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Abstract: Although water, air, and other resources are abundant on earth, they have been subjected
to strict environmental regulations. This is because of their limitation of availability for human
consumption. In the separation industry, the membrane system was introduced to increase the
amount of resources available to mankind. Experts used an easy-to-use polymeric material to design
several membranes with porous structures for wastewater treatment, gas separation, and chemical
removal; consequently, they succeeded in obtaining positive results. However, past polymeric
membranes exhibited a chronic drawback such that it was difficult to simultaneously augment
the permeate flux and improve its selectivity toward certain substances. Because of the trade-off

relationship that existed between permeability and selectivity, the membrane efficiency was not
very good; consequently, the cost-effectiveness was significantly hindered because there was no
other alternative than to replace the membrane in order to maintain its initial characteristics steadily.
This review begins with the introduction of a polymer nanocomposite (PNC) membrane that has been
designed to solve the chronic problem of polymeric membranes; subsequently, the stimuli-responsive
PNC membrane is elucidated, which has established itself as a popular topic among researchers in the
separation industry for several decades. Furthermore, we have listed the different types and examples
of stimuli-responsive PNC membranes, which can be switched by external stimuli, while discussing
the future direction of the membrane separation industry.
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1. Introduction

Most industries struggling to achieve high economic efficiency often ask researchers the following
two questions:

Can two different properties be included in one material?
If possible, can the substance be made renewable?
In other words, it is a priority to develop new materials with both multifunctionality and

recyclability (reversibility) at a low unit price. However, it is virtually impossible to make such an ideal
material. If a material has two opposite properties, it is generally likely that the properties exist as a
trade-off of one another [1–5]. Because molecular-level properties can affect each other, the co-existence
of two conflicting characteristics in a single material is never natural, and most materials have not done
so throughout Earth’s long history. In addition, even if a recyclable material is developed, there is a
limit to the number of times it can be reused [6]. Perfect permanence is difficult to achieve. As the
number of reuses increases, the initial characteristics that were designed as advantages become weaker
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and eventually disappear. Furthermore, the requirement that materials should be inexpensive despite
their novelty makes researchers raise white flags instead of experimental tools.

Sensible researchers have come up with realistic alternatives instead of rejecting unrealistic
industrial requirements. Their plan is to develop relatively inexpensive new materials [7–10], but to use
a mixture of preexisting materials and design products such that they can perform only under certain
conditions where external stimuli are transmitted so that frequent recycling processes are unnecessary.
As such, two materials with conflicting characteristics—one organic with a stimuli-responsive switching
property and the other inorganic—have been combined to create a “smart” response nanocomposite
system [11–13].

Figure 1 shows the number of papers published annually in the last 20 years under the theme of
“responsive polymer nanocomposite membrane”. Approximately 15,000 papers have been searched,
and the number of papers has been steadily increasing every year. These publications include the
results of various studies on polymer nanocomposite membrane that reacts with various kinds of
external stimuli—such as light, thermal, and pH—and their applications are innumerable, such as waste
water treatment, gas separation, chemical removal, and drug delivery. All these studies were obtained
by the switchable molecular segments interacting with polymer chains, exposing the inner-hidden
nanoparticles to the surface or isolating them from the outside.
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(http://www.ndsl.kr/).

In this review, we address the manufacturing process of nanoscale-controlled polymer
nanocomposite (PNC) materials, and their application as membrane in the separation industry.
Furthermore, the current level of stimuli-responsive membranes that reveal their unique characteristics
only under certain conditions is reviewed.

2. Background

2.1. Nanocomposite Systems

Organic and inorganic materials have long been regarded as conflicting materials: many believed
that their domains were separate and would never overlap. In fact, at one time, scientists put forward
incompatibilities between the two types of materials as evidence to support their claims. These two
types of materials, whose surface properties were so different, could never be located in a single space
without phase separation, and even if they could be mixed, they co-existed for only a short period of
time as a mixture, not a true complex.

