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Abstract: Studies of the evaporation of aqueous nanoparticle solutions have been limited due to
lack of homogeneity of the solution, difficulties in obtaining reproducible samples and stability of
substrates, as well as the effect of other volatile components or contaminants such as surfactants.
Colloidal unimolecular polymer (CUP) is a spheroidal nanoparticle with charged hydrophilic groups
on the surface, and the particle size ranges from 3 to 9 nm. The large amount of surface water on
the CUP surface provides the opportunity to evaluate the evaporation of surface water, which may
contribute to the investigation the factors that affect the evaporation rate in solutions of ultra-small
particles, like protein, micelle, colloidal, etc. Six CUP systems were evaluated by thermogravimetric
analysis (TGA) with respect to time and solids content. The evaporation rate of water was initially
enhanced due to the deformation of the air-water interface at low to moderate concentration due to
particle charge repulsive forces. At higher concentrations, above 20%, surface charge condensation
and increasing viscosity began to dominate. At higher concentration where the CUP reached the gel
point the rate of diffusion controlled the evaporation. The final drying point was the loss of three
waters of hydration for each carboxylate on the CUP surface.

Keywords: colloidal unimolecular polymer (CUP); nanoparticle; evaporation rate; thermogravimetric
analyzer (TGA); counterion condensation; diffusion; deformation

1. Introduction

In past decades, the evaporation of aqueous nanoparticle solutions has been a topic of interest,
and it is one of the most important, fundamental kinetic and thermodynamic characteristics, which
offers an opportunity to investigate the basic concept in diffusion, surface behavior, polymer properties
and solution dynamics [1,2]. In addition, the investigation of the water evaporation of aqueous
nanoparticles solutions provide a great study model for DNA packing, protein drying processes
and drug delivery, also its potential application in the drying of water borne coatings, water borne
pesticides and biocides, herbicide, cosmetics, and many others [3–7]. The evaporation rate of water has
many significant economic impacts from efficacy for crop protection to drug production rates and even
the drying of water borne coatings.

Boukherroub et al. [8] reported an increase in the evaporation rate of water-based graphene
nanofluids. It was proposed that graphene oxide functionalization with polyethylene glycol promoted
the dispersion of graphene nanoparticles and increased the evaporation rate at constant temperature.
The potential agglomeration and poor dispersion of graphene nanoparticles at high concentration could
cause a decrease in the evaporation rate. Kim et al. [9] found that the evaporation rate of nanofluid
aqueous droplet was higher than deinoized water with the presence of 80 nm sized CuO powder under
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the same experimental condition. The increase in the evaporation rate was considered to be caused by
the nanofluid having better thermal conductivity. Aslani et al. [10] investigated the evaporation rate of
water from clay particles in aqueous solution under isothermal condition, with a particle size ranging
from 25 to 30 nm. The experiment involved dispersion of nano-sized powder using an ultrasonic
processor, and conducted by putting a heating vessel on a digital scale, which were all placed inside a
wind tunnel to provide changing velocity. It was found that these particles were able to reduce the
surface tension and therefore increased the evaporation rate, and with the increase of concentration,
the evaporation efficiency was enhanced. In general, most studies on evaporation rate were performed
with metal oxide/metal nanoparticles, nanostructures of carbon and non-charged nanoparticles.

Most solution/suspension used to study evaporation rate lacks homogeneity and is difficulty to
obtain reproducible samples [11]. Another major issue is the lack of stability of substrates. When
the percent solids reaches a high level, most nanoparticles tend to aggregate due to Van der Waals
forces [12], and change the microstructure or configuration [13,14].

Colloidal unimolecular polymer (CUP) is a spheroidal nanoparticle with charged hydrophilic
groups on the surface, and particle size ranging from 3 to 9 nm depending on the molecular weight [15].
Several advantages make CUP an ideal system to conduct evaporation studies. The surface area to
volume ratio is ultra-high due to the small particle size, which significantly enhanced the properties of
their aqueous solutions, like viscosity, surface tension, etc. [16–18]. CUPs can be easily synthesized
and obtained through a water reduction process [19]. The surface charge density and molecular
weight of CUP can be designed to fit a need and the surface structure is predictable and reproducible.
CUP particles, once formed, are thermodynamically stable solutions in water, and can be dried and
re-dissolve in water without aggregation. Therefore, CUPs are able to show the detailed process of how
surface water is released in the drying process. Furthermore, CUP particles have charged hydrophilic
groups on the surface that can associate with a large amount of surface water [20]. With the small
particle size, CUPs offer an ultra-high surface water fraction [21], and therefore could significantly
magnify the observation of the surface waters contribution in the evaporation process. In addition,
CUP systems are truly zero VOC with no additives. Thus, CUP is considered an ideal particle to
investigate the effect of charged nanoparticles and their associated surface water on evaporation.

