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Abstract: With the development of polymer science, more attention is being paid to the longevity of
polymer products. Slow crack growth (SCG), one of the most important factors that reveal the service
life of the products, has been investigated widely in the past decades. Here, we manufactured an
isotactic polypropylene (iPP) sample with a novel shear layer-spherulites layer alternated structure
using multiflow vibration injection molding (MFVIM). However, the effect of the alternated structure
on the SCG behavior has never been reported before. Surprisingly, the results showed that the
resistivity of polymer to SCG can be enhanced remarkably due to the special alternated structure.
Moreover, this sample shows unique slow crack propagation behavior in contrast to the sample with
the same thickness of shear layer, presenting multiple microcracks in the spherulites layer, which can
explain the reason of the resistivity improvement of polymer to SCG.

Keywords: iPP; alternated structure; slow crack growth

1. Introduction

Polymer materials possess great potential as tailoring either the chemical or physical structures
of polymer in solid state at different scales can satisfy the requirement for a certain application.
Controlling microstructures via adjusting processing conditions (temperature, shear rate, etc.) during
processing is more efficient and operable in contrast to chemical modification. This is called the classical
“structure—property” relationship, which is a guideline for polymer processing [1-3]. Hence, it is of
vital importance to reveal the relationship between the microstructure and properties for academia
and industry.

Polymer products often fall in a brittle behavior after they are long exposed to the service
temperature and low stress, containing the formation of a craze at a point of stress concentration
and the subsequent propagation and fracture of the materials [4-7]. This long-term brittle failure,
so-called slow crack growth (SCG), determines the practical service life of materials. A large number of
studies have been carried out to understand comprehensively this phenomenon and create the ways to
improve considerably the polymer resistance to SCG. It has been confirmed in the previous literature
that the molecular topological structure and morphologies, involving the content of tie molecules [8],
the number of short-chain branches [9], the molecular weight and its distribution [10], and crystalline
morphology [11], are closely related to resistance to SCG. For example, Brown studied the effect
of molecular weight and branch density on the rate of SCG, and their results showed that a high
molecular weight as well as short chain branch can enhance the resistance to SCG significantly [10,12].
Ludwig et al. discovered that polyethylene (PE) with a broad molecular weight distribution has
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superior long-term mechanical properties [13]. Meanwhile, many researches have proven that the
formation of a shish-kebab structure and more perfect crystals can help to enhance the resistance of
polymer to SCG to a large extent [11,14,15].

It is well known that injection molding is one of the most important processing technologies for
polymers. Nevertheless, the plastic parts prepared by conventional injection molding (CIM) only have a
relatively low content of shish-kebab structure in the skin layer in contrast to the amounts of spherulites
that constitute the core layer, resulting in the poor mechanical properties of products. To optimize
their performance, the issue of increasing the number of shish-kebab structures via imposing an extra
strong shear field on polymer melt, which would result in the “coil-stretch” transition of the molecular
chains, has been stressed in the past decades [16,17]. A large amount of experiments have been carried
out to demonstrate that some modified injection technologies, such as pressure vibration injection
molding (PVIM) [18,19], oscillatory packing injection molding (OSIM) [20,21] and push—pull injection
molding [22-24] could be applied to obtain self-reinforced parts involving a mass of shish-kebab
structure. A novel multiflow vibration injection molding (MFVIM) technology based on PVIM has
been proposed by our group in recent years, whose mechanism has been described in the previous
papers [18,25,26]. We can not only prepare plastic parts including a high content of shish-kebab to
induce self-reinforcement effect, but also parts with a shear layer-spherulites layer alternated structure
by tuning the processing parameters such as injection pressure and interval time. It has been reported
that the Izod impact strength could be remarkably enhanced for the products with the alternated
structure [27,28], and it could be further improved by thermal annealing at a suitable temperature for a
certain time. The highest value climbed up to 90 KJ/m? for isotactic polypropylene (iPP), while the
value of the sample prepared by CIM is lower than 5 KJ/m? [29]. However, the influence of the
distribution of shear layer on the long-term mechanical properties has never been investigated.

