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Abstract: Circular Intensity Differential Scattering (CIDS) provides a differential measurement of
the circular right and left polarized light and has been proven to be a gold standard label-free
technique to study the molecular conformation of complex biopolymers, such as chromatin. In early
works, it has been shown that the scattering component of the CIDS signal gives information from
the long-range chiral organization on a scale down to 1/10th—1/20th of the excitation wavelength,
leading to information related to the structure and orientation of biopolymers in situ at the nanoscale.
In this paper, we review the typical methods and technologies employed for measuring this signal
coming from complex macro-molecules ordering. Additionally, we include a general description of
the experimental architectures employed for spectroscopic CIDS measurements, angular or spectral,
and of the most recent advances in the field of optical imaging microscopy, allowing a visualization
of the chromatin organization in situ.
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1. Introduction

Chromatin is a complex chiral macromolecule composed by the DNA double helix and proteins
located in the nucleus of eukaryotic cells [1]. The understanding of its different compaction levels is key
for describing DNA replication and other nuclear processes that play a primary role in DNA packaging
and gene regulation in the cell cycle [2]. The widely used approaches to apprehend its organization
are super-resolution optical microscopy [3] and cryo-electron microscopy [4]. The main advantage of
optical super-resolution techniques is to allow the detection of localized molecules of interest thanks to
specific labeling. However, these methods require chromatin-specific fluorescent probes for labeling,
which can interfere with the natural bio-molecular processes. Additionally, the preparation of such
samples is a mandatory and time-consuming step that depends on the use of a particular labeling
protocol. Label-free microscopy approaches can overcome these issues with high contrast coming from
the particular optical properties of the sample.

Among these techniques, Mueller matrix polarimetry provides a complete description of the
optical properties of the sample in a non-invasive and label-free way. The light/matter interaction can
be summarized in a single 4 x 4 Mueller matrix composed of 16 real elements [5] presented as:
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The mathematical decomposition of this matrix leads to numerous polarimetric parameters,
such as the absorption/scattering, Linear/Circular Dichroism (LD/CD), Linear/Circular Birefringence
(LB/CB), and the orientation [6]. Over the last few decades, this technique has shown its efficiency in
multiple areas, thanks to the sensitivity to the sample conformation [7]. For instance, numerous works
have been mostly dedicated to characterizing material media (thin film, dielectric materials,
metasurfaces, etc.), converting experimental polarimeters into ellipsometers [8-10]. Advances in
the remote sensing research field have allowed Mueller polarimeters to focus on the target detection of
micro-/nano-particles in a turbid or highly scattering medium [11-15]. The main recent advances have
been focused on investigating the modification of the tissues induced by pathologies at the cellular
level [16-22] for biomedical diagnosis and on developing innovative optical label-free polarimetric
microscopes [23-25].

The physical model to quantify all the polarimetric effects characterizing the structural
organization of the non-labeled sample is of particular interest, and it is achieved by modeling the
elementary polarimetric arrangement of the Mueller Matrix (MM) as proposed by the gold standard
method of the Lu and Chipman decomposition [26]. However, interpreting the full Mueller matrix
of random complex biological media at this scale could be an arduous task. The main reason is that
extracting the localized polarimetric signature of a biological medium is difficult due to the extremely
low Signal-to-Noise Ratio (SNR) and the mix of numerous different structures confined in a small
volume. It is the main reason why applications of this technique are widely dedicated to arranged and
patterned inorganic material media.

To overcome this limitation, early works have put more emphasis on the study of only a few
elements of the MM, more sensitive to particular configurations of the medium. This is typically the
case of Circular Dichroism (CD), defined using the intensities of the circular left and right polarization
of the light scattered from the sample, arising from media exhibiting an optical activity. In this
review, these media are chiral, meaning their structures are similar, but are not the same as their
mirrored image, corresponding to completely different physical/chemical properties according to
the handedness of the molecule. CD corresponds to the m3 (also refereed to as Si4) element of
the 4 x 4 scattering Mueller matrix [27]. It has been proven that the total CD signal comes mainly
from absorption, but also a weak scattering component and carries structural information at the
single molecule level [28-30]. The scattering component of CD, named CIDS (Circular Intensity
Differential Scattering) [31], is particularly important outside the absorption band of the sample
and/or at a non-zero scattering angle. It originates from long-range chiral structures at a scale of
down to 1/20th the wavelength of incident light [32,33] and is sensitive to (1) the characteristics of the
chirality, such as their radius and pitch, (2) the handedness (left or right) of the molecules, and (3) the
compaction of the chiral groups [34-37]. CIDS emission is angularly dependent and is described by
the following equation:

_ 1L(0) — Ir(9)
IL(6) + Ir(6)

where I} and IR are respectively the detected intensities for the left and right circular polarization
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states and 6 is the scattering angle.

