numerical predictions. Before discussing the primary topic
regarding the theoretical methodology and numerical simulations, key information on the experiments
are presented in the next section. Tests are outlined only due to the authors’ papers stating their
details [7,14].

3. Experimental Methods

Although several bench-scale tests were performed, this section introduces two independent
experiments that are directly associated with the examination of heat transfer in porous media:

(1) Since EF can be maintained at a pre-determined temperature in a steady state, this apparatus was
appropriate to identify the relationship of the porosity (or envelope density) versus the temperature,
and the distributions of porosity and pore-size along the fully expanded coating’s thickness.

(2) The exact quantity of irradiance on the exposed surfaces of a specimen placed in CC was
thoroughly scrutinised in a previous study [38]. This knowledge of the sample’s thermal
boundaries in CC testing enabled us to concentrate on investigating the interred heat transfer
mechanism. Unlike EF, CC simultaneously enables the real-time observation of both volume
expansions and temperature increases. These favourable features contributed to the evaluation
of the thermal insulation performance of the inorganic intumescent coating as well as to the
verification of the numerical predictions.

3.1. Electric Furnace Test

3.1.1. Preparation

Plain steel plates, 70 × 70 × 5 mm, were coated with 3-mm-thick inorganic intumescent polymer.
The prepared specimens were individually heated from ambient temperature to 800 ◦C at the rate
of 10 ◦C/min at intervals of 100 ◦C in an EF. At each level of the pre-planned temperatures, EF’s
internal atmosphere was maintained for a certain period of time for the placed sample to reach
thermal equilibrium with the EF environment. After full expansion and cooling, the samples were
physically sliced (in the x-direction) at intervals of 4 mm using a high-speed cutter. This segmenting
was performed to observe the porosity distributions along the coating-thickness (in the z-direction),
as illustrated in Figure 4a. The internal structure of each of the bulk (or envelope) volumes was
observed by SEM (S-300H SEM Hitachi, Tokyo, Japan), as shown in Figure 4b.
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3.1.2. Topological Analysis

To determine the size of the representative elemental cells (RECs), we completed a topological
analysis on the SEM images. Based on the void boundaries highlighted with black lines in Figure 4c,
two types of probability distributions were obtained: (1) cell-diameter (δcell) and (2) cell-volume (Vcell),
as illustrated in Figure 5a. Vcell indicates the volume occupied by each of the similar-sized groups of
pores, if the pore is assumed to be spherical in shape. We found that microscopic pores in a range
between approximately 5 µm and 650 µm coexisted. The peak relative frequency densities of δcell
(solid lines with round symbols) were observed when the δcell was between approximately 5 µm and
25 µm at both temperatures of 300 and 600 ◦C. However, the tendency of the relative frequency density
distribution of δcell disagreed with that of Vcell (dotted lines with cross symbols).
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Figure 5. Probability distributions of cell size and volume: (a) relative frequency densities of δcell and
Vcell, and (b) relative class frequency of Vcell.

To determine the most representative size of the pores, the relative frequency densities of Vcell
were grouped into seven classes of δcell in 100 µm intervals. Subsequently, relative class frequencies
of Vcell (i.e., Vpro) were derived, as shown in Figure 5b and Table 1. Based on the observations,
we concluded that (1) more than 79.5% of the total volume of the void space was accounted for by
pores with a diameter of approximately 5 to 400 µm (Classes I, II, III, and IV), and (2) relatively even
frequencies were observed in these four classes.



Polymers 2019, 11, 221 7 of 26

Table 1. Percentage probability distributions of cell volume.

Temperature (◦C)

Probability Distributions, Vpro (%)

SumClassification of Cell Diameter (µm)

I (5–100) II (100–200) III (200–300) IV (300–400)

300 22.8 18.6 15.6 22.5 79.5
600 27.5 21.1 17.4 23.8 89.8

3.2. Cone Calorimeter Test

Steel plates, 70 × 70 × 5 mm, were coated with inorganic intumescent polymer with different
dry-film thicknesses (DFT) of 2, 3, and 4 mm. These three groups of specimens were individually
placed under the conical heater at z = 20, 5, and 0 mm, as shown in Figure 6, in order to apply a similar
quantity of irradiance to their top surfaces when fully expanded. This initial placement setup was
determined through pilot tests. The prepared specimens were consistently exposed to the pre-regulated
heat source (i.e.,

.
q′′irr), which was adjusted to 35, 50, or 65 kW/m2 25 mm underneath the baseplate of

the heater in the calibration stage. In the tests, two sets of data were measured: (1) the temperature
history of the steel substrate (Ts) using five thermocouples welded on its bottom surface; and (2) the
thicknesses of the fully expanded specimens from the recorded video clips using a digital screen ruler,
as listed in Table 2.

Table 2. Experimental data of fully expanded thickness (units of mm) [14].