iPP, one of the most important general polymeric materials, presents excellent performances and
relatively low costs. It was chosen to be the material in the current work, and the injection molded parts
with a distinctly different hierarchic structure were prepared by using CIM and MFVIM respectively.
On the basis of the previous investigation, we try to understand the relationship between the long-term
mechanical properties and unique shear layer-spherulites layer alternated structure for the first time.
The microstructure and long-term mechanical properties were detected by polarized optical microscopy
(POM), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and self-designed
SCG device [11]. The results indicated that such a special morphology could enhance the resistance of
iPP to SCG pronouncedly, and the mechanism was also proposed. This work provided a promising
and easy way to alleviate the environmental problems to some extent by lengthening the service life of
the products prepared by iPP.

2. Experimental Section

2.1. Materials

IPP (commercial grade T30S) with the density of 0.910 g/cm® and melt flow index (MFI) of
2.90 g/10 min (230 °C, 2.16 kg), was available from Lanzhou Petrochemical Company (Lanzhou, China).
TX-10, as the surfactant, was applied to accelerate the process of slow crack growth.

2.2. Samples Preparation

In this work, conventional injection molding (CIM) and multiflow vibration injection molding
(MFVIM) samples were prepared by adjusting the pressure and interval time during the packing
stage, and they were labeled as CIM, V;, V; respectively. V; represents the sample with simply
increased thickness of shear layer, while V; is the one with unique shear layer-spherulites layer
alternated structure. It should be noted that both of them almost have the same thickness of shear layer.
The temperature profile from hopper to nozzle was 160, 180, 190, 200, and 200 °C, respectively, and the
mold temperature was fixed at 50 °C. Some molding parameters are listed in Table 1.
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Table 1. Molding parameters of vibration injection molding process.

CIM Vi V2
Injection pressure (MPa) 40 40 40
Packing pressure (MPa) 30 30 30
Vibration pressure (MPa) 60 100
Interval time(s) 1/4/8 10/5

After the samples were injection molded, dumbbell bars were cut from the same position for all
specimens to investigate the long-term mechanical properties, which were 4 mm width and 3 mm
thickness. We made a notch in the middle location for all the samples (shown in Figure 1) by a blade.
The crack tips were sharp and the initial crack lengths were measured by vernier caliper. It should be
noted that we tested three times for each kind of sample to avoid small differences in the initial crack
length that may produce different behaviors.

ND
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Figure 1. Schematic diagram of sample prepared for characterizations. FD, flow direction; TD,
transverse direction; ND, normal direction.

2.3. Polarized Optical Microscopy (POM)

Thin slices with thickness of 30 um were cut from different samples at the same position by a
microtome. Then the slices were observed by a DX-1 (Jiang Xi Phoenix Optical Co., Shangrao, China)
microscope connected with a Canon 500D digital camera (Canon, Tokyo, Japan), and the observation
direction for POM was parallel to transverse direction (shown in Figure 1).

2.4. Differential Scanning Calorimeter (DSC)

A DSC (TA Q200) device was used to analyze the thermal behavior of different samples.
All measurements were carried out under dry nitrogen atmosphere. Specimens about 3—8 mg
were heated from 80 to 200 °C with a heating rate of 10 °C/min. The following equation was utilized
for calculating the total crystallinity, X., of each sample:

_ AH,,
N

Xe

where AH,, represents the measured value of the enthalpy of fusion and AHj, manifests the fusion
enthalpy of completely crystallized iPP. Here, the value of AHj, was selected as 207 J/g.