TGA is the most common technique used for mass change, kinetic analysis [22–25]. This technique
is based on the evaluation of mass loss of the studied sample in a specific gas stream at a given
temperature or programmed temperature [26]. TGA allows for a small sample size while giving precise
measurement of the mass change. The constant continuous flow of inert gas can maintain the stable
experimental condition and minimize the formation of thin moisture layer above the aqueous surface
that may reduce the evaporation rate. TGA is considered a very appropriate instrument for this study.

This manuscript presents a primary study of the behavior of free water and surface water in
CUP systems during the evaporation of the water. The evaluation of molecular weight and surface
charge density, in ions per nm2, effects on the evaporation rate was quantified by TGA. A packing
model for CUP particles during the evaporation process of water was proposed. The aim was to
develop the knowledge of possible factors that affect the evaporation rate of CUP solutions so as to
offer fundamental insight for how to design CUP particles which give the best properties for a given
application, avoiding a trial-and-error approach.

2. Materials and Methods

2.1. Materials and Synthesis

CUP particles used in this paper were synthesized, characterized, and formed into CUP particles
and were reported in our earlier report [27]. Table 1 gives the critical data for these polymers.
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2.2. Thermogravimetric Analysis

Thermogravimetric analysis was performed on a TA instruments Q500 (TA Instruments, New
Castle, DE, USA). The experiments were performed at atmospheric pressure. A constant flow of inert
gas (nitrogen, flow rate 40 mL/min) was maintained throughout the experiment. The same amount of
the aqueous sample 30 µL was loaded to a tared platinum pan via micro-pipette in order to maintain
the same depth of solution. The pan used has a 9.4 mm diameter platinum pan from TA instrument,
and was suspended in the furnace. In order to avoid evaporation before reaching temperature, the
sample was heated to the experimental temperature 298.15 K at 100 K/min. The temperature of the
sample was measured by a thermocouple placed aside the pan. The sample was held isothermally at
the experimental temperature for 360 min and the weight percent change of the sample was recorded.
Each CUP solution was run in triplicate. The evaporation rate is very sensitive to the exposed surface
area, any uneven or damage of the pan will cause unpredicted experimental error. The handling of the
pan should be done very carefully, any damage to the pan will result in the need to replace the pan and
do a recalibration. Deionized water was run periodically to verify that the pan had not changed due
to damage or contamination. It should also be noted that at pH 8.5 CO2 may be absorbed and shift
the pH and also alter the composition. Avoid exposure of the solution to ambient air and check pH
periodically to ensure the system has not been compromised.

3. Results and Discussion

3.1. Polymer Synthesis and Characterization

Polymers 1–6 were previously synthesized and reduced in a study defining the amount and
properties of surface water by DSC [27]. The polymers selected for this study were based on particle
size and surface charge density issues which have been shown to dominate the properties of surface
water, viscosity, and density. The six polymers’ properties; molecular weight, polydispersity, acid
number, particle size and density are given in Table 1. Polymers 1–3 had the same monomer ratio,
the acid number was fairly constant, and the higher acid number for Polymer 4 is due to the higher
monomer ratio of MAA. Polymer 5 has the lowest acid number because the monomer ratio is the lowest.
The polydispersity indicates a relatively narrow size distribution unlike most nano particulate systems.

Table 1. Molecular weight, particle size, acid number and density of the polymers [27].

Sample ID Mn/PD
(g/mol)

Monomer
Ratio

Particle Size
(nm)

AN (mg
KOH/g)

Density of Dry
CUP, ρp (g/mL)

Charge
Density in

Ions per
nm2, ρv

Polymer 1 28.9k/1.8 9:1 4.22 56.8 1.2246 ± 0.0018 0.52
Polymer 2 59.8k/1.7 9:1 5.38 57.0 1.2311 ± 0.0014 0.66
Polymer 3 122.5k/1.7 9:1 6.83 56.9 1.2342 ± 0.0018 0.84
Polymer 4 25.4k/2.3 6.8:1 4.04 73.2 1.2243 ± 0.0018 0.66
Polymer 5 73.5k/1.7 9.8:1 5.76 52.6 1.2315 ± 0.0018 0.66
Polymer 6 49.7k/1.8 14:1 5.06 37.7 1.2307 ± 0.0016 0.42

3.2. Method for Evaporation Rate Determination

TGA was used to directly measure the total mass percent loss per unit time and was then converted
to the actual mass loss per unit time and then the evaporation rate was calculated by Equation (1).

R = m·(Xi −Xi+1)/∆t (1)

where R is the evaporation rate of the measured sample, m is the mass of the sample, Xi is the weight
fraction at time i, Xi+1 is the weight fraction at time i + 1, ∆t is the time interval.
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The evaporation rate of deionized water was measured as the standard, shown in Figure 1. The
first few hundred seconds exhibited an oscillation due to the thermal over run of the TGA and the
system coming to equilibrium.
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Figure 1. Evaporation rate of deionized water, (a) raw data (b) with running average.

After an initial period of evaporation, the rate of mass loss of the sample remained constant with
the plot of sample mass versus time resulting in a straight line. Data was collected every 0.6 s, with the
very small amount of mass loss per second and a small amount of vibration, a significant amount of
noise was observed in the data [26]. To reduce the noise in the TGA data, a running average method
over 50 data points was used.