DFT (mm)
.
q”

irr (kW/m2) 35 50 65

2 Upper 22.3 (17.7) 22.4 (17.6) 22.9 (17.1)
Lower 19.2 (20.8) 20.2 (19.8) 20.5 (19.5)

3 Upper 30.3 (24.7) 31.7 (23.3) 31.2 (23.8)
Lower 29.0 (26.0) 29.7 (25.3) 31.0 (24.0)

4 Upper - 41.2 (18.8) -
Lower - 39.6 (20.4) -

The number in the parentheses indicates the z-coordinate in Figure 6.
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4. Methodology

4.1. Derivation of Effective Thermal Conductivity from Cone Calorimeter Testing

The intumescent fire-proofing system is often tested with CC, as illustrated in Figure 7. In tests,
a pre-regulated irradiance (

.
q′′irr) is consistently imposed on the top surface of a material sample, and part

of the absorbed heat is continually emitted by (or lost from) the surface area via radiation and free
convection (

.
q′′rl and

.
q′′cvl, respectively). For a comprehensive interpretation of the keff derivation from

CC tests, given the control volume of the porous specimen is regarded as a continuum mixture with an
effective thermal conductivity (keff), and this continuum is assumed to be composed of two isothermal
layers (Vtop and Vbtm) with different temperatures of Ttop and Tbtm, the heat transfer through the
solution domain is governed by three thermal quantities: (1) net heat influx on the top surface of the
upper layer (

.
q′′net_in), (2) effective conductive heat flux transferring through the continuum (

.
q′′eff), and (3)

net heat loss on the bottom surface of the lower layer (
.
q′′net_out). The thermal energy stored in each of

the layers in differential time intervals (
.

Qst) is then expressed as:

.
Qst_top = ρdcVtop

dTtop
dt = A

( .
q′′net_in −

.
q′′eff

)
.

Qst_btm = ρdcVbtm
dTbtm

dt = A
( .
q′′eff −

.
q′′net_out

) (5)

where
.
q′′net_in = α

.
q′′irr −

( .
q′′rl_top +

.
q′′cvl_top

)
,

.
q′′eff =

keff
`z

(
Ttop − Tbtm

)
From Equation (5), keff can be derived based on the classical principle of the steady-state guarded

hot-plate method (GHM) [36], as illustrated in the diagram accompanying Figure 7, as follows:

keff =

.
q′′net_in`z

Ttop_steady − Tbtm_steady
(6)

where
keff = kc_solid + kc_void + kr_void

where Ttop_steady and Tbtm_steady refer to the temperatures of the top and bottom surfaces when reaching
a steady state, which correspond to the steady temperatures of the heating and cooling assemblies (Th
and Tc) in the GHM, respectively.
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Equation (6) implies that once the Ttop_steady and Tbtm_steady are obtained, keff can be calculated
under the conditions that the external thermal load (

.
q′′net_in) and coating thickness (`z) are known. In the
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GHM, the corresponding quantity for
.
q′′net_in is identified by recording the average power supplied

to the metering section of the heating unit, whereas in this study, it could be thoroughly quantified
by theoretically calculating the view factors [38]. The coating thickness is also measurable during
cone calorimeter tests, for instance, using a video recorder and a digital ruler [14]. Hence, the two
sets of temperature histories of the inorganic intumescent polymer (Ttop_steady and Tbtm_steady) were
numerically predicted to define keff, which in turn represents the given porous medium’s ability to
retard the internal heat transfer (i.e., thermal insulation performance).

4.2. Scheme of Determination of Effective Thermal Conductivity

4.2.1. Conductive Conductivity of Solid Skeleton

kc_solid is dependent on the geometric morphologies of the porous media due to the spatial
relationship between the global heat flow direction (from heated to non-heated surfaces) and the
orientation of local conduction paths (along solid skeletons); the terminologies are described in
Figure 2a. Its determination has conventionally been associated with several idealised cellular
structures such as cubical, circular, dodecahedral, and tetrakaidekahedral pores in either open or
closed cell forms. This is because the activity of modelling a local exact-morphology of a porous
medium neither ensures a representative characteristic nor provides efficiency or cheapness from
a theoretical analysis point of view. In recent theoretical models, a representative (or idealised)
elemental cell has tended to be determined through topological analyses on two- or three-dimensional
visual images, obtained by either X-ray tomography [32] or SEM [39]. Based on the conventional
approach to modelling conduction along solid matrices, we developed a simulation scheme to propose
a multicellular configuration, optimised for the present inorganic intumescent system.

There is a noticeable difference between the typical porous media, such as polymeric, ceramic,
and metallic foams, and the intumescent coating studied in this paper. The representations of the
conventional foams are relatively regular and periodic since their morphologies are deliberately
controlled by casting routes in the process of manufacturing. Unlike the intentional formation of
these commercial products, the internal structure of the fully expanded coating is constructed in the
course of thermo-chemical decomposition reactions, specifically via water vaporisation [14]. The water
vapours, liberated from chemical chains, tend to move outward toward the surroundings due to their
lower density than that of the residual solid matrix. This rapid migration of water molecules results in
a coexistence of both open and closed cells with irregular shapes and sizes throughout the solid matrix.

As a practical solution method to model this sporadic formation, we only shaped the dominant
route of solid conduction in the FEA in this study. Figure 2 describes the scheme of this approach,
and illustrates a structured multicellular model superimposed on an SEM image of the fully expanded
intumescent coating. The model was composed of a solid skeleton and clonal RECs. With regard to the
shape of the RECs, at higher levels of porosity than approximately 0.8, the shapes of the inclusions
and cross sections of the struts have minor effects on the thermal conduction along the continuous
solid matrices of polymeric media with low conductivity [17,20]. Coquard et al. [20] claimed that
numerical models with homogenous dispersions of regular voids enabled the reliable estimation of
effective thermal conductivity compared to those with real foams observed using tomographic images.
Hence, in this FEA simulation, we modelled the mode of solid conduction as occurring along the
structured dominant-conduction-route.