2.5. Synchrotron Two-Dimensional X-ray Measurements

2D small-angle X-ray scattering (2D-SAXS) were conducted on the BL16B1 beamline in
Shanghai Synchrotron Radiation Facility (SSRF), Shanghai, China. The dimensions of the rectangle-
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shaped beam were 0.5 x 0.8 mm?, and the wavelength of light was 0.124 nm. The sample-to-detector
distance was 1900 mm for SAXS.
The long period (L,) of SAXS results can be calculated by Bragg’s law as follows:

2m

Qmax

L,=

where g4y is the peak position of the 1D-SAXS intensity profile. The crystallite thickness (L) is
calculated as long period multiplied by the crystallinity. The thickness of the amorphous phase (L;) is
calculated by L, — L.

2.6. Scanning Electron Microscopy (SEM)

A JEOL field emission scanning electron microscope (model JSM7500F, Tokyo, Japan) was
employed to carefully observe the fracture morphology of different samples after suffering the slow
crack growth process. Before observation, the specimens were gold sputtered.

2.7. Slow Crack Growth Process (SCG)

The slow crack growth experiment of the various samples was conducted on the self-designed
SCG device. 10% TX-10, as the surfactant, was used to accelerate this process and the test temperature
was maintained at 50 °C. The initial stress in the experiment was different for sample CIM (5.9 MPa),
V1 (7.2 MPa) and V; (7.2 MPa) due to the variation of tensile strength among the samples. We used
spring scale to correct the real initial stress loading on the samples. Due to the addition of TX-10,
the induction period for the crack was considerably shorter than it would be under the normal
conditions, but the process of SCG was the same, which could uncover the relationship between the
microstructure and resistance to slow crack propagation. For the accuracy of the experiment, at least
three specimens were tested to estimate the slow crack growth process for each sample.

3. Results and Discussion

3.1. Crystalline Structure

The sample prepared by CIM manifests a typical skin—core structure, which is in agreement with
the previous papers published before [2], while sample V; and V, show special microstructure observed
from Figure 2. It should be noted here that the thickness of shear layer of samples V; and V; is almost
the same (about 55%), indicating the same content of shish-kebab for these two samples, because it
was speculated that the shear layer consisted fully of shish-kebab structure. More detailed information
about the microstructure of all the samples, such as crystalline morphologies, orientation degree,
the content of 3 crystal, have been reported in our previous literature [29]. Here, we can reasonably
conclude that manipulated microstructures with different shear layer distributions could be obtained
for the parts through MFVIM.

Figure 2. Polarized optical microscopy (POM) photographs of different specimens. L1 and L3 represent
the shear layer, L2 and L4 are the spherulites layer.
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The melting behavior of samples was estimated by calculating the melting temperature and
crystallinity. We obtained these two parameters from shear and spherulites layer respectively resulting
from the extremely different structure for shish-kebab and spherulites. It should be noted that just
selected data was presented here, because the layers containing the same crystalline morphologies
showed the similar value for each sample. For example, the value of T;;, and X, of layer L2 and L4 for
sample V; is almost the same. As illustrated in Figure 3, these three samples presented the analogous
melting behavior in the same kind of layer regardless of the shear layer or spherulites layer. The melting
temperature and crystallinity of different layers are collected in Table 2. Theoretically speaking,
the melting point of shish-kebab should be higher than that of spherulites because the former is
regarded as a more thermal stable state. It is noticeable that the melting temperature scarcely changes
in spite of the completely varied microstructure for shish-kebab and spherulites.
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Figure 3. Differential scanning calorimeter (DSC) melting curves of different layers of samples, (a) shear
layer, (b) spherulites layer.

Table 2. Melting temperature and crystallinity of different layers of samples.