Many scientists began to break down minerals into smaller pieces to increase the duration of
coexistence of the two materials [14–17]. The goal was to minimize the separation of the phases by
overcoming gravity, and the only way to accomplish this was to expand the surface area per unit
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volume to increase the area at the border of the two materials. They wanted to disperse the shredded
guest minerals inside the organic matter as a host matrix for as long as possible. However, this was not
enough to make the mixture of the two materials a composite. For organic and inorganic materials
(or dissimilar materials) to coexist perfectly, another change in the system is needed in addition to the
surface area increase of the inorganic materials.

Researchers who were constantly reducing the size of their minerals to obtain more complete
composite materials eventually reached the door of the nanoworld. In order to squeeze through its
narrow doors, they had to break their existing habits. They decided to break away from the stereotypical
‘top-down’ approach and try something new. This was the birth of the ‘bottom-up’ method. Apart from
the physical and mechanical method of breaking and grinding large materials, only through a chemical
bottom-up approach, in which precursors are reduced, creates nanoscale inorganic particles that could
be well-dispersed [18,19].

The particles varied greatly in size and shape, or surface conditions, depending on the composite
conditions (e.g., temperature, time, type, and content of the capping agent). In addition, the particles
synthesized by the sol–gel method significantly improved the dispersion stability over time compared
to past methods, when the top-down approach was preferred. This is due to the presence of traces
of precursors or a significant amount of organic groups originating from the capping agents on the
surface of nanoparticles (NPs) at the molecular level. The nanocomposite system, which freely crosses
the boundary between organic and the inorganic, has become a multi-faceted object of interest and a
prerequisite for the development of hybrid materials.

Researchers who had been looking forward to the emergence of a real nanocomplex system
immediately set their next goal. This was the task of fitting the organic groups present on the surface
of inorganic NPs to the surrounding environment as much as possible via surface modification.
They changed the molecular structure of pristine organic groups on the surface into substances that
were friendly to the surrounding organic environment while controlling the surface coverage (density).
The organic shell is designed tightly that the bare surface of the NP core is not visible, while sometimes
it is designed sparsely that the bare surface of the NP core is visible; therefore, they can be used for
various purposes in industry by finely tuning the surface coverage of NPs [20–22].

NPs in core/shell structures were considered pure organic matter as the density of the organic shell
surrounding NPs increased, while at the same time their affinity with the surrounding organic matrix
gradually increased, which came as a shock to many researchers. Afterwards, scientists were able to
develop an outstanding nanocomposite system with finely tunable miscibility through a simple mixing
process that did not require any additional processing. By tailoring the nanocomposite system through
NP surface modifications for various applications, they gradually solved the chronic issues they had
encountered when the inorganic and organic materials were only roughly mixed (Figure 2) [23–30].

2.2. Preparation of Nanocomposites

2.2.1. Surface Grafting (Grafting to/Grafting from)

There are several ways to implement a nanocomposite system where inorganic parts as guests
and organic parts as hosts coexist, but the easiest way is the “grafting-to” method through interaction
(e.g., chemical bonding, physical attachment) between the specific functional group in the preexisting
organic material and the active surface site of NPs (Figure 3) [20,22,31–36]. Considering the processability,
it would be beneficial to be able to attach NPs to desired locations within organic molecules via a
simple mixing process. Response times, which take a few minutes at the very least and a few days at
the most, have the potential to attract industry attention.
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Figure 2. (a) Structure of hairy nanoparticles (HNPs) at different graft densities. At grafting densities,
σ, of less than Rg−2, the corona is in a loosely coiled ‘mushroom’ conformation. As the grafting density
increases, the chains are forced to extend first into a semidilute polymer brush (SDPB), and then into a
concentrated polymer brush (CPB) conformation. In contrast to flat surfaces, particle curvature implies
that the area per chain increases with distance from the surface, and thus the outer ends of the chain are
less crowded and may transition to the SDPB regime if long enough. (b) The mesoscopic continuum
from pure HNP assemblies (left) where the only swelling of the corona is by the corona of neighboring
particles, to traditional polymer nanocomposites (PNCs) (right) where the particles are dispersed
or suspended in an organic matrix. These mesoscopic structures form the basis for macroscopic
morphologies whose hierarchy of structure depends on their spatial arrangement, shape, and relative
volume fraction of HNP and free matrix (reprinted with permission from [23], Copyright 2013,
Cambridge University Press).