4.2.2. Conductive Conductivity of Gas-Filled Voids

In relation to kc_void, Qiao et al. [40] claimed that for pores larger than 1.4 µm, the intrinsic thermal
conductivity of gases could be adopted disregarding the influence of the reduction in gas conductivity,
possibly caused by the correlation between the mean free paths of gas molecules and phonons, called
the Knudsen effect. In this work, we therefore simulated the void conduction through the systematic
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geometry (Figure 2c) by assigning the true conductivity of the air (0.026 W/(mK)) to the gases filling
the RECs in FEA modelling.

4.2.3. Radiative Conductivity of Gas-Filled Voids

At high temperatures, thermal radiation in enclosures, represented by kr_void, considerably
contributes to the overall mechanism of heat transfer in porous media due to the algebraic terms
of the fourth power of the absolute temperatures of the surfaces shaping pores [29,32]. The void
radiation is influenced by radiative phenomena (absorbing, emitting, and scattering) in association
with the optical properties of the struts and walls of pores (extinction, absorption, and scattering
coefficients, and scattering phase function) as well as structural characteristics such as porosity,
the shape and size of pores, the volume fractions of the pore strut and wall, and their thicknesses.
In relation to this heat transfer mode, existing theoretical models can be classified as precise or
practical models. The precise models examine the nonlinear distribution of temperature through
gas-filled pores caused by the radiant phenomena by adopting the radiative transfer equation
(RTE) [21,24,25,31,41]. Practical models prohibit the detailed prediction of temperature gradient
across pores but is favourable for identifying the behavioral tendencies of a given porous medium
with relatively cheap computational costs [25,27,39].

As the primary purpose of this work was to evaluate the thermal insulation performance of the
intumescent polymer’s multicellular structure, the temperature distributions through the internal pores did
not need to be specified. Hence, this study conforms to the practical approach to model the void radiation.

The structured solid skeleton with RECs (Figure 2b) efficiently simulates the solid conduction
along the dominant heat transfer route. From the radiation viewpoint, however, the radiative
phenomena occurring in the pores smaller than the RECs should be considered. In this respect,
two cases of RECs in the porous coating-residue were introduced, as shown in Figure 8, to address
the issue of the radiative phenomena. The A-type REC was filled only with air, whereas the B-type
included smaller pores within its boundary. Unlike the A-type, when radiant heat was transferred
through the inner space of the B-type, absorbing, emitting, and scattering occurred on the strut and
wall of the smaller pores. These optical events may reduce the amount of the heat transferred through
the B-type REC when compared to the A-type. This attenuation effect needs to be checked in the
process of theoretical modelling.
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In this work, we used the structured solid frame but we assumed its clonal RECs to be filled
with an absorbing-emitting medium to satisfy the transparency in the interpretation of the radiative
occurrences in the B-type RECs. This semi-transparent medium acts as a mixture of the strut/wall
of the smaller pores and the air. This practical approach enabled the simulation of the attenuation
effect of cavity radiation based on the principle of radiation in enclosures containing translucent
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media [41]. Specifically, when a radiant intensity, emitted by an arbitrary kth internal surface of a REC
(as shown in Figure 9), penetrates the participating medium and arrives at the nth internal-surface,
its quantity decreases due to absorption by the intervening substance. The absorbed energy increases
the mixture’s temperature. The heated medium simultaneously re-emits a radiant intensity to the
REC’s internal surface areas. This phenomenon is represented by the geometric-mean transmittance of
the participating medium (0 ≤ τ ≤ 1).
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Figure 9. Unit enclosure, which is composed of N discrete elemental surfaces and filled with
translucent media.

The Abaqus/Standard was employed to create the geometry of the structured solid skeleton in
the FEA. Although this commercial tool has been optimised for numerical analyses on heat transfer in
complex solid geometries via conduction, convection, and radiation, the simulation of the attenuation
effect, caused by the addressed semi-transparent medium, is beyond its capability. As an alternative
method, we theoretically derived the algebraic matrices of the net radiant heat influx on each of the RECs’
internal surface areas, where the derivation of the matrices is detailed in Section 5.2.1. The calculated
heat fluxes were manually assigned to the FEA multicellular model by adopting user-subroutines and the
radiant fluxes were continually updated at each time increment. For this FEA, the following assumptions
were made:

(1) The strut/wall of RECs was opaque, grey, and diffuse.
(2) The medium-filling RECs were translucent, isothermal, grey, and diffuse.
(3) The two-dimensional FEA model disregarded the volume fraction of the pore-strut/wall and

their differences in thickness.
(4) The scattering effect in the medium was neglected.

5. Numerical Simulations and Results

5.1. Modelling Scheme

The combined conduction-radiation through the porous medium, composed of the structured solid
skeleton and clonal RECs, was numerically simulated. Two types of FEA models are proposed for different
purposes: Figure 10a,b demonstrate the geometry and thermal boundaries of the two types of models:

(1) Prototype—This has a single enclosure (NPV = 1), as shown in Figure 10a, and was designed
to develop a numerical technique capable of simulating the effect of radiation attenuation in
microscale pores containing participating media.