As previously stated, CD/CIDS and polarization in general can be of interest as label-free
techniques to study the structure of biopolymers such as chromatin. The experimental procedure to
evaluate the CD sign and magnitude is based on the Mueller/Stokes formalism. It consists of generating
and analyzing a set of at least 16 equations of polarization states coming from the interaction between
the polarized light and the sample [38]. For typical CIDS measurements, the generation of the circular
right and left polarization states is performed through a birefringent crystal stressed periodically using
electro-optics devices [39]. Using the Stokes—-Mueller formalism combined with a lock-in detection
at the reference frequency, the acquisition leads to a single differential signal after interaction in the
excitation volume. This results in a drastic simplification of the experimental setup and a higher
SNR. By adding multiple optical modulator devices in the setup, it is possible to achieve very short



Polymers 2020, 12, 2428 3of 21

acquisition times for detecting ultra-fast and sensitive changes in the polymer organization [40].
The interesting characteristic of this method is its versatility to be shifted from the simple single point
measurement to the 2D imaging acquisition through a microscopy approach without the need for
numerous additional optical changes in the polarimetric pathway. The most common application of
the CIDS is the single point measurement, in which the scattering from the whole illuminated sample
volume is measured either as a function of the wavelength [41] or the scattering angle [42]. This has
been proven to be very fitting for virus and bacteria detection and chiral structures’ characterization,
justifying the important rise of numerous commercial systems [43].

This review article is dedicated in particular to the description of the experimental advances in the
field of CD/CIDS spectroscopy, demonstrating the capability of this method to describe biopolymers’
organization at the nanoscale. For instance, we present briefly studies performed on biopolymers
and micro-organisms (viruses, chromatin) for in vitro and in situ characterization. We used databases
such as PubMed and the Web of Science to gather information for this article. First, we discuss the
different optical methods to extract this signal in the low SNR scattering regime from the literature.
Furthermore, we will present the experimental single point measurements and their applications in
the field of virus/bacteria detection and biopolymer structure characterization. Finally, we show the
capability of this technique to be incorporated in an imaging configuration, demonstrated from early
works to the most recent advances in the optical scanning microscopy field for chromatin imaging.

2. CIDS Effect

Between the 1970s and the 2000s, a considerable effort using CIDS detection has contributed to
the understanding of the molecular conformation of DNA in chromosomes [44,45] or the structure of
viruses [46]. In early works, it was proven that the difference in the total scattering cross-section for
the circularly polarized light can also contribute to an additional CD effect [44]. CD spectroscopy was
already a gold standard technique for studying chiral molecules [47], and propositions for the usage
of CIDS as a probe of higher order chiral organization found in the chromatin structures and that of
other protein-nucleic acid complexes were quickly advanced [48]. Indeed, the typical CD approach is
sensitive to the molecular order of a few angstroms, and it has been shown that CIDS can be sensitive to
structures of a size down to 1/20th the size of the incident wavelength, possibly unlocking information
normally not available with a conventionnal optical microscope [32]. It is worth noting that CIDS
can occur at any wavelength, but is usually studied at wavelengths outside the absorption bands and
at angles different from 0°, since the scattering component (CIDS) is usually much weaker than the
absorption component [49].

In single point experiments on a turbid medium, the transmitted intensity magnitude is defined
by the Beer-Lambert law. The light is modeled as passing through a sample with concentration c and
path length I. We can define the molecular cross-section € (also referred to as the extinction coefficient)
as the integral all over the cross-section ¢, and it corresponds to the intensity scattered by a molecule
at any angle 6. Thus, the CIDS signal can be calculated with the formula [32]:

I.(6) — Ig(6)  —2.303 (61 — en)ec {
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This expression corresponds to the CIDS at any angle except zero, where only the scattered beam is
detected. The first part is related to the differential attenuation of the CD in the absorbed and scattered
beam through the cell. The second part corresponds to the CIDS cross-sections at any angle 6. It is
worth noting that the magnitude and the sign of the differential scattering signal are not simply related
to the cross-section. Indeed, they depend on (i) the relative orientation, (ii) the distances between the
chiral groups, (iii) the chirality, and (iv) the size of the scattering particle. The main contribution of the
scattering signal is when the distances between the scattering groups vary from 1/20th to one times
the excitation wavelength. Additionally, the CIDS magnitude becomes larger when the dimension of
the scatterers is of the order of the incident wavelength [32]. Secondly, early works predicted that the
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left-handed chirality of a macromolecule gives a positive CIDS [31]. Conversely, a right-handed helix
will give negative CIDS at a wavelength higher than the dimension of the pitch of the helix [50].