Polymers 2020, 12, x FOR PEER REVIEW 4 of 19 

 

a concentrated polymer brush (CPB) conformation. In contrast to flat surfaces, particle curvature 
implies that the area per chain increases with distance from the surface, and thus the outer ends of 
the chain are less crowded and may transition to the SDPB regime if long enough. (b) The mesoscopic 
continuum from pure HNP assemblies (left) where the only swelling of the corona is by the corona of 
neighboring particles, to traditional polymer nanocomposites (PNCs) (right) where the particles are 
dispersed or suspended in an organic matrix. These mesoscopic structures form the basis for 
macroscopic morphologies whose hierarchy of structure depends on their spatial arrangement, shape, 
and relative volume fraction of HNP and free matrix (reprinted with permission from [23], Copyright 
2013, Cambridge University Press). 

2.2. Preparation of Nanocomposites  

2.2.1. Surface Grafting (Grafting to/Grafting from) 

There are several ways to implement a nanocomposite system where inorganic parts as guests 
and organic parts as hosts coexist, but the easiest way is the ”grafting-to” method through interaction 
(e.g., chemical bonding, physical attachment) between the specific functional group in the preexisting 
organic material and the active surface site of NPs (Figure 3) [20,22,31–36]. Considering the 
processability, it would be beneficial to be able to attach NPs to desired locations within organic 
molecules via a simple mixing process. Response times, which take a few minutes at the very least 
and a few days at the most, have the potential to attract industry attention. 

 
Figure 3. Schematic representation of the grafting-to method (reprinted with permission from [32], 
Copyright 2011, John Wiley & Sons). 

However, this method is only valid for systems that do not necessarily have to increase the 
density of the organic shell covering the inorganic NP surface. This is because the large steric 
hindrance between organic chains makes it virtually difficult to attach large amounts of organic 
brushes to the surface of NPs. Although there are a considerable number of active sites (i.e., functional 

Figure 3. Schematic representation of the grafting-to method (reprinted with permission from [32],
Copyright 2011, John Wiley & Sons).



Polymers 2020, 12, 2415 5 of 20

However, this method is only valid for systems that do not necessarily have to increase the density
of the organic shell covering the inorganic NP surface. This is because the large steric hindrance
between organic chains makes it virtually difficult to attach large amounts of organic brushes to the
surface of NPs. Although there are a considerable number of active sites (i.e., functional groups) within
organic molecules, these functional groups are simply useless if each of the organic molecules occupies
a large volume.

The disadvantages of the grafting-to method are low attachment capability and low grafting
density on NP surfaces, and several studies have been conducted globally to improve the affinity with
the organic matrix by increasing the grafting density.

Researchers have planted and grown seeds (i.e., small molecules for leading polymerization)
instead of planting bulky trees (i.e., as-prepared polymer brushes) as a way to increase the grafting
density. The grafting-from method involves attaching small molecules, which have almost no
steric hindrance, to the surface of NPs first and attaching the monomers one by one to form a
polymer. Polymer chains, which grow from the surface of NPs through radical polymerization
(i.e., reversible addition-fragmentation chain transfer), showed higher grafting density compared to
the grafting-to method (Figure 4) [37–46]. Moreover, this method did not require the final washing
step to remove the unattached free polymer, which was pointed out as a tricky finishing process in the
grafting-to method, thus relieving researchers of the burden. The monomer molecules with very small
molecular weights were easily dissolved in the reaction solvents, so no cumbersome purification steps
were necessary.
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from [39], Copyright 2004, Elsevier).

The ‘grafting-from’ method goes a step further from forming a dense organic shell around NPs
and fabricates the organic matrix itself with NPs. This fabrication method for nanocomposite material
also called ‘in-situ interfacial polymerization’ from the NP surface.