(2) Multicellular type—The prototype model expands upon multi-enclosures along the z-direction
(NPV = n), as shown in Figure 10b. This was developed to determine the size of the RECs
associated with the findings of the topological analysis and to evaluate the thermal insulation
performance of the inorganic intumescent system. We completed this assessment by defining a
range of effective thermal conductivity (keff) that was applicable to the porous coating-residue.
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The geometries of the models were determined by three variables: the total thickness of the
specimens (L), the number of pores in the z-direction (NPV), and the porosity (Φ), as follows:

δcell = δunit
√

Φ = (L/NPV)
√

Φ (7)

δwall = (δunit − δcell)/2 (8)

The view factor between the conical heater and the exposed top surface of the models, depending
on the top boundary area’s z-coordinate (Figure 6) and the corresponding true radiant heat absorption
by this surface area (

.
q′′net_in) are tabulated in Table 3. The principal direction of heat transfer was from

the models’ irradiated top surface to the bottom surface. Both side edges of their solid skeletons
were assumed to be adiabatic. We simulated conductive heat, transferred along the solid frame and
through the air filling enclosures, using the inbuilt procedure of conduction transfer provided by the
Abaqus/Standard. The radiant flux (

.
q′′k ) on each of the N internal-surface areas of the enclosures was

calculated and manually assigned using user subroutines. From an FEA viewpoint, both the accuracy
of the numerical results and the efficiency of the computations were affected by the number and type
of elements. Through a series of sensitivity studies, N and element-type were determined as 16 and
8-node biquadratic diffusive heat transfer elements (i.e., DC2D8), respectively. The thermo-physical
properties of the materials used in this FEA modelling and the adopted convective heat transfer
coefficients are listed in Table 4 [14]. During FEA, the temperature histories of the top and bottom
surfaces and the steel substrate (Ttop, Tbtm, and Ts, respectively) were monitored as these data were
critical values for the calculation of keff using Equation (6) as well as verification.

Table 3. View factors [38] and the corresponding true radiant heat absorptions (
.
q′′net_in) at emissivity (ε)

= 0.77.

z (mm) Fh-top *
.
q”

net_in (kW/m2)
.
q”

irr = 35 kW/m2 50 kW/m2 65 kW/m2

30 0.2382 24.75 35.36 45.97
25 0.2253 23.42 33.45 43.49
20 0.2126 22.10 31.57 41.04
15 0.2002 20.81 29.73 38.65

* For 100 mm2 specimens.
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Table 4. Thermo-physical properties of the materials and convective coefficients in cone calorimeter testing.

Materials
Properties Conductivity

k (W/(mK))
Density ρd

(kg/m3)
Specific Heat c

(J/(kgK))
Emissivity ε

Convective Coefficient
h (W/(m2 K))

Intumescent coating 1.56 2077 1780 0.77 4

14.6 5Steel plate 1 53.30 7870 440 -
Air 2 0.03 1.16 1007 -

Insulation board 3 0.21 900 1000 0.90
1 Mild steel element (AISI C1020); 2 Standard air properties; 3 High-performance insulation board (Promatech-T
produced by Promat, Tisselt, Belgium); 4 Hemispherical total emissivity [14]; 5 Coefficient for turbulent free
convection adjacent to a horizontal upward-facing surface [14].

5.2. Prototype Model

5.2.1. Derivation of Void Radiation

In order to simulate the radiation transfer through the voids of the inorganic intumescent coating,
we formulated a radiation-exchange mechanism in a unit enclosure using the extended net-radiation
method [41]. This general form of enclosure was assumed to be composed of N discrete internal
surface areas and filled with a semi-transparent isothermal medium with Tg, as shown in Figure 9.
The energy balance for a solid-phase control volume (Vk), adjacent to the kth internal surface area (Ak)
of the concave, was derived as:

ρdcVk
dT
dt

= Ak
( .
q′′ext −

.
q′′k
)
= Ak

.
q′′ext − Ak

( .
q′′o, k −

.
q′′i, k

)
(9)

.
q′′k =

.
q′′o, k −

.
q′′i, k (10)

where
.
q′′ext indicates the radiant flux supplied to Vk,

.
q′′k represents the net radiative loss from Ak,

and
.
q′′o, k and

.
q′′i, k indicate the radiant heat fluxes outgoing from and incoming to Ak, respectively.

.
q′′o, k

is composed of the radiant intensities, emitted by and reflected from Ak, as follows:

.
q′′o, k = εσT4

k + ρr
.
q′′i, k = εσT4

k + (1− α)
.
q′′i, k = εσT4

k + (1− ε)
.
q′′i, k (11)

where
ε = α = 1− ρr

Based on the principle of cavity radiation in absorbing-emitting media,
.
q′′i, k is derived using view

factor (F) and its reciprocity:

Ak
.
q′′i, k =

N

∑
j=1

AjFj−k

(
q′′o, jτ + eb, gα

)
= Ak

N

∑
j=1

Fk−j

(
q′′o, jτ + eb, gα

)
(12)

where
Fj−k =

(
Ak/Aj

)
Fk−j, τ + α = 1, eb,g = σT4

g

where eb,g indicates the energy emitted by the black medium filling enclosures. The subscripts refer to
the ordinal numbers of the internal-surface areas (Figure 9), and the dash in the subscript of F denotes
‘to’. To eliminate

.
q′′i, k, Equation (11) is substituted into Equation (10), which gives:

.
q′′k =

ε

1− ε

(
σT4

k −
.
q′′o, k

)
(13)

Another form of
.
q′′k can be formulated by substituting Equation (12) into Equation (10), as follows:

.
q′′k =

.
q′′o, k −

N

∑
j=1

Fk−j

(
q′′o, jτ + eb, gα

)
(14)
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Equation (13) is reformulated for
.
q′′o, k in terms of

.
q′′k and Tk, and inserted into Equation (14) in

order to quantify the net radiation loss on each of the enclosure’s internal-surface areas (
.
q′′k ), as follows:

N

∑
j=1

(
γkj

ε
− Fk−j

1− ε

ε
τ

)
.
q′′j =

N

∑
j=1

[(
γkj − Fk−jτ

)
σT4

j − Fk−jασT4
g

]
(15)

where

Ti+1
g = Ti

g −
dt

ρd, gcgVg

(
N

∑
k=1

Akq′′k

)
where γkj represents the Kronecker delta, which is equal to 1 at k = j and to 0 at k 6= j; the superscript i
of Tg refers to the time step.

