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Abstract: Since the discovery of conductive polyacetylene, conductive electroactive polymers are
at the focal point of technology generation and biocommunication materials. The reasons why
this research never stops growing, are twofold: first, the demands from the advanced technology
towards more sophistication, precision, durability, processability and cost-effectiveness; and second,
the shaping of conducting polymer research in accordance with the above demand. One of the major
challenges in conducting polymer research is addressing the processability issue without sacrificing
the electroactive properties. Therefore, new synthetic designs and use of post-modification techniques
become crucial than ever. This quest is not only advancing the field but also giving birth of new hybrid
materials integrating merits of multiple functional motifs. The present review article is an attempt to
discuss the recent progress in conducting polymer grafting, which is not entirely new, but relatively
lesser developed area for this class of polymers to fine-tune their physicochemical properties. Apart
from conventional covalent grafting techniques, non-covalent approach, which is relatively new but
has worth creation potential, will also be discussed. The aim is to bring together novel molecular
designs and strategies to stimulate the existing conducting polymer synthesis methodologies in order
to enrich its fascinating chemistry dedicated toward real-life applications.
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1. Introduction

Conducting polymers are considered as the fourth generation of polymeric materials.
The physicochemical properties inherited from typical polymeric materials combined with the fascinating
electrical conductivity approaching metals in cases, brought this class of materials in the focal point of
scientific research towards energy applications for decades [1–6]. Apart from energy application centered
on electrical and electronic properties, conducting polymers are becoming increasingly attractive towards
various biomedical applications too due to their responsive chemistry in presence of electrical fields from
various types of tissues, including muscle, connective tissue, epithelium and nervous tissue [7–11]. The
opportunity to synthesize new conducting polymers with improved and desired properties began to
attract the attention of synthetic chemists in the 1980s. Since then a wide range of conducting polymers
and their derivatives are synthesized. Some of the most widely used and popular conducting polymers are
polyacetylene, polythiophene, poly[3–ethylenedioxy)thiophene], polypyrrole, and polyaniline (Scheme 1).

A key and unique property of a conducting polymer is the presence of conjugated double bonds
along its backbone. However, conjugation alone is not enough to make a polymer conductive. The other
prerequisite is that some charge carriers in the form of extra electrons or holes have to be injected into
the material. Such doping not only induces carriers into the electronic structure but also leads carrier
delocalization along the polymer chain and to charge carrier mobility, which is extended into three
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dimensions through interchain electron transfer [12]. During the doping process, an organic polymer,
either an insulator or semiconductor having a small conductivity typically in the range 10−10 to 10−5 S
cm−1, is converted into a polymer which is in the ‘metallic’ conducting regime (ca. 1 to 104 S cm−1).
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Scheme 1. Chemical formulae of most widely used conducting polymers.

The physicochemical properties of a conducting polymer crucially depend on several factors such
as: the chemical identity of the monomer, molecular weight, presence of functional groups and side
chains attached to the monomeric units, and even on the polymer conformation. On the other hand,
the conduction property of the polymer is directly influenced by any factors affecting the electron
delocalization along the main chain. Therefore, designing a conducting polymer is much more than
only overcoming the synthetic complexity. Time to time functionalization of conducting polymers is
perhaps more challenging compared to the synthesis of the parent molecules [7,13]. There are various
available routes for conducting polymer synthesis such as chemical [14–17], electrochemical [18–21],
photochemical [22,23], metathesis [24,25], emulsion [26–28], plasma [29,30] etc. While synthesis of the
polymer is the important first step, frequently the resultant polymer lacks in desired properties at
the desired levels. Processability, morphology, stability, durability etc. are some of the issues, which
are extremely vital in the field of technology generation based on the conducting polymer. Such
properties are not always solely dependent on the chemical nature of the polymer backbone but on
other factors such as availability of the functional groups, nature of the side chain etc. Therefore,
engineering chemical structure by keeping the polymeric backbone intact is a well-established strategy
for fine-tuning the conducting polymer physicochemical properties. The side chains in conjugated
polymers are primarily beneficial as solubilizing groups. However, the overall contribution of side
chains is truly far-reaching and a side chain modification can directly influence the optical, electronic,
conformational and electrical properties [31]. Therefore, sidechain functionalization of conducting
polymers is a popular approach to fine-tune the polymer property. While the polarity (electron
withdrawing vs. electron donating) of the sidechain can influence the main chain charge transport,
the steric factor of the functional group can alter the planarity and conformation of the main chain
thereby influencing the conjugation behavior. On downside amplification of a particular property by
side chain modification frequently sacrifices the conduction efficiency of the parent polymer.