A plot of the standard deviation of four different samples at each data point vs time, after running
average is shown in Figure 2. In the very beginning of the measurement, a large standard deviation was
observed. This noise is due to surface area not being uniform initially and the temperature overshoot.
Once the sample reaches a steady state the noise level drops to a very low level until about 5000 s.
As the pan nears dryness the water cannot cover the entire bottom of the pan, the surface area will
exhibit a large random change. The data in the last part of the measurement cannot be trusted to
represent the true evaporation rate for water. During the scan, for measurements between about 500
and 5000 s, the deviations are very small, making the data more reliable with minimal scatter.
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3.3. Evaporation Rate of Free Water from CUPs

The evaporation of both water and CUP solutions are highly dependent upon surface area. If the
sample does not wet the platinum pan it can result in changing areas caused by the sample size
and contact angle. To evaluate this, two platinum flags were cleaned, and one had 15 microliters of
deionized water placed on its surface and the other had a 10% Polymer 4 CUP solution at the same
volume placed on it. Figure 3 shows the image of the flags at time zero just after application and
the third image after the CUP solution was dry. It can be seen that water wet the platinum partially,
but the CUP solution wet much better. Once dry the CUP sample formed a relatively even coating
which cracked due to poor adhesion and low crystal lattice energy. This experiment indicates that the
evaporation should be representative, even to the end for CUP since it evaporates evenly.
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In order to investigate the CUP particles’ effect on the evaporation rate, a 5.47% Polymer 1
solution was measured following the same protocol as with water, and compared with deionized water,
as shown in Figure 4.
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Figure 4. Evaporation rate of 5.47% Polymer 1 solution and deionized water.

The Polymer 1 solution evaporated faster than deionized water in the beginning, and kept
decreasing along the isothermal process, with multiple changes of evaporation rate reduction being
observed. These complexities indicated that there was more than one factor involved during the
isothermal process. The study separated the evaporation process into five segments designated as I, II,
III, IV, and V, shown in Figure 5.
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Figure 5. Segments I, II, III, IV and V during the isothermal process.

Segment I was the initial time frame of 480 s, before major compositional changes occurred.
Segment II is for the range from Segment I until Manning condensation occurs. Segment III covers
Manning condensation. Segment IV is the gelation of the solution and Segment V is the loss of the last
water including surface water.

The evaporation rate of CUP solutions was not constant. Therefore, in order to investigate the
CUP’s effect on the evaporation rate in the beginning, the evaporation rate of various polymer solutions
with multiple molarities were determined immediately after the pan settled down, at 480 s (Segment I),
as shown in Figure 6.
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Polymer 1, 2 and 3 have the same monomer ratio but different surface charge density and
molecular weight. It was observed that, with the same molarity, polymers with higher molecular
weight and surface charge density have higher evaporation rate. If comparing Polymer 2, 4 and 5,
which have the same surface charge density, the polymer with larger molecular weight had a faster
evaporation rate. Van De Mark et al. found that with the presence of CUP particles, the surface tension
was lower than deionized water, and it was proportional to the number of charges on the particle
surface [28]. The surface tension reduction was similar but smaller than that observed for typical
surfactants [29]. This surface tension reduction was also observed for polyelectrolyte systems [30].
Polymer 3 evaporated faster than Polymer 2 and 1, due to more charges, which is the same for Polymers
2, 4, and 5. It was also observed that for each CUP solution, the evaporation rate was higher for
the solutions with a higher initial molarity because the higher initial molarity having more charges.
However, the effect of surface tension should not be a major factor for evaporation, but it will have an
effect on interfacial mobility. In order to further investigate the surface effect, the relation between
surface tension and the evaporation rate of aqueous salts was examined, as shown in Table 2.

Table 2. Comparison of surface tension and evaporation rate of sodium salts.

Water NaCl NaCl NaAc NaAc

Concentration 0 0.35M 0.89M 1M 2M
γ (mN/m) 72.2 73.9 75.6 70.2 69.2

∆γ 0 +1.7 +3.4 −2.0 −3.0
R (µg/s) 5.18 5.09 4.95 5.04 4.99

∆R 0 −0.09 −0.23 −0.14 −0.19
|∆R/∆γ| N/A 0.05 0.07 0.07 0.06

Sodium chloride was chosen since it causes an increase in the surface tension and sodium acetate,
which has a carboxylate like CUP, causes a decrease in surface tension. The evaporation rate difference
from water divided by the surface tension difference from water was used to evaluate the effect
each had on the two, ∆R/∆γ. It was shown that, with less surface tension, sodium acetate solution
evaporated slower than deionized water, due to the salts [31,32]. Also, the evaporation rate change
was moderately lower than the change in surface tension for all four values. This data indicates that
the primary effect on increasing the evaporation rate of CUPs is not surface tension.