Therefore, this approach has been the subject of numerous theoretical studies to explain the origin
of the CIDS signal [51] and quantify the differential scattering cross-section [52]. One of the first
approximation methods to model the CIDS signal deriving from chromatin structures was the Born
approximation [53], which assumes all scatterers as ideal and independent. However, this approximation
does not consider the internal interactions in the scatterer and incorporates anisotropy geometrically by
replacing isotropic scatters such as spheres with ellipsoids. For the chromatin structure, we cannot ignore
the internal interactions between nucleosomes, which affect the compaction of the chromatin structure [54].
Another approach widely employed is the discrete dipole approximation [55,56], the ADDAcode [57],
to compute the Mueller matrix elements. This method discretizes the scattering object into a collection of
polarizable point dipoles and takes into account their interaction. The minimum requirement of dipoles
to approximate the scattering object is dictated by its refractive index. The polarizability of point dipoles
has been calculated using the lattice dispersion relation (LDR) [58] and has been measured in the X-ray
region with good agreements [59]. The theory to calculate Mueller matrix elements for a set of scattering
angles was adopted from Bohren et al. [27]. To take into account the random 3D spatial distribution in all
the scattering volume, an orientation averaging has been performed over Euler angles. The DDA has
been proven to be a numerically exact method [60] and has been employed in various research fields from
biophotonics [61-63] to plasmonics [58,64].

After the 2000s, only a few studies for the double DNA helix using the CIDS have been proposed.
In the literature, a few work focused on highlighting the wavelength dependence of the polarimetric
response of solid materials and chiral molecules in turbid media [65-67].

3. CIDS Experimental Architecture

A general Mueller polarimeter can be described as a successive assembly of multiple optical parts.
As presented in Figure 1, it is composed of a light source, an optical block to generate the polarization
states called the PSG (Polarization States Generator), the studied sample, another optical block to
analyze the transformation of the polarization states after interaction with the medium, called the PSA
(Polarization States Analyzer), and the photodetector [68]. In the literature, the mix of the PSA and the
detector part is referred to as the Polarization States Detector (PSD).

- PSD

Light source =
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Figure 1. Block diagram of a general MM polarimeter. PSG: Polarization States Generator. PSA: Polarization
States Analyzer. PSD: Polarization States Detector. S, and Sy are the input and output polarization states
described by the Stokes vectors.

More specifically, the PSG has the role of encoding the incoming light radiation as described
by the Stokes vector S_{n =[S0, 51, S2, S3]i". Each Stokes parameter has a physical significance linked
to polarized light intensities, and their combinations provide valuable information through various
polarization parameters, including the Degree Of Polarization (DOP), Linear (DOLP), and Circular
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(DOCP) [38]. The polarized light encoding can be made through active rotated polarizing optics such
as Linear Polarizers (LP) and waveplates such as Half-Waveplates (HWP) and Quarter-Waveplates
(QWP). The drawback of using rotors is mainly the time-consuming operation for generating the
polarization states. For this reason, modern CD experiment approaches have proposed to convert the
linear polarized light into circular, through passive resonant devices such as Pockels Cells (PC) and
Photoelastic Modulators (PEM) [69-71]. This technology is composed of a passive crystal subjected to
periodic mechanical stress, providing a time-varying birefringence due to the photoelastic effect [39,72].
Thereby, the device can produce circular polarization states with alternating handedness at a rate
ranging from tens of kHz to tens of MHz depending on the device used. The most common applications
have used the PEM technology despite the higher modulation rate reached by the PC. The reason is
that the PC generally is more unstable in time and needs precise feedback control due to a larger strain
and optical distortion [73]. Moreover, the PEM has a lot of advantages such as a high optical quality
(high power handling capability, large acceptance angle, and large useful aperture), modulation purity
and efficiency, and high retardation stability, making it an effective instrument in a wide variety of
applications. In Table 1, we resume the different performances of each optical configuration.

Table 1. Non-inclusive report of the main performances and capabilities of the commonly used
polarization modulation devices in CIDS setups, meaning simple polarizing optics (assembled in
rotors), Pockels Cell (PC), and Photoelastic Modulator (PEM).