The physicochemical property of a polymer can be engineered even more drastically by making
a copolymer with another polymer or with the help of grafting. Conducting polymers as the
components in block-copolymer systems have been reported for nanostructural control as alternative to
lithography [32]. However, the conducting property can severely be scarified in this approach because
of dilution effect from nonconducting components. Grafting of the polymers [33,34] on the other hand
is an old and classical approach; however, this strategy with conducting polymer is still new and
under development. Grafting of conducting polymer is particularly important, as it does not alter the
extended conjugated structure in the main chain, however, is capable of introducing and integrating the
properties from the grafted materials. Grafting can potentially compensate and improve the properties
of the conducting polymers beyond its charge transport, and therefore it could be more associated with
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solubility, nanodimensional morphology, biocompatibility, biocommunication etc. Especially, in order
to qualify for technological or biomedical application conducting polymers need several other factors
than only electron delocalization. In this question, it is hard to find the alternatives of grafting with
other conventional nonconducting polymers frequently visible in industrial and biomedical sectors.

This review specifically aims to bring together the novel strategies built around conducting
polymer grafting to stimulate the real-life applications of this class of materials. We will emphasize on
key and recent report based on novelty in strategy, urgency in terms of application and variations in
grafted materials. While covalent grafting is a more conventional approach noncovalent immobilization
of polymeric counterpart with the parent polymer is no longer a fantasy either. Therefore, we will also
discuss the importance and the essence of noncovalent grafting of conducting polymer with the help
of limited examples. Ultimately, our goal will be to critically assess and demonstrate at the same time,
how the power of grafting can revolutionize the fate of conducting polymer chemistry from academic
interest to technology generation and biocommunication.

2. Covalent Grafting of Conducting Polymers

The covalent approach for the synthesis of graft copolymers is the conventional method of
grafting. It ensures a highest degree of property mixing among associated species and thus, offers
the scope of material design as per the requirement. General methods to synthesize graft copolymers
are of three types: (i) ‘grafting to’, (ii) ‘grafting from’ and (iii) ‘grafting through’ (Figure 1) [35].
In brief, ‘grafting to’ method involves attachment of pre-polymerized chains to backbone polymer
having reactive end-groups [36]. In ‘grafting from’, conducting polymer backbone functionalized with
initiation sides acts as macroinitiator, from which the side chains are grown afterwards [37]. ‘Grafting
through’ method involves synthesis of macromonomers that form backbone polymer after subsequent
polymerization [38].
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Selected works on covalent grafting of conducting polymers are summarized in Table 1. Among
various polymerization techniques available in the literature, the most frequently used methods for the
synthesis of conducting polymers are oxidative-radical coupling in presence of oxidant catalyst [39]
and electrochemical polymerization at electrode surface [40]. For example, Khairkar et al. [41] prepared
chitosan–graft–polyaniline via oxidative polymerization of aniline in acidic medium using ammonium
persulfate (APS) catalyst (Scheme 2). This approach resulted in a cost-effective, environmentally
benign conductive biomaterial for sensing application. In a similar way, Abd El-Salam et al. grafted
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poly(2-hydroxyaniline) and poly(2-methylaniline) on chitosan for the wastewater treatment [42,43].
Polyacrylamide–graft–poly(2-methoxyaniline) [44] was also developed by the same group to adsorb
lead selectively from contaminated water. Pandey et al. [45] modified natural polymer xanthan gum
(XG) by grafting polyaniline (PANI) on it. This XG–g–PANI was reported to show high response and
recovery times (in order of 10–30 s) in ammonia vapor (concentration range: 1–100 ppb), even at room
temperature. Thus, it can be used as a promising ammonia sensor.
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Scheme 2. Grafting of polyaniline on chitosan.