Table 3 gives the surface tension and evaporation rate for CUP solutions of Polymer 1–6 at 2 mM.
It should be noted that the change in the surface tension for these polymers are about 500 times higher
than that for sodium acetate at the same concentration. Therefore, the molar concentration of CUP
may not be a simple relationship. Table 3 also gives the number of carboxylate groups on each CUP.
The number of carboxylates were partially responsible for the larger effect of both evaporation rate
and surface tension. The chains of the CUP particle are not free to move and thus their relationship to
each other define the “more hydrophobic” regions from the carboxylate. These hydrophobic regions
are larger than those of the methyl group of the acetate ion. However, the more hydrophobic surface
is dominated by the ester groups and likely some of the methyl groups of the backbone and ester.
The surface tension of surfactant carboxylates becomes more effective as the aliphatic chain increases.
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Table 3. Comparison of surface tension and evaporation rate of CUP solutions.
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where r is the distance between two particles, M is the molecular weight of CUP, XCUP is the weight 
fraction of CUP, ρ is the density of solution, d is the size of the CUP particle, NA is Avogadro constant. 

The distance between two CUP particles was determined to be from 5.5 to 8.8 nm depending on 
the particle size at 5% solids. The electrostatic effective distance between two CUP particles can be 
estimated by Equation (4)–(6) [33–35].  

ଵିߢ = ඨ ௥ߝ ⋅ ଴ߝ ⋅ ݇஻ ⋅ ܶ2 ⋅ 10ଷ ⋅ ஺ܰ ⋅ ݁ଶ ⋅  (4) ܫ

ܫ = 12 ⋅ ܯ) ⋅ 1 ⋅ ݊௖ ⋅ 1) (5) ݀௘௙௙ = 2 ⋅  (6) (ଵିߢ)

where I is the ionic strength, M is the molarity, nc is the number of carboxylate groups per CUP, ɛ0 is 
the permittivity of free space, ɛr is the dielectric constant for water, kB is the Boltzmann constant, e is 
the elementary charge, and k−1 is Debye length. 

The assumption is that we have a single point charge separated by water. As Figure 7 shows, the 
effective distance was always larger than the estimated inter-particle distance, which indicated that 
the electrostatic repulsion force occurred at a CUP concentration of 1% and higher. At a constant 
percent solids, the CUP with smaller particle size tends to have a larger difference between the 
effective distance and inter-particle distance, due to a higher number of particles that results in a 
higher repulsion force. Polymer 1 has a higher effective distance to inter-particle distance ratio than 
Polymer 3, because of a larger number of particles at the same percent solids. 

Notes: γ is surface tension, R is evaporation rate. ∆γ is the surface tension difference between water and the CUP
solution, ∆R is the difference in evaporation rate for water vs. CUP solution.

The use of percent solids as well as molarity and weight fraction, XCUP are relevant to different
aspects of this study Equation (2) relates these terms.

XCUP =
MW ·c·103

ρs
(2)

where Mw is the molecular weight of the polymer, ρs is the density of CUP solution, c is the molarity,
and XCUP is the weight fraction of CUP solids.

When a very dilute CUP solution was at its equilibrium condition, the solution was homogeneous
and CUP particles were randomly distributed and stabilized by the combination of Brownian motion,
solvation by water and charge repulsion between particles. Assuming that each CUP occupies an
average cubic volume in solution, which gives the largest distance between particles. At a given
percent solids, the distance between two CUP particles was estimated by Equation (3).
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where r is the distance between two particles, M is the molecular weight of CUP, XCUP is the weight 
fraction of CUP, ρ is the density of solution, d is the size of the CUP particle, NA is Avogadro constant. 
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where r is the distance between two particles, M is the molecular weight of CUP, XCUP is the weight
fraction of CUP, ρ is the density of solution, d is the size of the CUP particle, NA is Avogadro constant.

The distance between two CUP particles was determined to be from 5.5 to 8.8 nm depending on
the particle size at 5% solids. The electrostatic effective distance between two CUP particles can be
estimated by Equations (4)–(6) [33–35].

κ−1 =

√
εr·ε0·kB·T

2·103·NA·e2·I
(4)

I =
1
2
·(M·1·nc·1) (5)

de f f = 2·
(
κ−1

)
(6)

where I is the ionic strength, M is the molarity, nc is the number of carboxylate groups per CUP, ε0 is
the permittivity of free space, εr is the dielectric constant for water, kB is the Boltzmann constant, e is
the elementary charge, and κ−1 is Debye length.
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The assumption is that we have a single point charge separated by water. As Figure 7 shows,
the effective distance was always larger than the estimated inter-particle distance, which indicated
that the electrostatic repulsion force occurred at a CUP concentration of 1% and higher. At a constant
percent solids, the CUP with smaller particle size tends to have a larger difference between the effective
distance and inter-particle distance, due to a higher number of particles that results in a higher repulsion
force. Polymer 1 has a higher effective distance to inter-particle distance ratio than Polymer 3, because
of a larger number of particles at the same percent solids.
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Figure 7. Comparison of effective distance and inter-particle distance for Polymer 1–4.