Speed Spectral Range Advantages Disadvantages
Rotors ~ Hz Wide Easy and s1.mp1e Precise e.lhgnment
Inexpensive Electronic controls
High optical quality Terﬁgsei?;gfz tcr (;1;1:1'01
PC DC—1GHz 200 nm to5 um Very fast modulation .
Mathematical model
Compactness E .
xpensive
High optical quality
PEM 20-84kHz 170 nm to 19 um High power handling Mathematlcgl model
Large acceptance angle Expensive
Compactness

After interaction with the sample, the PSA analyzes the transformation of the polarized light,
giving the output Stokes vector as S;ut =[S0, 51, 52, S3]°#, and the light intensity is captured by a
polarization-insensitive detector. The scattering signal is extremely weak compared to the directly
transmitted intensities, with an intensity ratio of around 10~*. Despite this, it can be measured using a
tunable gain photomultiplier detector. The Mueller matrix, M, describes how the polarization state of
input light changes upon interaction with the sample by:

— —

Sout = [M]Sin (4)

where S_i'n and S;ut are the input and output Stokes vectors. Because of the time-variation of the
intensity induced by the photoelastic effect, the detected signal is a channeled spectrum represented in
the Fourier domain by complex modulation amplitudes at numerous frequencies. Their expression is a
linear combination of the MM elements [74-76].

In earlier works, numerous CIDS setups only used one PEM in the PSG block and analyzed the
intensities with an LP oriented orthogonally to the excited polarized light [77-79] as presented in
Figure 2.
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Figure 2. Block diagram of general CIDS setups using one PEM in the PSG (a) with a single detector and
(b) with a two channel detection based on the DoA method. LP: Linear Polarizer. PEM: Photoelastic
Modulator. PSA: Polarization States Analyzer. LA: Lock-in Amplifier. BS: Beamsplitter. D: Detector.

Using the Stokes—Mueller formalism, it is shown that the differential circular polarized light,
coupled with a demodulation detection scheme from a Lock-in Amplifier (LA) at the reference
frequency of the PEM, can analyze the differential intensity between the right and left circular
polarization states in a few microseconds, allowing extracting the CD/CIDS amplitude in a fast
and robust way [80,81]. This simple configuration gives access to only a few elements of the MM,
especially mp3. Furthermore, by rotating the optical axes of the polarizing optics, the number of
elements available can be increased, though this results in a longer acquisition time. To improve
the acquisition speed, one general method in polarimetry is called Division of Amplitudes (DoA),
and it consists of replacing the second linear polarizer by polarized beamsplitters and measuring the
complete polarization state of light simultaneously using multiple photodetectors [82,83], as shown
in Figure 2b. The drawback of this configuration is the requirement of a precise alignment and an
important calibration step, leading to difficulties in obtaining a versatile and compact detection module
in terms of light parameters.

Another solution to improve the acquisition speed is adding a second PEM in the PSA part, phase
synchronized with the first one [84], as suggested in Figure 3.
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Figure 3. Block diagram of a general complete MM polarimeter using (a) two PEMs and (b) four PEMs
with a single detection coupled with an electronic synchronization. The output intensity temporal
spectrum exhibits multiple frequencies k.co; and k’.w;, expressed as a mathematical product between
Fourier amplitudes A (w1, wy) and the Bessel functions J; and J5, leading to the combination of the MM
elements (m;;). The resulting set of equations allow recovering the full MM. LP: Linear Polarizer. PEM:
Photoelastic Modulator. LA: Lock-in Amplifier. D: Detector. DAQ: Data Acquisition board. FPGA:
field-programmable gate array.

In this method, the common approach is to choose two PEMs at two different working frequencies.
This results in an increase of the independent Fourier harmonics, giving access to more equations,
therefore more MM elements simultaneously. If the detection system is sensitive enough, all the
Mueller coefficients can be obtained in 1 ms [85,86]. Adding a second PEM allows extracting not only
the CD signal, but also the LD and the LB and CB [87,88], leading to a better understanding of the
sample under illumination. A final upgrade of this technique has been proposed in recent works by
adding a third [89] and a fourth PEM [90-92]. The main advantage brought by adding a fourth PEM
in the CD setup (two for both the PSG and PSA) is that all the elements of the MM can be retrieved
without any mechanical moving parts. This optimization of the MM polarimeter, coupled with a
triggered synchronization through an FPGA card is a step forward, allowing real-time or snapshot
acquisition. Thus, this experimental approach is more suitable for studying ultrafast conformational
changes in biopolymers [93-95]. In Table 2, we resume the capabilities achieved from the different
configurations by using the PEM technology.
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Table 2. Main characteristics of the single and multiple PEM-based technology experiments.