2.2.2. In-Situ Interfacial Polymerization

This method is not much different from the grafting-from method in terms of polymer growth
from the surface of NPs [47]. However, unlike the grafting-from method, in which each NP with
a core/shell structure is used as a nanocomposite material, the in-situ interfacial polymerization
method is applied from the outset to form a polymeric thin film with NPs, so the application is
slightly different. In addition, the grafting-from method begins with attaching a chain transfer agent
(CTA) to the surface of NPs, while in-situ interfacial polymerization starts with organic agents such
as silane coupling agents attached to the surface of NPs. For example, many researchers reported
that NPs—such as TiO2, SiO2, and zeolite—were used as guests for mixing with in-situ polymerized
matrices; these complex materials are often used to manufacture forward osmosis (FO) membranes.
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This means that in-situ interfacial polymerization can be applied in various fields as a manufacturing
method for nanocomposite membranes [48–53].

Recently, many studies have been conducted to improve the weaker interaction between NPs and
the polymer matrix through in-situ interfacial polymerization based on the grafting-from technique,
and the developed nanocomposite materials are receiving considerable attention for their ability to
improve the hydrophilicity and anti-fouling effects. Surprisingly, these nanocomposites are free from
trade-off properties, cited above as the chronic weakness of the traditional membrane materials [54–57].

Amini et al. bonded monomolecules to photocatalytic TiO2 NPs with a surface modified
with 3-aminopropylithylane (APTES) and combined them with polysulfone substrates [48]. In the
same way, Niksefat et al. used 1,3-phenylenediamine as a medium for connecting SiO2 NPs with
as-prepared polysulfone substrates to manufacture polymeric membranes with thermo-stable templates
(Figure 5) [50]. In addition, Ma et al. first introduced NaY zeolite NPs, which have never been reported
before, as guests of the nanocomposite membrane system, and succeeded in manufacturing thin film
nanocomposite (TFN) through in-situ interfacial polymerization. Their study has great significance
in that it has informed many researchers that there are still many unknown combinations in the
membrane industry, as well as the fact that the zeolite-incorporated membrane showed a characteristic
that surpasses the existing membrane performance [51].
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flux (reprinted with permission from [50], Copyright 2014, Elsevier).

Organic polymers and inorganic nanoparticles, which had been difficult to stay together in the
same space, were able to take a step closer to each other showing a uniform homogeneous phase
despite each of the completely different surface characteristics. The PNC system, which was born
through these processes, was able to be free from phase separation having both polymer’s hydrophobic
properties and nanoparticle’s hydrophilic properties. The PNC system, which has become an ideal
material that everyone has so desired, knocked on the door of the environmental sector (especially
the separation industry) which is eager to efficiently purify the polluted air and waste water [58–64].
Before long, it was able to become unique as one of the outstanding membrane materials.

3. Applications for Membrane Systems

3.1. Membrane Fabrication with Surface-Modified NPs

A nanocomposite system consisting of NPs with hydrophilic surfaces and hydrophobic organic
materials is very useful in many areas, especially in the field of separation processes (industry,
medicine, environmental sciences, etc.) for water treatment. Nanocomposites are attracting attention as
alternative materials for various kinds of membranes (e.g., ultrafiltration, nanofiltration, microfiltration,
forward osmosis, and reverse osmosis) by owing to the characteristics that they can provide a significant
number of hydrophilic sites within the matrix through the active surface of NP guests.
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It is true that conventional membranes without NP guests have been evaluated as specialized
filters that can purify large amounts of material while only allowing certain materials to pass through
by changing the fluid according to the size of the membrane pores. However, the fact that these
specialized filters have some fatal problems has also become well known. Above all, most ingredients
for the preparation of porous membranes—including polyethersulfone (PES), polyvinylidene fluoride
(PVDF), and polypropylene (PP)—consist of hydrophobic segments. Membranes composed of these
substances are vulnerable to adsorption of hydrophobic pollutants (e.g., proteins, humic materials,
and microorganisms) [65–68].