Due to coulomb’s law, the repulsion force is proportional to 1/r2 [36], where r is the distance
between two charges. Consider each CUP particle as a point charge, and assume an r value of 9 nm,
the electrostatic repulsion force for Polymer 1 is 2.85 × 10−12 N, while the surface tension of water is
7.22 × 10−11 N/nm and surface tension for 5.47% Polymer 1 solution is 7.08 × 10−11 N/nm. Since each
CUP particle has multiple charges (29.3 to 124.1 charges per particle for Polymers 1 and 3 respectively),
the actual repulsion force was expected to be much larger than 2.85 × 10−12 N. Therefore, at 5% solids,
the charge repulsion between CUP particles should be strong enough to cause deformation of the
air-water interface as shown in Scheme 1.
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Scheme 1. Deformation of water surface at air-water interface by CUP particles due to charge repulsion.
(A–C) represent the three possibilities when CUP particles penetrate water-air interface due to the
charge repulsion.

The three models indicate A: CUP with surface water and a layer of air/surface water, B: CUP
with a layer of surface water, and C: Cup particle with no water. Model C can be eliminated, because
CUP particles are highly hydrophilic on the surface, and have a layer of strongly associated surface
water [27]. If model C were the case, all the evaporation rate would be due to edge effects on the surface
tension and the loss of surface area occupied by the CUP particles would reduce the evaporation rate.
Therefore, with the presence of CUP particles, the interface water deformed causing a decrease in
surface tension, according to the Gibbs isotherm, and an increase in surface area. Assuming all the
observed increase in the evaporation rate were contributed by increased surface area at the interface,
the increased ratio of evaporation rate should be proportional to the increased surface area. At a
given percent solids, the degree of interface water deformation (Scheme 2) could be calculated by
Equation (7).
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where h is the height of the interface water deformation, ΔR is the increased evaporation rate 
compared with water, R is the evaporation rate of the CUP solution, Mw is the molecular weight of 
CUP, ρ is the density of the solution, XCUP is the weight fraction of CUP. 

The h was calculated to be from 0.70 to 1.27 nm with the range of about 5 to 20% solids, h depends 
on the percent solids and molecular weight of CUP particles. The particle size of CUPs ranges from 
4.02 to 6.83 nm, due to the moderate repulsive force, interfacial water deformation may be the major 
contributor. The surface tension on the deformational region may be lower than normal water and 
the circumference region will have a significantly lower surface tension. It is most likely that Model 
A or B is the correct one and that contribution from the increased surface area is the cause of the 
enhanced evaporation at low concentrations. It is well known that polymers in solution reduce the 
vapor pressure of the solvent. This would in general reduce the evaporation rate of a CUP solution. 
The increased area must overcome this small reduction in vapor pressure also. 

In Segment I, the main factor that dominated the evaporation rate was the increased surface area 
which increased the rate. At a given molarity, the CUP with larger particle size has shorter inter-
particle distance, resulting in a higher charge repulsion force, that increases the amount of interfacial 
water deformation, h. In addition, more charges on the CUP surface caused more surface tension 
reduction, the combination of these two effects showed a higher evaporation rate. Looking back to 
Figure 4, 25.4k, Polymer 4 has a similar particle size as 28.9k, Polymer 1 and the CUP surface tension 
was lower for Polymer 4 and the interfacial deformation was greater due to the larger charge 
repulsion, therefore it showed a higher evaporation rate. Polymer 6, 49.7k has the lowest charge 
density but a higher molecular weight, particle size, than Polymer 1. The surface tensions for Polymer 
1 and 6 are similar and the evaporation rate for Polymer 6 is slightly higher. This is because with the 
same molarity, Polymer 6 has a shorter inter-particle distance due to the larger particle size, that 
resulted in a higher charge repulsion. The interfacial water deformation for Polymer 6 would be 
expected to be greater thus showing a higher evaporation rate.  

(7)

where h is the height of the interface water deformation, ∆R is the increased evaporation rate compared
with water, R is the evaporation rate of the CUP solution, Mw is the molecular weight of CUP, ρ is the
density of the solution, XCUP is the weight fraction of CUP.
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The h was calculated to be from 0.70 to 1.27 nm with the range of about 5 to 20% solids, h depends
on the percent solids and molecular weight of CUP particles. The particle size of CUPs ranges from
4.02 to 6.83 nm, due to the moderate repulsive force, interfacial water deformation may be the major
contributor. The surface tension on the deformational region may be lower than normal water and
the circumference region will have a significantly lower surface tension. It is most likely that Model
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A or B is the correct one and that contribution from the increased surface area is the cause of the
enhanced evaporation at low concentrations. It is well known that polymers in solution reduce the
vapor pressure of the solvent. This would in general reduce the evaporation rate of a CUP solution.
The increased area must overcome this small reduction in vapor pressure also.