Subsequently, we built an algebraic matrix using Equation (15) to manually assign the
corresponding radiant flux

.
q′′k to each of the N discrete internal-surface areas of a REC in FEA,

as follows:
[A]N×N{X}N×1 = {M}N×1 (16)

where

[A] =


1/ε− F1−1τ(1− ε)/ε −F1−2τ(1− ε)/ε · · · −F1−Nτ(1− ε)/ε

1/ε− F2−2τ(1− ε)/ε · · · −F2−Nτ(1− ε)/ε
. . . −F3−Nτ(1− ε)/ε

Symmetry 1/ε− FN−Nτ(1− ε)/ε



{X} =



.
q′′1.
q′′2
...

.
q′′N

, {M} =


(1− F1−1τ)σT4

1 − F1−2τσT4
2 − · · · − F1−NτσT4

N − ασT4
g

−F2−1τσT4
1 + (1− F2−2τ)σT4

2 − · · · − F2−NτσT4
N − ασT4

g
...

−FN−1τσT4
1 − FN−2τσT4

2 − · · ·+ (1− FN−Nτ)σT4
N − ασT4

g


The subscript ordinal numbers of the components in the matrices denote the internal-surface

areas, as illustrated in Figure 10a. The inverse matrix of the square matrix [A] was obtained using the
lower-upper (LU) factorisation. The matrices [A] and {M} were coupled with the view factor matrix
[F], which is composed as:

[F]N×N =


F1−1 F1−2 · · · F1−N
F2−1 F2−2 · · · F2−N

...
...

. . .
...

FN−1 FN−2 · · · FN−N

 (17)

The view factors between the internal-surface areas were theoretically calculated using the view
factor catalogue [41].

5.2.2. Examination of Radiation Attenuation Effect

According to the introduced modelling scheme, the radiation attenuation in enclosures, caused by
the absorbing-emitting medium, is represented by the geometric-mean transmittance (τ). To identify
its effect on the determination of keff, this parameter was methodologically altered from 1.0 to 0.2 at
intervals of 0.2 under different conditions of porosity (Φ), irradiance (

.
q′′irr), and pore-size (δcell). A τ

of 1.0 indicates that no absorption and re-emission exist, and thus enclosures are under a purely
transparent condition. Figure 11a shows that τ and keff were in an almost linear relationship.
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Percentage deviation (Di) was introduced to demonstrate the impact of the τ change on the
determination of keff, as follows:

Di(%) = |keff, τ=i − keff, τ=1.0|/keff, τ=1.0 × 100 (18)

The value of keff at τ = 1.0 was appointed as the reference value. Figure 11b shows a gradual
increase in Di with the reduction in τ, obtained in the FEA simulation using the prototype model
at δunit = 1 mm. We identified that the more intense the thermal load and the greater the porosity,
the larger the Di. Subsequently, the effect of the τ change was examined according to δcell. Figure 11c
demonstrates the variations in Di with the reduction in δcell at different τ, under the constant conditions
of

.
q′′irr = 50 kW/m2 and Φ = 0.90. We observed that the impact of the radiation attenuation on the

overall cavity radiation noticeably reduced as the size of the cell decreased from approximately 1 mm
to around 10 µm. Di was less than 6% when δcell was in the range of 5 µm to 400 µm in diameter.
Figure 11d shows the absolute values of keff under the identical conditions of

.
q′′irr, Φ, δcell, and τ to

those in Figure 11c. The 6% of the relative measure Di indicated approximately 0.0082 W/(mK) of keff,
which was relatively small when compared to the true conductivity of the solid-particle (1.56 W/(mK)).
Hence, we concluded that the decrease in the radiation, due to the existence of the intervening mixture
of the smaller pores’ strut/wall and the air in pores (B-type REC in Figure 8), can be ignored when the
pores are microscopic in size for numerical efficiency and engineering applications.
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Figure 11. Effect of semi-transparent media on cavity radiation: (a) relation between τ and keff at

.
q′′irr =

50 kW/m2 and Φ = 0.90; (b) deviations from keff at τ = 1.0 with changes of τ,
.
q′′irr, and Φ; (c) deviations

from keff at τ = 1.0 with changes of δcell and τ, at
.
q′′irr = 50 kW/m2 and Φ = 0.90; and (d) keff at

.
q′′irr =

50 kW/m2 and Φ = 0.90 with changes of δcell and τ.
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5.3. Multicellular-Type Model