Pollutants adsorbed on the surface of the membrane by hydrophobic interactions cover the
pores of the membrane (i.e., membrane fouling), eventually forming a film and sharply lowering the
permeability efficiency of the membrane for a short period of time (Figure 6). The initial pore size
becomes smaller over time, and the materials that can pass through the smaller pores become more
limited [69,70]. To regain the initial efficiency of the membrane, the process of constantly rinsing out
unwanted pollutant was necessary. This process was very tricky and uneconomical. Those who longed
for the development of the separation industry continued to search for ways to minimize the need for
cleaning membranes [71].
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Many researchers have proposed ways to prevent the membrane fouling effect by introducing
hydrophilic sites by incorporating NPs into membrane materials [51,66,72–79]. For example,
the aforementioned research by Ma et al. inhibited the fouling phenomenon by incorporating
hydrophilic zeolite NPs into hydrophobic polysulfone. The zeolite used in this study was evaluated by
many as an effective system because it had a porous structure and could contain numerous hydrophilic
sites with large surface areas [80]. Mesoporous carbon materials, such as carbon nanotube, were also
able to enhance the hydrophilicity of the membrane by mixing with hydrophobic matrix as a bulk
supplier of hydrophilic sites [81,82]. As such, the PNC membrane was able to successfully prevent the
adsorption of pollutants owing to NP guests with a hydrophilic surface, and it was established as one
of the outstanding candidates with anti-fouling performance in the contemporary membrane industry.

Meanwhile, the PNC membrane has been spotlighted as a material that can alleviate internal
concentration polarization (ICP), which, along with the membrane fouling effect, is considered another
drawback of traditional membranes. The ICP phenomenon arises from competition between the
two main properties of the membrane—namely, permeability and selectivity. Substances that fail to
pass through the pore accumulate at the surface of the membrane, obstructing the movement of the
permeate at some point and worsening the degree of stacking over time. It is known that the generated
concentration gradient causes ICP, and when the accumulation is not alleviated and a certain period of
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time elapses, the mixture of residue and permeate causes the aforementioned fouling phenomenon
(Figure 7) [83–85].Polymers 2020, 12, x FOR PEER REVIEW 8 of 19 
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Figure 7. Schematic representation of (a) dilutive internal concentration polarization (ICP) and
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Many researchers have stated that the structural parameters (S) in the porous support layer should
be reduced to minimize this ICP phenomenon during the FO process [86]. Three methods have been
chosen to lower the structural parameters (S) defined by the [thickness × tortuosity/porosity] of the
porous layer: a reduction in thickness, decrease in tortuosity, and increase in porosity. In one early
study, the material lowering the S value was a nanofiber consisting of organic materials. However,
nanofibers have the disadvantage of having very low mechanical strength, and the problem was that it
took a very long time for a substance to pass through.

The alternative to nanofibers was none other than the membrane system, in which certain inorganic
NPs were distributed evenly. In order to increase the porosity of the support layer, porous zeolite
NPs were chosen as guest materials for the system, thereby creating an ideal membrane layer
that meets the purpose of increasing the mechanical strength and water flux and minimizing the
ICP phenomenon [80,87].

Recently, many researchers have discovered new microfabrication (UF) membrane materials that go
beyond the combination of zeolite NPs and polymeric films and have reported surprising results [88–93].
For example, a study that incorporated SiO2 NPs within poly(4-methyl-2-pentyne) (PMP) to maintain
the permeability of n-butane while simultaneously increasing the selectivity of n-butane/methane
suggests that PNC plays a major role in solving the existing problems of membranes [26,94–100].
PNC membranes have been in the spotlight in the separation technology field in recent years as ideal
membrane materials that can interfere with the hydrophobic interaction between the porous membrane
and the pollutant. This interest grew further when the PNC membrane began to feature the conative
ON/OFF switching system.

3.2. Reversible Smart Membranes

Researchers have evolved separation technology in terms of PNC membrane activeness and
reversibility. A system in which externally transmitted stimuli act as triggers, and the specific molecular
structure contained in the polymer matrix acts as a switch called a “stimuli-responsive reversible smart
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membrane”. When stimuli are delivered from the outside, the membrane exposes the NP guest to its
surface as if it were alive, and once the stimuli disappear, the NP guest hides again. In other words,
it is a smart membrane system, as the name implies [101,102].