In Segment I, the main factor that dominated the evaporation rate was the increased surface area
which increased the rate. At a given molarity, the CUP with larger particle size has shorter inter-particle
distance, resulting in a higher charge repulsion force, that increases the amount of interfacial water
deformation, h. In addition, more charges on the CUP surface caused more surface tension reduction,
the combination of these two effects showed a higher evaporation rate. Looking back to Figure 4, 25.4k,
Polymer 4 has a similar particle size as 28.9k, Polymer 1 and the CUP surface tension was lower for
Polymer 4 and the interfacial deformation was greater due to the larger charge repulsion, therefore
it showed a higher evaporation rate. Polymer 6, 49.7k has the lowest charge density but a higher
molecular weight, particle size, than Polymer 1. The surface tensions for Polymer 1 and 6 are similar
and the evaporation rate for Polymer 6 is slightly higher. This is because with the same molarity,
Polymer 6 has a shorter inter-particle distance due to the larger particle size, that resulted in a higher
charge repulsion. The interfacial water deformation for Polymer 6 would be expected to be greater
thus showing a higher evaporation rate.

As water continuously evaporated during the isothermal process, the temperature at the interface
decreased due to the lost heat of vaporization and the surface molarity/percent solids of CUP particles
at the interface became higher than the bulk solution, Segment II. As the surface molarity/percent
solids increases, it sets up an osmotic gradient with the bulk solution. The osmotic gradient draws
water to the surface to dilute the CUPs [37,38]. The movement of water to the surface not only dilutes
the CUP at the air interface but also brings heat to reestablish equilibrium. At the same time, CUP
particles experience a higher charge repulsion and move toward the bottom through translational
diffusion at low concentration. The reduced temperature at the interface decreases the evaporation rate,
and the increased molarity provided higher charge repulsion to create an increase in the interfacial
water deformation that will increase the water evaporation rate. However, the evaporation rate
largely depends on the diffusion rate of water molecules to the interface [11]. The viscosity in the
interfacial region will be increasing with the increasing of CUP molarity/percent solids, due to the
secondary electroviscous effect [39], which was demonstrated by Van De Mark et al. [40]. The increased
viscosity slowed movements of both the water and CUP particles, which explains a slower observed
evaporation rate.

The diffusion coefficient could be determined by Stokes–Einstein equation [41].

D =
KB·T

6·π·η·r
(8)

where KB is Boltzmann constant, T is the absolute temperature, η is the viscosity of the solution, and r
is the radius of CUP particle.

Table 4 gives the diffusion coefficient for the six polymers at 5% and 10% at 298.15 K. The lower
diffusion coefficient at higher concentrations is due to charge repulsion increasing the viscosity and
drops faster as the concentration increases approaching infinity at the gel point.

Table 4. Diffusion coefficient of CUP particles at 298.15 K (×10−6 cm2/s).

%Solids Polymer 1
28.9k

Polymer 2
59.8k

Polymer 3
122.5k

Polymer 4
25.4k

Polymer 5
73.5k

Polymer 6
49.7k

5% 1.59 1.16 0.74 1.69 1.10 1.31
10% 1.15 0.83 0.45 1.24 0.78 0.92
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The evaporation rate of Polymer 4 solution with initial percent solids of 4.71%, 10.34%, 16.92%
and 20.16% in the first 2500 s were evaluated as an example, shown in Figure 8.
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2500 s.

It was shown that, the higher initial percent solids of CUP solution, the faster the initial evaporation
rate was, due to the increased surface area, Segment I. However, when the water started to evaporate,
the evaporation rate of all CUP solutions decreased, except the 4.71% which retained its evaporation
rate for a longer time before decreasing. The change was more obvious for higher initial percent solids
CUP solutions. Because the higher percent solids solution has higher viscosity, that resulted in a slower
movement of particles and water molecules in Segment II. The 4.71% solution was dilute enough that
the translational diffusion and osmotic flow kept the surface CUP concentration lower for a longer time
as the evaporation progressed. The low mobility of particles and water molecules further enhanced the
CUP particles stacking at interface, increasing the viscosity, and reducing the evaporation rate. This
observation was further investigated by comparing the evaporation rate when two different initial
percent solids solution were evaporated to the same percent solids. The evaporation rate of Polymer 1
and Polymer 4 solutions with different initial percent solids were evaluated during the drying process
at the same solids content, as shown in Figure 9.

It was seen that when concentrated to the same percent solids, the evaporation rate of the low
initial percent solids solution was lower. The low solids sample must first loose significant water
which creates a higher concentration of CUP particles at the surface which increases the viscosity
lessening the diffusion of water to the surface and slowing the movement of CUP particles away from
the surface as well as lowering the surface temperature. For the lower concentration the total solution
thickness is decreasing with time as does the higher concentration, however the rate of change in the
thickness is almost twice as much for the lower concentration. The shorter distance will also influence
the result by reducing the osmotic flow since the liquid thickness increases the opportunity to set up
osmotic gradients. Polymer 1 shows a greater difference in evaporation rate than Polymer 4. The rate
differences may be due to the higher charge density of Polymer 4 forcing the particles to rearrange
positions more rapidly and increasing viscosity. Polymer 4 has a slightly lower mass which makes the
charge effect even more meaningful.
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As evaporation progressed in Segment II, the movement of water molecules and CUP particles
caused by osmotic pressure and charge repulsion were the dominant driving forces in this segment.
As the concentration increased the viscosity reduced the osmotic flow which in turn allowed the
temperature of the surface to fall lower since the rate of warm water being transferred to the
surface slowed.