Number of Element Speed Advantages
1 PEM 4 100 ms Simple and easy
2 PEMs 8 10ms  No lock-in detection needed

No lock-in detection needed
3 PEMs and 4 PEMs 16 1ms No moving parts
Wide range of applications

4. CIDS Microscopy Configuration

4.1. Single Point Measurements

In early works, the CIDS experiments have been performed from samples in suspension of the
desired particle or organism inside aqueous solutions. Thus, the signal is derived from the average
scattering inside the whole illuminated volume, as shown in Figure 4.

Sample
( a) ina cyIinFIric§I cuvette

Light
ource

Spectrometer

‘;‘G rating CIDS()

/H\

--- = mmm

Sample
in a cylindrical cuvette
(b) !

CIDS(0)

Colleting"“ .
lens

Figure 4. Block diagram of general CIDS experimental setups for (a) spectral and (b) angular
measurements. PSG: Polarization States Generator. PSA: Polarization States Analyzer. : Scattering
angle. LA: Lock-in Amplifier. D: Detector.

The common measurements for the CD experiments are based on measuring the absorption
spectrum of the molecules, giving access to the information of the conformation and handedness
at the nanoscale. For this reason, CIDS experiments have been developed by simply modifying
commercial spectrometers in order to increase the SNR of the already low scattering signal [96].
However, the angular dependence of the CIDS signal imposes developing new architectures that are
able to detect the scattered beam at any angle around the sample. From the first demonstration of
the circular polarized light microscope, the CD and more particularly CIDS signal have been used to
study biological macromolecules aggregates [32]. With time, it developed an application in the study
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of various kinds of more complex biological samples like viruses [35], erythrocytes [97], and DNA
aggregates [98].

In the case of the spectral measurements in Figure 4a, the detector averages over a smaller angle
usually at or close to 0° of incidence. The information comes from the spectral response, and the light
impinges the fingerprint of the macromolecules under illumination. The typical use is identifying
different microorganisms from the absorption spectrum of the CIDS. This method has shown the ability
of CIDS to differentiate flu viruses and different kinds of live bacteria by using wavelengths between
300 nm and 700 nm [99] or even the diameter of the microorganism population in mixed suspension
medium [79]. All microorganisms present a specific CIDS imprint that can be used to identify them
in a fast way. The spectral discrimination has been used on Chinese hamster cells to determine the
cellular phase by comparing general CD and CIDS signals in different spectral regions [42]. At different
cell phases, the nucleus is completely rearranged to transcript the genetic information. It results that
the CIDS fingerprint of the DNA could be blurred by the other nucleus components, such as the
cytoskeleton or the microtubule structures. CD/CIDS spectroscopy has been demonstrated as an
interesting tool in the study of photosynthesis and pigment systems in plants to understand the
interactions in pigment-protein complexes [100]. Psi-type (polymer and salt-induced) aggregates
like the ones present in chlorophyll and chromophores, as well as DNA were studied and shown to
present CIDS outside the absorption bands, which allowed better understanding the energetic bonds
in the nucleus [101,102]. The footprint of spinach chloroplasts was used to determine the presence of
chiral aggregates inside of the chloroplasts themselves and to determine the radius and pitch of such
features by comparing results with simulations [103]. A recent application of CD for characterizing the
absorption/scattering spectrum of the chloroplast is the remote identification of such macromolecules
in vegetation up to distances of a few kilometers [104].

In the angular measurements in Figure 4b, the setup presents a rotating arm in the sample holder
upon which the PSA is mounted. In this way, the signal can be acquired from different angles around
the sample, ideally only limited by the mechanical constraints of the components. Experimentally,
the condensation of DNA is artificially induced by a large variety of processes, such as by polymers,
salts, and H5 histones, in alcoholic solution [98], or simply by dehydration [96]. This produces local
compaction of DNA and forms microscopic aggregates, which is the reason DNA is studied in the
liquid-crystalline phase in concentrated aqueous solution [105]. Diaspro et al. compared different
angular CIDS measurements from several chromatin extraction protocols induced by the arrangement
of nucleosomes from rat hepatocytes to decide which method was the closest to preserving in vivo
chromatin organization [37,106]. This approach was completed by measurements from the differential
calorimetry method [107]. However, it was shown that the CIDS signal is strongly dependent on the
extraction protocol of the chromatin, which results in difficulties for interpreting the DNA compaction
level. This is the reason that most of the applications for interpreting the angular spectrum of the
CIDS are theoretical. Still, they lead to a better understanding in the field of complex nucleic acid
organization [31,51,77].