Sample CIM Vi V,
Ty of shear layer (°C) 165.29 164.57 165.21
Ty of spherulites layer (°C) 165.14 165.11 165.55
X of shear layer (%) 444 44.6 453
X, of spherulites layer (%) 44.5 42.7 43.2

For the sake of obtaining more information on crystalline structure, SAXS experiment was carried
out. The selected results were shown in Figure 4 and the long period and the lamellae thickness
of samples were collected in Table 3. From the results presented here, we can clearly know that
the long period just changes a little for all the samples, regardless of shish-kebab or spherulites.
Specifically, the value of L, of shish-kebab for sample V; and V; is 31.67 and 31.81 respectively, which is
only slightly higher than that of specimen CIM (28.98 nm). Meanwhile, L, of spherulites remains almost
the same. Coupling the DSC with SAXS results, the crystalline thickness L. could be calculated directly
(shown in Table 3). It shows that the crystalline size of these three samples, regardless of shish-kebab
or spherulites, is relatively similar, indicated by almost the same value of crystalline thickness.
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Figure 4. Corresponding intensity profiles of 1D-SAXS for different samples as a function of the
scattering vector (q): (a) shear layer; (b) spherulites layer.
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Table 3. Value of long period and crystalline size of different layers of samples.

Sample CIM Vi Vs,
L, of shish-kebab (nm) 28.98 31.67 31.81
Ly of spherulites (nm) 27.36 27.29 27.41
L. of shish-kebab (nm) 12.87 14.12 14.41
L. of spherulites(nm) 12.18 11.65 11.84

As discussed above, it can be well known that the molecular topological and crystalline structure
associated with the capacity for resisting slow crack propagation, such as the content of shish-kebab,
the distance between the lamellae and the perfection of the lamellae, are completely similar for sample
Vj and V; regarding shear and spherulites layer. Hence, the difference between these two samples is
just the distribution of shear layer or spherulites layer. Next, we would study the role of alternated
structure on the slow crack growth behavior to provide a practical application prospects for sample
with such a novel structure. So, the results and discussion are focused on samples V; and V; in the
later section.

3.2. Slow Crack Growth Process

In the plastic parts applications, SCG is one of principal failure modes, which is initiated by a
defect or stress concentration, containing the formation of a craze at a point of stress concentration,
the subsequent crack propagation and fracture of the materials. The SCG process would not take
extremely long time to complete under the suitable conditions for selected samples. The initial stress
we selected for sample CIM was 5.9 MPa, and it was 7.2 MPa for both sample V| and V;. The reason
why we chose two different initial stresses was the obvious difference of tensile strength between
sample CIM and the other two specimens. Further, it has been confirmed that the value of yield
strength of samples V; and V; was similar [11], so we used the identical initial stress to investigate the
evolution of slow crack growth for these two samples.

Figure 5 shows the patterns of the evolution of crack propagation of samples under a low initial
stress for different times at 50 °C. Note that there are some dots in this figure, which is induced by
some impurities or bubbles. We can clearly observe that the evolution of the slow crack growth
for sample CIM is relatively rapid compared to the other two specimens, the sample completely
fractures only within 507 min, which indicates the poor capacity of the resistivity of the material to
the slow crack propagation behavior. The phenomenon could be explained by the low content of
shish-kebab in the sample manufactured by conventional injection molding. Compared with sample
CIM, the total fracture time of sample V; climbs from 507 min to 1380 min originating from the high
content of shish-kebab structure induced by the extra imposed shear field, which is consistent with the
previous work [11]. These two samples underwent a complete fracture process under the experimental
conditions used in this work. The difference of fracture process in the initial stage between samples V;
and V) is considerably slight as illustrated in Figure 5. Surprisingly, the fracture behavior of sample V,
(shown in Figure 5) at the later stage is totally different from V1, showing multiple microcracks except
for the original notch in this sample, indicated by the presence of stress white region, which is absent
in the sample CIM and V;. The loading that the initial notch suffered would be shared through the
formation of microcracks, leading to the suppression of slow crack growth. The reason why the stress
white region formed will be discussed in a later section.
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Figure 5. The patterns of the crack growth of specimens under a low initial stress for different times at
50 °C.