Many researchers who hoped to activate the hydrophilic potential of the membrane only when
they desired incorporated an ON/OFF switch inside the membrane that responded to only a few
specific stimuli (e.g., light, heat, chemical, electronic fields, mechanical fields, and mechanical force).
As the polymer chains swell, the hydrophilic surface of NP is hidden and isolated from the surrounding
environment, and, on the contrary, when the polymer chains collapse, the hydrophilic surface of
NP gradually manifests, demonstrating its capacity as a PNC membrane. Because the system is
sensitive to changes in the surrounding environment, it is finely self-controlled without having to
worry about it, and in some cases, it does not lose its initial reversible efficiency even after a long
period of operation [103–105].

Many researchers have designed several switchable PNC membrane systems by introducing
molecular structures suitable for given circumstances and experimental purposes. Some typical systems
with responsive ON/OFF switches are grouped according to external stimuli.

3.2.1. Photo-Responsive Membranes

Photo-responsive systems are largely divided into two types, depending on what the subject of
photoexcitation is. If the NP guest acts as a subject that facilitates chemical reactions in response to light
having a specific wavelength, it is classified as photocatalysis, whereas if the photochromic segment
contained in the polymer matrix is the main body that reacts to light, it is called photoisomerization.
This review does not address the photoexcitation of the NP material itself; it only addresses the reactivity
of the polymer matrix surrounding the NPs. Moreover, because most of the reported photo-responsive
materials in the reversible smart membrane field are driven by photoisomerization phenomena of
the polymer matrix, a description of NP photoexcitation (photocatalysis) will be replaced by relevant
references [106–109].

Many researchers hope that the range of light wavelengths being stimulated would not deviate
significantly from the visible light range when it comes to selecting materials for photoisomerization.
The farther away the sensitive range is from visible light, the less applicable it will be, and no matter
how fast the response speed and how high the isomer conversion rate, it is shunned by the industry.

Two representative materials that successfully passed the demanding verification work are
azobenzene and its derivatives. The azobenzene segment, which exists in two forms of isomer
depending on the wavelength of light, is considered the best photochromic moiety for photo-responsive
membranes. In addition to reacting to light (e.g., UV, visible, and NIR) of easy-to-apply wavelengths,
the conversion rate between cis-/trans-, which is not only quick-response but also near-perfect,
was enough to attract the attention of industry workers.

Researchers who observed, with their own eyes, changes in the molecular structure of azobenzene
converted from trans- to cis-form or cis- to trans-form under the irradiation of UV and visible (or NIR)
light, respectively, designed a photo-responsive PNC system with a core/shell structure by placing
an azobenzene segment around NPs. The system was able to control its own dispersibility by
switching back and forth between cis- and trans-form, depending on the wavelength of light being
irradiated [110,111]. For example, Wei et al. prepared a photo-sensitive shell by introducing a ligand
containing an azobenzene moiety on the surface of AuNPs to implement the reversible catalysis effect.
Subsequent investigations using UV and visible light resulted in successive aggregation and dispersion
of NPs, and these changes in dispersibility resulted in the deactivation/activation of the catalytic
site, respectively.

On the other hand, many researchers have applied azobenzene in a different way, in which the
shape of the molecule changes uniquely depending on the wavelength of light, such as the size change
of tubular pores in the membrane. These researchers expected to be able to selectively filter out the
substances passing through as the membrane’s pore size changed, and their wishes soon became reality.
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The PNC membrane system with the introduction of azobenzene molecules has since been widely used
as a photo-sensitive drug-releasing model [112–115]. For example, Lu et al. combined azobenzene
derivative molecules on the pore surface of a mesostructured silica nanoparticle so that dyes and drugs
contained within the system could escape only under certain wavelength conditions. Yan et al. also
utilized the PNC membrane system as a photo-sensitive nanocarrier by attaching azobenzene-based
rotaxane to the surface of Au nanorods and including drugs. Several representative photo-sensitive
moieties—including azobenzene, and their working mechanism—are shown in Figure 8.

3.2.2. Thermo-Responsive Membrane

Thermo-responsive systems are largely divided into two categories, direct and indirect, depending
on the mechanism of receiving heat. This category encompasses systems that are directly affected by
temperature changes in the ambient environment and systems that indirectly utilize heat generated
from other external stimuli (e.g., light, magnetic field). However, this classification is often ambiguous
because it is simply based on the different ways heat is supplied.