4.2. CIDS Optical Imaging Microscopy

MM microscopy imaging has been used widely in the field of biomedical applications for the
following reasons: (i) it is a label-free, non-invasive method, allowing contrast without any contact and
external labeling and a priori knowledge of the sample; (ii) it is an inexpensive and easily designed
tool, which can be performed using white light sources or simple laser diodes and CCD cameras
and photodiodes.

In the literature, few works have reported full MM imaging of living or fixed single cells [108-111].
The difficulty in performing microscopy on these small samples is mainly linked to the diffraction
limit in the linear optics regime and the difficulty to preserve the polarization in all the Fields Of
View (FOVs) using microscope objectives. Indeed, if the light is focused or collected using a high
numerical aperture objective, it may cause polarization distortions [112]. In this case, the polarization



Polymers 2020, 12, 2428 10 of 21

is not preserved in all the FOVs at the PSF plane, resulting in a strong depolarization from a spatial
averaging of the electric field at the sample plane [113]. One solution to take into account the effect
of a tightly focused beam could be introducing new optical devices such as phase plates or vortex
plates to compensate for the polarization in all the FOVs [114,115]. Another solution is to describe the
polarization in 3D by converting the MM into Hermitian matrices [116], leading to 81 independent
MM elements, although it could be reduced to a more manageable 17 MM, only one more than in the
2D MM case [117]. The 2D mapping of the optical activity of the sample through a circular differential
imaging configuration was discussed in detailed first by Keller et al. [118]. It has been shown that the
circular differential imaging method exhibits contrast from the difference in the optical activity from
the surrounded molecules, which is directly correlated to the sample fingerprint without additional
staining. The main advantage is the CIDS sign and magnitude of each chiral group is characteristic
of structural properties that could be too small to be resolved by conventional microscopy methods.
This is a crucial point of this method for structures that present changes as a function of the time or
the environment, such as the folding and unfolding chromatin structure. Because CIDS is angularly
dependent, the apparent optical activity of each chiral group in the sample is exhibited differently as a
function of the excitation light angle and its wavelength. Additionally, two configurations have been
considered; (i) in reflection or dark-field imaging and (ii) in transmission or bright-field imaging. It has
been shown that the circular reflection differential imaging configuration tends to be more sensitive to
large chiral groups with dimensions similar to the wavelength of illumination, while the transmitted
configuration is more sensitive to the short-range molecular order. In a series of articles published in
the 1980s, this theoretical background for the full MM imaging configuration was completed [119-121]
using Born approximation at the first and higher orders. It has been shown that the interpretation of
the differential circular dichroism images for chiral samples is strongly correlated to the thickness and
the degree of anisotropy of the sample [52], leading to neglecting almost all the m;; elements except
the ones describing CIDS (i.e., mz or my3). Thus, the cross-interaction between the chiral groups
affects the optical sectioning pixel-by-pixel, solved using optical scanning confocal microscopy [122],
and contributes to polluting the CIDS signal by artifacts in the Point Spread Function (PSF) volume.
These simulations have been validated later through experiments for chloroplast organization [123].

We summarize the different optical microscopy configurations developed for imaging CIDS
pixel-by-pixel in Figure 5.

(@) (b) ©

I(®

Tube lens
Condenser
Sample +

Mt

Objective <ty

GS G Line sync - y

z) Image

| processing Ref processing
PEn |

Lp =1

White lamp

Figure 5. Block diagram of different optical microscope architectures allowing the imaging of the