The ionic force between particles forces CUP particles down from the surface by each one pushing
down the particle below it, which helped to minimize osmotic differences. The ionic force also
increases the vertical displacement of the CUP particles at the air interface as the CUP concentration
increases. The air surface area with free water decreases and the area of CUP surface water increases
and dominates evaporation as the solids content rises. When the concentration at or near the surface
hits about 20% solids the CUP surface ions begin to undergo Manning type condensation which lowers
the effective charge. When this condensation begins to occur the CUP particles can increase their
packing concentration and reduce the repulsion on their neighbor as well as limit the CUP penetration
through the air interface.

In addition, particle size is another important factor, because it directly influences the diffusion
rate of CUP particles. The Polymer 2 and Polymer 4 solutions with similar molarity were compared,
as shown in Figure 10.

It was seen that, in Segment I, the Polymer 2 solution evaporated slightly faster due to more
charges per particle than Polymer 4. However, Polymer 2 solution started to show a larger and larger
evaporation rate reduction as compared to Polymer 4 solution through Segment II. This reduction was
due to a larger particle size diffusing slower, which caused more particles to stack up at the air-water
interface. This also increased the viscosity at the interface, and further decreased the diffusion rate of
particles, and therefore, Polymer 2 presented a slower evaporation rate through Segment II.

Previous studies have demonstrated that when the percent solids increased above 20%,
inter-molecular counterion condensation occurred, segment III [27]. Increasing the CUP percent
solids also increased the counterion concentration, which condensed on the CUP surface reducing its
effective charge [29]. The phenomenon known as Manning condensation (counterion condensation)
is widely accepted in charge stabilized colloidal suspensions [42]. The inter-molecular counterion
condensation causes the effective charge to be lower than the bare surface charge and allows more
CUP particles with better packing at the air-water interface. At the same time, the total number of
charged groups at the air-water interface increases because only a small fraction of the charged groups
on the CUP surface undergo Manning condensation. The inter-molecular counterion condensation
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decreases the charge repulsion effect to a degree, therefore, decreases the mobility of CUP particles to
the bottom as a result of charge repulsion.
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Using Polymer 6 as an example, it was shown that with the increasing of the initial percent solids,
the inter-molecular counterion condensation occurs earlier in the time frame. This drop in the rate
can be observed in Figure 11. The darker line drops to an evaporation rate of 4 micrograms per
second first while the 4.35% occurs much later. Segment III begins with inter-molecular counterion
condensation and ends with gelation as random close packing, RCP, which is marked with a red line
in Figure 10. Starting at low concentration it requires more time to reach RCP as well as the start of
Manning condensation. Once gelled, the CUP particles cannot move translationally, but they can move
as a unity, shrinking all the spaces between particles uniformly to avoid significant stress development.
Rapid evaporation has been noted to cause crack development in a drying sample with the surface
shrinking due to drying before the system can reestablish equilibrium.

The evaporation of water, as it approaches the end of Segment III, slowed as the percent solids of
the bulk solution increased, this reduced the distance between particles in the bulk portion. The particles
reached a pseudo random close packing state which was defined as the gel point of CUP, and then
with a small additional loss of water became pseudo hexagonal close packing (HCP), Segment IV.
The term pseudo HCP was used since the particles have a distribution of diameters and charges so it
will not be a perfect HCP lattice. As the particles formed an organized structure where each particle
occupied a lattice position even in the bulk solution, the mobility of water molecules and CUP particles
were highly limited [40]. Thus, the evaporation rate decreased even faster. All water diffusion was
either through the CUP surface water or through the voids between the spheres occupied by free water
with the state of surface deformation having little meaning since the surface is now occupied by CUP
particles with their surface water only.
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3.4. Evaporation of CUP Surface Water

As water molecules continuously escaped from the interface, the particles approach each other,
and the increased electrostatic repulsion tends to arrange them in positions with equal distance from
the nearby particles. There are two types of packing models for spheroidal materials when the percent
solids are very high, random close packing and hexagonal close packing. CUP particles will first
approach random close packing as the concentration increases and slowly, through movements driven
by the repulsive forces between particles approach hexagonal close packing. At this point the particles
are only surrounded by surface water with a small amount of free water occupying the space in
the voids, Segment IV. Many previous studies have shown that surface water has a much lower
mobility, higher density [43], and tighter association with the hydrophilic groups [44]. Therefore, the
evaporation rate of surface water is expected to show very different behavior from free water. The
viscosity of the solution is close to infinity at this point and free water has to move primarily through
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the surface water layer. The rate of water diffusion is therefore very small and significantly reduces
the rate of evaporation. There are potentially three possibilities for each packing model, shown in
Scheme 3. CUP with surface water and free water, CUP with free water and CUP only with surface
water. Previous studies have eliminated models III and VI since the existence of a surface water layer
has been demonstrated [45].
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In order to evaluate the evaporation process of the surface water and the last trace of free water in
the voids, the percent solids of CUP particles for each packing model can be calculated by knowing
the max volume fraction of random close packing, which is 0.634, and 0.7405 for hexagonal close
packing [46–50], according to Equations (9)–(11).