Many researchers suggest the pattern of phase transition (volume variation) with temperature
changes as another criterion for classifying systems. When the ambient temperature rises, most polymers
tend to exhibit so-called upper critical solution temperature (UCST) behavior, in which the polymer
increases in volume above a certain temperature. This is because polymer chains swell at higher
temperatures, which is an intuitive phenomenon.

On the other hand, some polymers do not follow this natural phase transition process, but rather
the reverse. As the temperature increases, the polymer chains shrink, reducing the overall volume.
In other words, these polymers exhibit lower critical solution temperature (LCST) behavior. This is
because there is a specific moiety inside the polymer chain that can be bound via hydrogen bonding.
As the temperature increases and the attractive force with the solvent molecules (i.e., hydrogen bonds)
decreases, the polymer chains push the solvent molecules and shrink, resulting in a decrease in volume.
Such hydrogen-bonded polymers that exhibit LCST behavior can fully reveal their reversibility with
temperature changes within aqueous solution. These polymers are widely used as materials for water
purification or in drug-transfer membranes. Moreover, the fact that the phase transition point of
the UCST polymer is higher than that of the LCST polymer is another reason why most researchers
focusing on thermo-responsive membranes have a preference for certain LCST polymers.

At temperatures above the transition point, NPs were covered with swollen polymer chains,
concealing the original characteristics of the NPs, while the polymer chains attached to the NP surface
shrunk when the surroundings were cooled below the transition point and the NPs were repeatedly
exposed to the outside again, making the process perfectly thermo-reversible. For example, Xiao et al.
reported a significant difference in the water flux passing through the membrane at temperatures higher
and lower than the transition temperature by combining a poly(N-isopropylacrylamide) (PNIPAAm)
polymer with PVDF, which shows LCST behavior and has a transition temperature of 32 ◦C [116].
This result was expected to some extent based on the Hagen–Poiseuille law, in which the amount of
permeate flux varies depending on the pore size [117]. On the other hand, many researchers have
directly changed the size of the pores in the existing porous membrane template using the reversible
volumetric changing ability of the PNIPAAm molecule, and as a result, they have succeeded in
selectively filtering the permeates.

In addition, some researchers have introduced additional moieties (hydrophilic or hydrophobic)
to the PNIPAAm molecule to change the working range by changing the transition point of the existing
32 ◦C [118] and attaching certain segments to control the working speed [119]. For example, Xie et al.
introduced an acrylamide monomer as a hydrophilic moiety to increase the LCST of PNIPAAm to
40 ◦C, while introducing butyl methacrylate monomers as hydrophobic moieties to lower the existing
LCST to 17.5 ◦C [119]. In addition, Kaneco et al. grafted the PEG segment to the PNIPAAm molecule
so that the volume change of PNIPAAm occurs faster than usual [120].
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Many polymers besides PNIPAAm are frequently used as materials for thermo-responsive
membranes, and they are also performing a role as materials for smart membrane systems by changing
their volumes at their respective transition temperatures. Some representative thermo-responsive
moieties are depicted in Figure 8.

In addition, there are many studies regarding the sol–gel phase transition, another known
mechanism in thermo-responsive systems. However, since it does not differ much from the volume
change process described earlier, we simply provide references to existing literature [121–123].
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Figure 8. (a) Examples of molecular structures responsive to temperature (A) and pH (B). (b) Examples
of molecular structures of photo-responsive monomers: cis–trans isomer of azobenzene (A); ionization
monomers (B) of leucos (B’) and spiropyran (B”); and dimerization monomer of cinnamate (C).
(III) Orientation changes (A) and molecular structures (B) of liquid crystalline molecules (reprinted
with permission from [124], Copyright 2010, Elsevier).

3.2.3. pH-Responsive Membranes

The membrane system, in which the pH of the aqueous solution acts as a trigger for the beginning
of the reaction, is accomplished through the process of obtaining or losing the proton of the ionizable
functional groups contained inside the organic material. Some polymers increase in volume due to
electrostatic repulsion between ionized functional groups [124,125]. At this time, external substances
can pass through the gap between the polymer chains, which many researchers have used to modify
the permeability characteristics of the membrane. For example, Zhan et al. reported that when changes
occur in the ionization state of the polydopamine (PDA) surrounding the Pt-MnSi NP, the active surface
site of the NP core is exposed to the outside, resulting in catalysis [126].