Condenser

Sample
XY stage

Condenser .
T Electronic

readout Objective
Pinhole

Sample

Objective

Image
processing

pixel-by-pixel CIDS signal. (a) Optical microscope in wide-field configuration using two Pockels cells,
inspired by [124,125]. (b) Optical microscope using one photoelastic modulator synchronized with a
lock-in amplifier and an XY translating sample holder, inspired by [100,126,127]. (c) Optical scanning
microscope using a photoelastic modulator synchronized with a lock-in amplifier, inspired by [128—
130]. PC: Pockels Cell. PEM: Photoelastic Modulator. F: monochromatic filter. LP: Linear Polarizer.
LA: Lock-in Amplifier. PMT: Photo-multiplier tube. GS: galvanometric scanner.
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The first experimental CD/CIDS microscope reported in the literature was proposed by
Mickols et al. [124] and is presented in Figure 5a. The idea was to modify an already existing CD
microspectrophotometer, using its monochromatic light source and the diode array line-scan detector.
Then, the setup was built in the same way as the single point CIDS setups, by adding two Pockels
cells in the PSG and PSA optical blocks. Thus, the two Pockels cells were electronically synchronized
with the linear diode array to integrate the light over each half cycle of the modulation and form
the final image. In this method, the intensity signal was demodulated directly electronically without
any use of LA. This was applied first to red blood cells and Chinese hamster ovary cells and then to
oxygenated and deoxygenated sickle erythrocytes at 415 nm excitation light [125]. Here, it was first
demonstrated that a modification in the concentration and conformation of DNA-based polymers
results in a drastic change in CIDS signal. An alternative experimental design of this work was
proposed [126], shown in Figure 5b. This new approach became more similar to what can be found
for modern experiments by using a lock-in detection. By coupling the advantage of the LA with high
quantum efficiency photocathode measurement, the result is a drastic improvement in the SNR, lower
power requirements, and fast response (30 ms per pixel). All these changes showed the ability to image
and characterize individually red blood sickle cells. Alternative setups based on the same approach
of modulation/demodulation of the circularly polarized light were proposed by adding a confocal
mode to the microscope. This results in an improvement in the optical resolution giving access to
the CIDS signal at the nanoscale in the imaging mode, overcoming artificially the diffraction limit,
but sacrificing the acquisition speed by translating point-by point the sample. This allowed for the
first time studies for DNA/RNA imaging for different cell cycles or transcriptional activation in live
primary spermatocytes of Drosophila [127,131]. Similar setups have highlighted that the sign of the
CIDS signal could be changed depending on the buffer of the sample, by mediums in suspension or
fixed for the thylakoid membranes of chloroplasts [100,132]. These important results proved that the
potential polarimetric artifacts observed with this method could be induced by the superposition of
local spectra of opposite sign coming from a mixture of long-range chiral domains in the PSF volume.

The latest improvement in this research topic comes from the development of the first optical
scanning polarization-resolved microscope dedicated to CIDS imaging [128] presented in Figure 5c.
It provides a faster acquisition time (few microseconds per pixel) and results in a more robust
and sensitive approach. Here, the PEMs are simply placed before and after the microscope body,
composed briefly by a tube lens, the galvanometers scanning head, the objective, and the condenser.
The demodulated signal, collected by a single point detector, is synchronized with the pixel clock
of the scanning head, making possible the reconstruction of the Fourier harmonics of the reference
signal of the PEM pixel-by-pixel. This was first demonstrated for chiral materials in a very thin
film (tens of Angstroms) at high resolution by overcoming the diffraction limit through the sample.
Due to the flexibility of this method and its local sensitivity to optical anisotropy at the nanoscale level,
CD/CIDS scanning microscopy has been demonstrated recently as an important tool for label-free
imaging in a large range of applications such as for metamaterials characterization [133-137] or
chiral polymers organization under certain constraints [129,138,139]. Finally, the versatility of this
method has shown its potentiality for multimodal imaging of chromatin characterization proposed
recently by our group [130]. We implemented a CIDS imaging modality into a commercial scanning
confocal fluorescence microscope in order to observe isolated HEK cell nuclei that were marked with
Hoechst 33342, a chromatin binding fluorophore. The idea of observing the cell nucleus with both
modalities is to guarantee the imaging of only the fingerprint of the chromatin, independently of
residual polarimetric artifacts. By coupling the well-known fluorescence response with our approach,
we aimed at proving the validity of CIDS as an imaging mechanism for chromatin-DNA compaction,
as shown in Figure 6.
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Figure 6. (a) Normalized CIDS image of an isolated HEK nucleus after extraction. (b) Fluorescence
image of the same isolated HEK nucleus labeled with Hoechst. (c) Merge of images (a,b). (d) Intensity
plot from the orange arrow in (c). The blue plot is the intensity profile from the CIDS image (a), and the
green plot is the Hoechst profile from Image 4. (b). The dashed lines indicate the estimated area of the
nucleus. Reproduced with permission from [130].

Figure 6a shows the CIDS image, while Figure 6b shows the fluorescence and Figure 6c the merged
image. The line profile corresponding to the golden arrow in Figure 6¢ is shown in Figure 6d for both
modalities, in green for fluorescence and blue for CIDS, respectively. As can be seen, the first main
result is the correspondence of the edges of the CIDS signal with the ones of the fluorescence signal,
confirming that the CIDS signal is produced in the volume of the nucleus, where the chiral organization
of chromatin is present. Furthermore, double peaked structures can be noticed in the CIDS signal at
the edges of the nucleus corresponding to the heterochromatin, a region transcriptionally inactive
where the compaction is higher.