φ =
ρs·XCUP

ρp
(9)

φR−max(1 + λ/r)3 = 0.634 (10)

φH−max(1 + λ/r)3 = 0.7405 (11)

where φ is the CUP volume fraction, ρs is the density of CUP solution, ρp is the density of CUP
particle, φR-max is the maximum volume fraction for random close packing, φH-max is the maximum
volume fraction for hexagonal close packing, λ is the thickness of surface water, and r is radius of the
CUP particle.

The percent solids of CUP for the possibilities of each were calculated and are shown in Table 5.

Table 5. Percent solids for CUP Polymer 2&6 for HCP and RCP.

Possible
Packing

2 Layer of
Surface

Water with
Free Water

1 Layer of
Surface

Water with
Free Water

2 Layers of
Surface
Water

1 Layer of
Surface
Water

Solids
Only

Three Water
Molecules

per
Carboxylate

Group

RCP (59.8k) 32.56 45.53 60.94 77.47 100
94.92HCP (59.8k) 46.71 54.90 60.94 77.47 100

RCP (49.7k) 39.50 51.31 59.39 76.42 100
96.55HCP (49.7k) 45.84 58.92 59.39 76.42 100
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The amount and thickness of CUP surface water has been determined by DSC [27]. As it was
discussed in Figure 1, for the last water loss, a large reduction in the evaporation rates were observed
near the end. One possible reason for this issue was an insufficient amount of solution to cover the pan
bottom. In this case, 5.04% Polymer 2 and 4.35% Polymer 6 solutions were used as examples. Knowing
the diameter of the pan being 9.4 mm, it was calculated that even when there is only CUP solids existing
in the pan, the bottom of the pan is still fully covered with a 0.02 mm depth. By applying the results
from Table 5 to the evaporation curve, Scheme 1 indicates that CUP solutions dry relatively uniform
wetting the platinum pan. The CUP solution surface tension decreases with increasing concentration
making it more wetting of the pan. Therefore, in Segment V, the evaporation rate reduction was not
because of the lack of sufficient solution to cover the pan. Figure 12 shows both the evaporation rate of
Polymer 2 and 6 solution and their corresponding percent solids.
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By comparing the percent solids of CUP at each slope change of the evaporation rate curve with
the results in the Table 2, we illustrate the process of how surface water and free water in the voids
evaporate. The results showed that evaporation rate sharply decreased when the percent solids passes
the HCP, due to the highly limited mobility of particles and water molecules. Another big evaporation
rate reduction occurred at about 53%, where there is no free water between the CUP particles and two
layers of surface water around CUP particles, that implied surface water doesn’t evaporate until all
free water is released. The next step was at about 72% solid, where there was only one layer of surface
water, due to the inner layer being more tightly hydrogen bounded to the CUP surface. Furthermore,
at about 96% solid, there was another evaporation rate change.

The results imply that free water completely evaporated before surface water started to evaporate,
and water molecule associated to carboxylate group are released in the end. This was demonstrated for
CUP solutions with different molecular weight and surface charge density, and indicated it is molecular
weight and surface charge density independent.

Sodium acetate hydrate has three waters of hydration which are held relatively strongly. Based
on Table 4, Polymer 2 and Polymer 4 should have 94.92% and 96.55% solids respectively if it had
3 waters of hydration also. As can be seen in Figure 11 the two polymers are very close to these
values. Therefore, it is highly likely that the last three waters to leave are those associated with the
surface carboxylates.

4. Conclusions

The TGA method is a useful screening method for evaporation rate measurements with only
small amounts of substance required. The experiments are quick and easy and yet provide accurate
results for comparing different substances. Results indicated that CUP was able to cause interfacial
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water deformation due to inter-particle charge repulsion, which increases the surface area and reduces
surface tension, that increases the evaporation rate. In addition, the viscosity, in other words the
mobility of CUP particles and water molecules, is also an important factor for the evaporation rate.
The CUP solution with higher initial percent solids has a higher evaporation rate in the beginning
of the isothermal process than deionized water, due to more interfacial deformation and increased
surface area as a result. During the isothermal process, the evaporation rate decreased, because of the
combination of the effect of a decrease in air–water interface temperature and limited mobility of water
molecules and CUP particles by the increased viscosity. When reaching RCP and HCP, the movement of
free water molecules were highly retarded, that caused significant evaporation rate reduction. Surface
water didn’t evaporate until all free water evaporated, and presented a slower evaporation rate. Water
molecules associated with the carboxylate groups on the CUP surface evaporated last.
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