Moreover, Ramaprasad et al. [46] followed similar approach in order to prepare more processable
polypyrrole (PPy) by grafting PPy onto chitin (Scheme 3) using APS. The authors verified the grafting
of PPy by dissolution studies of as prepared material and calculated the % grafting of PPy on chitin via
gravimetric method. In another example, Rezaei et al. [47] prepared novolacs grafted with PANI to
develop a new adhesive. For the synthesis, they performed grafting of novolacs with p-aminobenzoic
acid to introduce amine groups to the novolacs, from which further polymerization of aniline was
initiated to form the final graft polymer. After grafting, the authors found a decrease in tensile
strength and elasticity. However, the grafting appeared to have no effect on the conductivity of PANI,
making the graft polymer an interesting candidate as conductive adhesive. In addition, Smirnov
et al. [48] prepared polyacrylamide–g–polyaniline electroconductive fibrous mat by electrospinning
of copolymers in a water-dimethyl formamide mixed solvent. This fibrous mat can be utilized as a
potential electrode material for supercapacitors.
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Using the electrochemical polymerization approach, conducting polymer poly
(3,4-ethylenedioxythiophene) (PEDOT) grafted hyperbranched polyglycerol (HPG) was synthesized
by Ma et al. [49]. To synthesize the graft conducting polymer (Figure 2), the author introduced
hydroxyl groups containing side chains to develop 3,4-ethylenedioxythiophene (EDOT) based monomer,
which after subsequent electropolymerization on glass carbon electrode followed by the attachment of
alpha-fetoprotein (AFP) antibodies produced antifouling and conducting biosensors. Very recently, Molina
et al. [50] designed and developed an amphiphilic conducting graft copolymer having “rod-coil” type
randomly distributed conducting backbone of PPy, poly(Schiff base) (PSB) and hydrophilic poly(ethylene
glycol) (PEG) side chains. For the synthesis, they prepared bis (pyrrole) benzoic Schiff base-containing
PEG macromonomer (AzbPy–g–PEG), which after subsequent electrochemical co-polymerization
with pyrrole monomers produced the desired polymer P(Py–co–AzbPy–g–PEG) (Figure 3) capable of
generating implantable electrodes for serotonin detection. This macromonomer approach was also
employed by Hatamzadeh et al. [51] for the grafting of PPy on thiophene-functionalised polystyrene (PS)
macromonomer via the oxidative polymerization of pyrrole monomer. The graft conducting polymer is
more solution processable compared to PPy itself. Also, grafting with non-conjugated polystyrene was
reported not to affect the characteristic redox behavior of PPy.
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In another approach, Guo et al. [52] took tetramer of aniline (AT) instead of PANI to prepare
dextran–graft–(aniline tetramer)–graft–(4-formylbenzoic acid). First, they synthesized hexamethylene
diisocyanate-graft-AT and then substituted with dextran. In the next step, 4-formylbenzoic acid
was grafted (Figure 4). With this copolymer they developed degradable, conductive, self-healing
injectable hydrogel in N-carboxyethyl chitosan solution for myoblast cell therapy and muscle repair.
The same research group offered another hydrogel consisting of N-carboxyethyl (oxidized hyaluronic
acid)–graft–(PANI tetramer) [53] for the delivery of antibiotic (amoxicillin). The hydrogel was reported
to possess good antibacterial, wound healing properties and it can also prevent wound infections. The
gels with higher AT contents showed faster wound healing processes compared to the one with less
amount of AT.
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Controlled radical polymerization such as Atom transfer radical polymerization (ATRP), reversible
addition-fragmentation chain transfer polymerization (RAFT) is another popular and well accepted
technique to develop a variety of conducting polymers-based brushes for wide range of applications.
Grafting of side chains not only increases the solubility and processability of conducting polymers
but also introduces modulation of properties by external stimuli such as temperature, pH, salt
concentration, and electrical potential etc. Conducting polymer grafting can also be done by
click reactions [54,55]. Using ATRP technique, Malmstrom et al. [37] successfully grafted pH
responsive poly(acrylic acid) brushes from PEDOT backbone. To generate ATRP initiating site,
the monomer of PEDOT was functionalized with 2-bromopropanoate. This monomer then was
electropolymerized to get bromo-functionalized PEDOT, which undergoes ATRP of tert-butyl acrylate
(tBA). PAA brush was obtained after acid hydrolysis of tert-butyl group. The conducting brush
was reported to exhibit pH sensitivity, improved aqueous solubility and redox behavior at basic pH,
thus can be utilized as functional biointerface and versatile cell culture substrate. Moreover, Zhao
et al. [56] reported grafting of neutral poly((oligo(ethylene glycol) methacrylate), poly(OEGMA),
and zwitterionic poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide),
poly(SBMA) from bromo-containing PEDOT. A general electropolymerization was done prior to
grafting reaction to attach initiating -Br sites from PEDOT and then polymer brushes were grafted
via surface-initiated ATRP(SI-ATRP). These brushes were reported to prevent cell attachment and
adhesion on the copolymer grafted surface. A self-templating SI-ATRP technique in combination
with oxidative polymerization was developed by Wolski et al. [57] to produce conjugated ladder-like
polythiophene-based polymer brushes. In this two-step process, 3-methylthienyl methacrylate
was polymerized via SI-ATRP giving grafted poly(3-methylthienylmethacrylate) (PMTM) brushes
with pendant polymerizable thiophene groups, which after subsequent template polymerization
resulted in the formation of ladder-like architecture. Ghosh et al. [58] have synthesized water soluble
polythiophene–g–poly-[N-(6-methyluracilyl)-N,N-dimethylaminochloride]ethylmethacrylate (PTDU),
which shows thermo-responsiveness in presence of halides and exhibits light induced conformational
change. The thermoresponsive behavior was introduced to polythiophene backbone via ATRP of
2-(dimethylamino)-ethyl methacrylate (DMAEMA) from polythiophene macroinitiator (PTI) giving
PTDU. Then, cationic PTDU was prepared by the quaternization of amine groups of DMAEMA with
6-chloromethyl uracil (Figure 5). Attachment of the uracil moieties makes the system responsive to
diffused light by changing the conformation from extended to coiled structure.