In addition, a structural change occurs within the polymers, which swell or shrink according to the
surrounding pH value. This change has a great effect on the hydrophilicity of the membrane. In other
words, it is possible to change the surface energy of membrane. This means that the anti-fouling effect,
previously referred to as the basic characteristic of PNC membrane, can also be granted additional
reversibility [127].

Many have maximized the reversible anti-fouling effect by increasing the difference in
surface energy between the swelled state and the collapsed state of the pH-responsive polymer
chain [74,128–130]. For example, Hernandez et al. introduced ionizable polyacrylic acid (PAA) as a
pH-sensitive organic part, and selected PVDF with very low surface energy as a membrane template
for grafting [130]. Some commonly used pH-responsive materials are shown in Figure 8.
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3.3. Limitations and Expectations

As already shown in Figure 1, the market for the stimuli-responsive PNC membrane has grown
steadily over the last 20 years, and the findings involved are surprising the world with the release of a
series of studies, but unfortunately, the rate at which industry requirements are diversified is always
faster than the pace at which researchers develop. It has already been decades since the membrane
systems, which include the coexistence of hydrophobic/hydrophilic properties as well as the molecular
ON/OFF switch, were developed and the industry’s hot response has cooled off. The requirements of
those engaged in the separation industry are largely divided into economics and diversity.

Those seeking economic feasibility feel sorry for the materials so far, especially the intrinsic high
cost of inorganic nanoparticles. They have experienced the outstanding effects of TiO2 NPs [131–134],
Ag NPs [135–137], and GO [138–140], which had given PNC membranes hydrophilic properties, but
they are eager to develop more economical materials at a time when mass production is imminent.
Of course, small-scale studies of lab scale introduced by less expensive nanoparticles—such as
ZnO [141,142], CaCO3 [143,144], zeolite [80,145], and HNTs [57,146]—are being conducted in this
regard. Without steady excavation of additional materials following these studies, growth in the
membrane market, which has been shown so far by the stimuli-responsive PNC material, is bound to
be limited.

In addition, those seeking diversity have complained that there is only one kind of stimulation for
switching triggers. Unfortunately, however, the types of molecules that can accept the stimulus of
the environmental are extremely limited, and most of the molecules respond only to one stimulus.
Of course, if we list all the molecules on Earth that have not yet been reported to academia, we may
add a few more kinds. Some researchers who were not able to wait for new sensitive molecules
that might emerge, and others who were tired of the existing smart system responding to only one
stimulus, developed a ‘smarter’ system named multi-stimuli responsive system by simultaneously
including segments that respond to two or more different stimuli in one system [147–149]. For the
same reason, the previously introduced several researchers changed the environmental reactive range
by slightly touching the structure of the stimuli-sensitive molecule [119]. However, this is also not
as active as expected because of the limited number of applicable molecules. In order to keep pace
with the ever-increasing demands of the industry, research must be actively conducted to develop new
sensitive segments and modify existing responsive molecules; in addition, the newly born sensitive
molecules must have rapid response speed and recyclability close to perfection.

4. Summary

Filtration technology using membranes has been studied in the direction of increasing permeate
flux as well as providing permeate selectivity to the pore used as the moving channel of the substances.
However, these two characteristics gradually diminished as the driving time of the membrane elapsed.
This is due to substances that have not yet passed through and remain near the pore, being accumulated
or adsorbed. Faced with these problems, researchers have devised a stimuli-responsive PNC membrane
system to improve the permeability and selectivity of the membrane while extending the retention period
of the early state. They increased the filtration efficiency of the membrane by combining hydrophilic
inorganic nanoparticles with a hydrophobic polymer matrix and by introducing a stimuli-sensitive
moiety as a molecular ON/OFF switch on the surface of the pore. Currently, many researchers are
trying to introduce and combine various materials to further improve the response rate and purification
efficiency of existing stimuli-responsive PNC membrane, and have so far continuously reported
their findings.
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