After the sub-study using the prototype model, we conducted a series of primary FEA simulations
adopting the multicellular-type model. Two formations of the clonal RECs were introduced: inline
and staggered, as shown in Figure 12. From each of the two configurations, two outermost courses of
global heat transfer were derived: A-A’ and B-B’ or C-C’ and D-D’, respectively. This approach was
designed to consider the tortuosity of the solid conduction routes, and the indirectness of heat flows in
void conduction and radiation modes. This allowed us to predict an appropriate range of keff for the
given porous structure using Equation (6).
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5.3.1. Determination of Representative Elemental Cell (REC)

In the topological analysis of the SEM images, the applicable range of REC size was narrowed to
5 to 400 µm (Classes I, II, III, and IV), as listed in Table 1. In addition to the observational findings,
supplementary numerical simulations were performed to consider the true ability of the four-classed
cells to transport heat when determining the most appropriate size of the RECs. Table 5 shows
the geometric independent variables input in modelling, and the dependent variables, calculated
using Equations (7) and (8). From the simulations, a total of 16 outcomes for keff were produced,
as tabulated in Table 6 (four classes multiplied by four heat transfer courses in two types of formations).
Next, we weighted the calculated values of keff using the corresponding volume fractions in the four
classes (Table 1) to consider their importance by:

keff
∗ =

IV

∑
i=I

(
ke f f , i ×Vpro, i

)
/

IV

∑
i=I

Vpro, i (19)

The weighted version of keff (i.e., keff*) for each of the heat transfer courses and their upper and
lower limits are tabulated in Table 7. Notably, the predicted range of keff* overlapped that of keff
obtained from the multicellular simulation at δcell = 200 µm. The obtained results for keff were in the
range of 0.0927 to 0.1117 W/(mK) at Φ = 0.913 and

.
q′′irr = 50 kW/m2. Hereafter, 200 µm is used as the

representative size of the RECs for the porous coating-residue in subsequent modelling.
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Table 5. Geometric variables used in the supplementary FEA simulations.

Classification Φ 1 L 1 (µm) NPV
1 δunit

2 (µm) δcell
2 (µm) δwall

2 (µm)

I

0.913 3000

60 50 48 1
II 20 150 143 3
III 12 250 239 6
IV 8 375 358 8

1 Independent variable; 2 Dependent variable.

Table 6. Results of supplementary simulations at Φ = 0.913 and
.
q′′irr = 50 kW/m2.

Heat Transfer Course
Effective Thermal Conductivity, keff (W/(mK))

Class I Class II Class III Class IV

A-A’ 0.1080 0.1105 0.1130 0.1160
B-B’ 0.1061 0.1050 0.1040 0.1027
C-C’ 0.0937 0.0932 0.0927 0.0922
D-D’ 0.0953 0.0979 0.1005 0.1037

Table 7. keff* for inorganic intumescent coating at Φ = 0.913 and
.
q′′irr = 50 kW/m2.

Temperature (◦C)

keff* (W/(mK))

Upper Bound Lower BoundHeat Transfer Course

A-A’ B-B’ C-C’ D-D’

300 0.1118 0.1045 0.0930 0.0993
0.1118 0.0930600 0.1117 0.1045 0.0930 0.0991

5.3.2. Evaluation of Thermal Insulation Performance

The variation in keff according to Φ was examined. Four sets of Φ-keff relations were derived from
the courses of A-A’, B-B’, C-C’, and D-D’ in the inline and staggered formations and superimposed on
the results obtained using the existing generic models [19], as shown in Figure 13. The conventional
models theoretically derived a hybrid of different conductivities of solid and void phases. In contrast,
in the multicellular model studied in this paper, keff was derived as a result of numerically simulating
the combined mechanism of solid and void conductions and cavity radiation through porous media.
We observed that the FEA predictions were positioned between the Maxwell_1 and EMT models in
the region of internal porosity. We also found that the true conductivity of the solid-particle at Φ = 0
(i.e., ksolid = 1.56 W/(mK)) decreased to around 0.0797 W/(mK) at Φ = 0.930. This indicates that the
thermal conductivity of the inorganic intumescent polymer decreased by around 5.7% due to the creation
of the porous structure in its internal volume. In other words, its thermal insulation performance was
noticeably enhanced.
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6. Discussion

The effective thermal conductivity (keff) represents a complex medium’s ability to retard heat
penetration. To define the upper and lower bounds of keff for the porous coating-residue, we used
Equation (6). (1) The net heat absorbed by its exposed surfaces was accurately quantified by
theoretically calculating the view factors. (2) The systematic multicellular model was developed
based on the findings identified from the literature review and topological analysis. The model
is composed of inline/staggered solid skeleton and clonal RECs of approximately 200 µm in size,
which simulates the combined heat transfer via solid and void conductions, and cavity radiation.
(3) The proposed model’s top and bottom surface temperatures (Ttop and Tbtm in Figure 10) were
numerically predicted.

In this section, we discuss the verification of the developed multicellular modelling and proposed
range of keff, in association with a complementary multilayer model and the experimental data,
which were obtained from the primary cone calorimeter and supplementary electric furnace tests.
For validation purposes, the multilayer model is briefly introduced, and details of its development
procedure were thoroughly previously discussed [8]. Subsequently, two topics were examined to
promote the understanding of the mechanism of heat transfer through porous structures, using the
validated multicellular model: (1) the influences of the critical factors for heat transfer in porous
media (δcell, Φ, and

.
q′′irr), and (2) the individual contributions of the component heat transfer modes

(solid conduction, void conduction, and void radiation, represented by kc_solid, kc_void, and kr_void,
respectively) to the overall heat transfer.