Figure 6 manifests the patterns of crack propagation of sample V; and V; at the later stage to
furtherly reveal the different fracture process. It can be well observed that stress white region is
distinctly obvious for sample V, when the fracture time is over 24 h, but not for sample V1. Sample V;
would undergo the complete fracture process under the low initial stress without microcracks formed.
Here, it should be noted that the deformation of sample V; along the tensile direction had reached
the measuring limit of SCG device after subjected to the low stress for 2400 min, originating from
the formation of numerous microcracks at the later stage. The reason why there are not obvious
microcracks could be observed at the early stage may be attributed to the long induction period that
defects propagate into microcracks under the low stress. We could speculate that the microcracks
formed during the slow crack growth process can prominently decrease the stress at the initial crack tip.
That is to say, the stress loaded on the sample can be shared with a large number of microcracks besides
the initial notch, which enhances the resistivity of this sample to the SCG process to a large extent.
It is of practical or scientific significance for the development of polymer science and engineering.
Hence, we can have a reasonable vision that the sample with such a novel shear layer-spherulites layer
alternated structure could lengthen the service life of the products under some conditions.

Figure 6. The patterns of crack propagation of sample at the later stage.
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Figure 7 quantitatively characterizes the crack growth process by introducing the crack length
versus time curves. It could be well observed that sample CIM shows rapid crack propagation,
indicated by fracture within a short time. As for the other two samples, they possess similar fracture
process in the early fracture stage, but the crack growth behavior is extremely different during the later
fracture stage, the crack propagation of sample V;, was suppressed showing the independence of time
during the later stage, which is consistent with the result of Figures 5 and 6.
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Figure 7. The crack length versus time of all the samples during the process of slow crack growth (SCG).

In order to get more detailed information about the fracture morphology of sample V; and V;
after the SCG process, Figure 8 presents its SEM images, and the observation direction of SEM is the
transverse direction as shown in Figure 1. The extremely different morphologies for sample V; and V,
can be well observed. The sample V; (shown in Figure 8a) manifested relative smooth surface with the
absence of microcracks. It should be noted clearly that the sample V, does not fracture completely after
suffered the SCG process for a very long time, and there are many stress white regions throughout
the specimen. Corresponding to the POM photograph presented in Figure 2, it can be known from
Figure 8b that microcracks formed in the spherulites layer but not the shear layer due to the inferior
properties for spherulites. Figure 8(by,by) show the magnification of morphologies at corresponding
locations in Figure 8b. A large amount of microcracks can be observed more clearly, which further
confirms the existence of microcracks in this sample. Here, the reason why microcracks formed only in
the spherulites layer for sample V; will be discussed later to provide a promising way to manufacture
robust plastic parts to meet the requirements of industry.

300um 300um

Figure 8. The SEM images of morphology of sample after suffering SCG process. (a): Vi, (b): V,.
(a1), (a2) and (b1), (b2) are the corresponding magnified images in (a) and (b) respectively. The observation
direction of SEM is the transverse direction (TD) shown in Figure 1.
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The SEM images A, B and C, shown in Figure 9, represent the morphology of the whole fracture
surface for the samples CIM, V; and V; respectively. While the other two columns, such as A; and Ay,
manifest the magnification of morphologies at the corresponding locations marked in the first column.
It is obvious that the fracture surface of sample CIM is relatively smooth in the forepart in contrast to
the rear part. Each part represents the fracture process at a different time. Brittle fracture (Figure 9A1)
showing smooth morphology appears in the early stage of the crack growth. Then plastic tensile
deformation appears, and it evolves plastic failure in the posterior stage leading to the coarse fracture
surface as shown in Figure 9A2. Compared to sample CIM, the fracture morphology of V; presents
two totally different regions, which is associated with crystalline morphology. It is clear that the
fracture in the shear layer (Figure 9B1) presents brittle fracture due to the high content of shish-kebab.
However, in the core regime, the whole region manifests a rough morphology as shown in Figure 9B2,
resulting from the inferior resistivity capacity of spherulites and the high initial stress or temperature.
As for the sample V,, shown in Figure 9C, it should be noted that this specimen after suffering SCG
process was cut along the direction of the original notch by a blade to observe the surface morphology
because it was not broken during the whole fracture process. The extremely smooth surface is
shear layer (Figure 9C1), which is a signal of no defects formed in this layer. While plastic tensile
deformation appears in the spherulites layer, indicated by the presence of plastic deformation observed
in Figure 9C2, and plastic deformation induces a large content of microcracks in the spherulites layer.
It could be known that the results concerning the sample V; are in agreement with those manifested
in Figure 8. That is, multiple microcracks form in the spherulites layer after the slow crack growth
process is complete.