Thus, in a following work, we utilized the same technique on whole HEK cells (no nucleus
extraction) in conjunction with Expansion Microscopy (ExM) in an approach we named ExCIDS [140].
The ideas behind this method are explained in Figure 7.

The sample before the expansion process is shown Figure 7a. The biological material belonging to
the structures outside the chromatin-DNA, like the cellular membrane and cytoplasm, causes scattering
of the light that reduces the ability to resolve the chiral group structures inside the nucleus and
introduces the signal outside of it. After expansion and digestion in Figure 7b, the quantity and density
of biological structures outside the nucleus is lowered, leading to an increase in contrast of the CIDS
signal by reducing the scatters. As shown in Figures 7c,d, this has an effect also on the chiral structures
of the chromatin-DNA. When the expansion factor increases, the number of chiral structures inside the
PSF becomes lower. After a certain point, this number will be too low and the signal will be too close
to the noise level, putting a limit on the sample expansion process while keeping a measurable CIDS
SNR. Indeed, this has been shown in the paper, where 4 x expansion led to loss of CIDS signal, and 2 x
was deemed the ideal expansion factor for CIDS imaging. As a result, in Figure 8, we show the CIDS
and fluorescence imaging results for whole cells before (Figure 8a—d) expansion and at a 2x expansion
factor after 4 h (Figure 8e-h) and overnight (Figure 8i-1) digestion and expansion.
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Figure 7. Schematic principle of the scattering process into the PSF volume (a) without digestion
and (b) after n hours of digestion. (c) Principle of the SNR decreasing and imaging contrast quality

improvement after the expansion process. Reproduced with permission from [140].
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Figure 8. Images of HEK cells labeled with Hoechst in CIDS (a,e,i) and fluorescence (b,£,j) modalities.
A merged image of both modalities is presented in (c,g k), and a line profile relative to the yellow line
in those pictures is shown in (d,h,1). Here, CIDS is represented in blue, while the fluorescence signal is
represented in green. Reproduced with permission from [140].

As can be seen in the CIDS images Figure 8a,e,i, the CIDS signal present outside the nucleus
gradually disappears with the increase of digestion time due to a digestion of the biological components
of the cell, while keeping a good SNR inside the nucleus itself.

The next step of this work is to combine additional label-free modalities, such as
Ptychography [141] or SHG (Second Harmonic Generation) with multiple fluorescence modalities,
such as Fluorescence-lifetime imaging microscopy (FLIM), STimulated Emission Depletion (STED),
or multispectral fluorescence channels imaging with CIDS to have a full and deep understanding of
the chromatin at different DNA compactions and cell cycles [142].
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5. Conclusions

The CIDS technique is an interesting label-free approach for understanding the molecular
organization at the nanoscale, demonstrating its potentiality in the field of chromatin structural
characterization. This method has several advantages over other traditional optical imaging modalities
such as being a versatile and flexible tool, with low complexity and low cost. In this review,
we presented the earlier and the most advanced models that have proven their accordance to
experimental data. We showed that the experimental architectures are inspired by Mueller-Stokes
setups, and they are simple to handle. However, a high sensitivity in the polarized detected light is
required to track fast molecular changes in the biopolymer structure. It follows that switching this
simple configuration into an imaging system is not straightforward, and a different source of artifacts
could be measured. It is induced mostly by the limitation of such a linear optical technique to measure
the average CIDS signal through the entire PSF volume, without any spatial sectioning. Thanks to the
recent advances and demonstrations offered by the upgrade of the optical scanning microscope, it is
easy to imagine 3D real-time measurement in the polarization-based imaging research field.
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Abbreviations

The following abbreviations are used in this manuscript:

CD Circular Dichroism

CIDS  Circular Intensity Differential Scattering
2D Two-Dimensional

3D Three-Dimensional

MM Mueller Matrix

DDA  Discrete Dipole Approximation
SNR Signal to Noise Ratio

PSG Polarization States Generator
PSA Polarization States Analyzer
PSD polarization States Detector
DOP Degree Of Polarization

DOLP  Degree Of Linear Polarization
DOCP  Degree Of Circular Polarization
PSF Point Spread Function

LP Linear Polarizer

HWP  Half-Waveplate

QWP Quarter-Waveplate

PEM Photoelastic Modulator

PC Pockels Cell

LA Lock-in Amplifier

DoA Division of Amplitudes

LD Linear Dichroism
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LB
CB
FOV
ExM
SHG

Linear Birefringence

Circular Birefringence

Field Of View

Expansion Microscopy
Second Harmonic Generation

FLIM  Fluorescence-lifetime imaging microscopy
STED  STimulated Emission Depletion
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