The geometric variables used in these simulations are listed in Table 8.

Table 8. Geometric variables for multicellular modelling.

L 1 (µm) Φ 1 NPV
1 δunit

2 (µm) δcell
2 (µm) δwall

2 (µm)

3000

0.865

1 3000.0 2790.2 104.9
2 1500.0 1395.1 52.5
3 1000.0 930.1 35.0
6 500.0 465.0 17.5

11 272.7 253.7 9.5
50 60.0 55.8 2.1

0.895

1 3000.0 2838.1 80.9
2 1500.0 1419.1 40.5
3 1000.0 946.0 27.0
6 500.0 473.0 13.5

11 272.7 258.0 7.4
50 60.0 56.8 1.6

0.930

1 3000.0 2893.1 53.5
2 1500.0 1446.5 26.7
3 1000.0 964.4 17.8
6 500.0 482.2 8.9

11 272.7 263.0 4.9
50 60.0 57.9 1.1

1 Independent variable; 2 Dependent variable.

6.1. Verification

Figure 14 illustrates the concept of the model composed of thin layers (i.e., multilayer model), each
of which is a discrete and isothermal continuum mixture of solid and void phases. This model was
designed based on the observational findings gained from the EF test. In this experiment, we identified
a porosity distribution along the depth of the fully expanded coating (Φmax) [7]. The corresponding
volume fraction (Vz) for each Φmax (or zone) is tabulated in Figure 14. Based on this observation,
we assumed that, in a full-expansion state, the Φmax and Vz of any specimen tested with the cone
calorimetry reached the listed data observed in the electric furnace test. This assumption was applied



Polymers 2019, 11, 221 19 of 26

in multilayer modelling. The multiplayer model was then coupled with the multicellular model
studied in this paper by discriminately assigning the corresponding upper and lower bounds of keff
(predicted by the multicellular model as shown in Figure 13) to each of the zones of the multilayer
model, as illustrated in Figure 14. As keff at texp is also known as

.
q′′netin

(
texp

)
. `z(texp), the history of

the substrate temperature Ts(t), can be predicted by the multilayer model, where texp indicates the
instant in time at which the coatings are fully expanded. The predicted profile of Ts was subsequently
compared with the measurements obtained from the cone calorimeter tests for verification.

Figure 15 shows the measurements of Ts(t) and `z(t) under different conditions of irradiance (
.
q′′irr)

and dry-film coating thickness (DFT) as obtained from the CC tests. An important finding was that the
full-expansion time texp was similar to the moment in time at which Ts re-increased after undergoing
a short plateau. This indicates that, hereafter, Ts development was governed by the mechanism of
heat transfer through the fully expanded coating (rigid porous residue). Therefore, the following
history of Ts beyond texp can be used for the validation of the multicellular modelling. Figure 16
demonstrates both the Ts histories, physically measured from the cone calorimeter test and numerically
predicted by the multilayer model coupled with the multicellular model. We found that the FEA model
accurately and consistently predicted Ts(t) under the different conditions from the transient to steady
states. Notably, the graphs in the shaded regions (<texp) are not directly related to this verification
objective; these are associated with the process of the polymer’s mass and volume changes depending
on temperature, which were thoroughly examined by Kang et al. [8].
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6.2. Effect of Cell Size 

Figure 17 demonstrates the influence of δcell on the thermal insulation performance of porous 
structures. Its effect was quantitatively expressed by the ratio of keff to the true thermal conductivity 
of the solid-particle (ksolid). The contributions of kc_solid, kc_void, and kr_void to this ratio are also specified 
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50 kW/m2.

6.2. Effect of Cell Size

Figure 17 demonstrates the influence of δcell on the thermal insulation performance of porous
structures. Its effect was quantitatively expressed by the ratio of keff to the true thermal conductivity
of the solid-particle (ksolid). The contributions of kc_solid, kc_void, and kr_void to this ratio are also specified in
each of the bars of the chart. The red and black colours denote the upper and lower bounds of the FEA
predictions, respectively, derived from the four heat transfer courses (A-A’, B-B’, C-C’, and D-D’). At NPV =
0, heat was transferred via pure solid conduction. As NPV increased at a constant L, δcell reduced to around
60 µm and the ratio noticeably decreased to the range of approximately 0.075 to 0.065.

When the size of the cell was in millimetres (&1000 µm), a large portion of the keff/ksolid ratio was
accounted for by kr_void, whereas kc_void made a minor contribution. The reasons for these observations
are that radiation is on the basis of the fourth power of the absolute temperature, and the true thermal
conductivity of the air is much smaller than ksolid. However, the contribution of the cavity radiation was
dramatically reduced with decreasing δcell. Around the determined δcell for the inorganic intumescent
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coating (200 µm), solid conduction became the major mode of heat transfer through the porous structure.
We interpreted that with the decrease in δcell, the temperature difference between the hot and cold internal
surface areas of RECs (i.e., ∆T) considerably narrowed. This trend caused a reduction in the net radiant flux
(

.
q′′k ) absorbed by each of the internal-surface areas, when being transported from one surface to another

and vice versa within the RECs (Figure 10a). Figure 18 demonstrates the quantities of
.
q′′k and ∆T on two

internal surface areas with the highest and lowest temperatures (N = 11 and 2, respectively) of each of
the two outermost RECs (NPV

th and first RECs in Figure 10b). We found that
.
q′′k and ∆T were less than

approximately 0.4 kW/m2 and 4 ◦C at δcell = 200 µm.
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q′′irr = 50 kW/m2.