Figure 9. SEM images of the fracture morphology of specimens, the crack propagation direction is
from right to left, (A) CIM; (B) Vy; (C) V3. (A1), (A2), (B1), (B2) and (C1), (C2) are the corresponding
magnified images in (A), (B) and (C), respectively.

The failure process of sample with the special alternated structure has been discussed above,
and such unique phenomenon has never been reported for virgin polymers in the previous research.
As demonstrated in Figures 6 and 8, a large number of microcracks are formed in the spherulites
layer for sample V,, which presents extremely different fracture process (shown in Figure 10) in
contrast to sample V; and CIM. This is so-called dispersion damage mechanism, which usually
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occurs in fiber reinforced materials under the stress, resulting in the large consumption of energy
during the fracture process. That is to say, the multiple microcracks can share the stress loaded on
the sample with initial notch, so the crack propagation process would be suppressed significantly.
It can be stated that local stress concentrations induced by microvoids could initiate yielding in the
amorphous region firstly, this is followed by the fragmentation of crystalline lamellae and partial chains
unfolding. Then, a fibrillar structure is generated when a cluster of uniaxially oriented molecules and
intermediary voids are developed. Thus, the damage region grows into a crazing zone. After the
craze is initiated, a crack slowly evolves when the fibrils fail under stress due to disentanglement and
break-up of interlamellar tie molecules. The reasons for the formation of multiple microcracks in the
spherulites of sample V, may be summarized as follows: the interface adhesion strength between
spherulites and shear layer is poor when the thermal annealing process is absent, leading to the easier
formation of defects at the interface. So, many defects would occur under the conditions used in this
work. These defects would propagate into microcracks, and microcracks are more easily formed in
the spherulites layer resulting from the inferior capacity for resisting load. These factors cause the
dispersion damage phenomenon for sample V,. However, some studies are still required for further
accurately understanding this unique phenomenon.

Figure 10. Schematic drawing of failure process of sample V; and V; under low initial load.
4. Conclusions

In the current work, samples with extremely different microstructures were successfully prepared
by using CIM and MFVIM, respectively. The crystalline structure and the slow crack growth behavior
were investigated. The DSC and 2D-SAXS results indicated that the crystalline structure associated
with the capacity for resisting slow crack propagation, such as the content of shish-kebab, the distance
between the lamellae, and the perfection of the lamellae, scarcely varies for sample V; and Vj.
Compared with sample CIM, the total fracture time for samples V; and V, are remarkably enhanced
due to the large number of shish-kebabs originating from the extra imposed shear field during the
packing stage. Interestingly, the slow crack growth behavior of sample V; not only manifested
the improvement of the complete fracture time, but also the unique crack propagation behavior,
showing that multiple microcracks formed in the spherulites layer. This is so-called dispersion damage,
forming a large number of microcracks, which results in the reduction of load for the initial notch,
and can further enhance the service life of polymer products through the formation of multiple
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microcracks. The results of this work indicated the practical application prospect of a sample with a
shear layer—spherulites layer alternated structure in the near future.
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