6.3. Effect of Porosity

Figure 19 shows the variations in the ratio of keff to ksolid and the individual contributions of
kc_solid, kc_void, and kr_void to the ratio, according to Φ. The greater the porosity, the lower the keff/ksolid
ratio, and the more enhanced the thermal insulation performance of the porous medium. This tendency
was induced by the considerable reduction of the solid-conduction contribution, which was associated
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with the decrease in the volume fraction of the solid-phase with the increase in Φ. With this decrease
in the volume fraction of the solid-phase, an increase in the volume fraction of the void-space was
produced. Little change, however, was observed in terms of the contribution of kc_void. This was
closely related to the low intrinsic conductivity of the air compared to ksolid. With respect to kr_void,
since δcell did not change in this case study, little variation was found in the contribution of kr_void,
which was strongly dependent on pore size, as shown in Figure 17.
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6.4. Effect of External Thermal Load

Figure 20 illustrates the impact of
.
q′′irr on the determination of the keff/ksolid ratio as well as the

individual contributions of the three heat transfer modes. Overall, the more intense the external thermal
load, the greater the ratio. This indicates that the thermal insulation performance of the cellular structure
can vary according to given heating conditions. Cavity radiation was more dependent on the change in the
thermal load than the other heat transfer modes. This feature is also based on the fundamental principle of
thermal radiation, being defined with the fourth power of the absolute temperature.
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7. Conclusions

The main purpose of this work was to define the range of effective thermal conductivity (keff)
applicable to the particular form of porous medium (inorganic intumescent coating) to quantitatively
assess its thermal insulation performance. The measurement keff was numerically derived from finite
element analysis (FEA). In the course of its derivation, we simulated the combined conduction-radiation
transfer through the hybrid of solid and void phases using the Abaqus/Standard with user subroutines.

In both the quantitative evaluation of keff and the quantitative analysis of the individual
contributions of the solid-conduction, void-conduction, and void-radiation modes, the controlling
factors were porosity, pore-size, and external thermal load. We identified that amongst the factors,
the alteration of porosity led to the most dramatic change in the ratio of keff to the true conductivity of
the solid-particle (ksolid). At the maximum porosity of 0.930, the ratio dropped by approximately 5.1%,
which quantitatively demonstrated the enhancement in the coating’s thermal insulation performance.
This occurred because an increase in porosity indicates the growth in the volume fraction of the void
spaces filled with air, the true thermal conductivity of which is much smaller than ksolid. The decrease
in pore-size to the micro-level and the lower thermal load caused a reduction in the radiant flux
transferring across the pores due to the decrease in the temperature difference between the relatively
hot and cold internal surface areas of the micro-scale enclosures.

Based on the findings, we conclude that an increase in porosity, a decrease in pore size, a lower
level of thermal load, and a decrease in ksolid can contribute to enhancing the thermal insulation
performance of polymeric porous media; and the impact of translucent media filling pores was
relatively weak on the condition of the microscopic pores. So, whether the assumption of neglecting
the radiation attenuation effect is acceptable for macroscopic pores needs to be carefully considered.

The numerical predictions were verified by the experimental data. Consistent agreement between
the FEA predictions and cone calorimeter test measurements was achieved in terms of the temperature
history of the underlying steel substrate. This was the only reliable output of the temperature
measurements in the cone calorimeter testing. This agreement could be attained based upon (1) the
clarified thermal boundaries of the coating-residue, tested with cone calorimetry; (2) the design of
the FEA model’s geometry, depending on the topological analysis; (3) the simulation of the combined
conduction-radiation transfer; and (4) the attempt to define the applicable range of keff, instead
of a single value by considering the irregularity and tortuosity of the coating-residue’s internal
structure. Although several attempts have been made to propose the keff of an intumescent coating’s
porous structures in the field of fire safety engineering, comprehensive interpretation is lacking for
its derivation based on the theoretical principle of heat transfer in porous media to its verification
with practical engineering applications (e.g., bench-scale experiments). This numerical approach was
able to demonstrate the process, and therefore contributes to the full understanding of heat transfer
in the porous intumescent system. The quantitative evaluation of the coating’s performance and
the quantitative analysis on the contributions of the heat transfer modes provide insights into the
development of porous-type refractory systems and the optimisation of their fire resistance in various
engineering fields.
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Nomenclature

A surface area Subscripts
c specific heat (J/(kgK)) abs absorbed
D deviation btm bottom surface
e emissive power cvl convective heat loss
F view factor eff effective
k thermal conductivity (W/(mK)) emit emitted
.
q′′ heat flux (W/m2) g gaseous translucent media
T temperature irr irradiance
t time k kth surface area
V volume N ordinal number
x, y, z Cartesian coordinates net net

pro probability distribution
Greek symbols rl radiant heat loss
α absorptivity s substrate
α geometric-mean absorptance st stored
Γ the Kronecker delta top top surface
∆ pore-size
E emissivity Abbreviations
` coating thickness CC cone calorimeter
ρd density (kg/m3) DFT dry film thickness
ρr reflectivity EF electric furnace
σ Stefan-Boltzmann constant (W/(m2 K4)) FEA finite element analysis
τ geometric-mean transmittance GHM guarded hot-plate method
Φ porosity REC representative elemental cell

SEM scanning electron microscope
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