In another interesting example, Strover et al. [59] grafted hydrophilic poly(2-hydroxyethyl
methacrylate) on bromo-initiator functionalized conducting polymer poly(2-(2,5-di(pyrrol-2-yl)
thiophen-3-yl) (PPyThon) using electrochemically controlled ATRP (eATRP). For the first time
this group introduced eATRP as a grafting method where PPyThon was used as a working
electrode and macroinitiator as well, from which electrografting of (2-hydroxyethyl methacrylate)
occurs giving the graft polymer via ATRP. Recently, Chan et al. [60] prepared thermoresponsive
water soluble laterally-branched phenylene derivative of polythiophene (PThP) to develop soluble
thermometer. At first, PThP attached with ATRP initiating sites and azide groups in the side
chains was prepared and then subjected to ATRP to graft poly(ethylene glycol) methacrylate
(PEGMA) generating water soluble conducting polymers. To introduce thermoresponsive
behavior, propargyl functionalised poly(2-n-propyl-2-oxazoline) was then grafted via click reaction.
Voorhaar et al. [61] prepared self-healing graft copolymer for stretchable and wearable electronics.
To introduce self-healing properties, PThP was grafted by poly(acetamidoalkyl acrylate) side
chains via controlled radical polymerizations of 3-acetamidopropyl acrylate and 6-acetamidohexyl
acrylate. In another example, Mohamed et al. [62] used a combination of oxidative radical
polymerization and click reactions to synthesize amphiphilic polythiophene–graft–poly(ethylene
oxide)(P3HT–g–PEO) copolymer. To synthesize this copolymer, random copolymer of
3-hexylthiophene (P3HT) and 3-(6-bromohexylthiophene) (P3HT-Br) were prepared via oxidative
polymerization and treated with sodium azide (NaN3) to form azido-functionalized polythiophene.
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Finally, polythiophene–graft–poly(ethylene oxide) was synthesized from alkyne terminated PEO via
alkyne-azide click reaction (Scheme 4).Polymers 2020, 12, x FOR PEER REVIEW 8 of 23 
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Figure 5. Synthesis of PTDU from 3-(2-Hydroxyethyl)thiophene. Reproduced with permission
from [58].
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Scheme 4. Synthesis of P3HT–g–PEO random copolymers through oxidative polymerization and
click reactions.

To explore the properties of all-conjugated graft architectures, Obhi et al. [63] synthesized a comb
polymers polythiophene–graft–polyselenophene, having polythiophene backbone and polyselenophene
side chains. This synthesis was not very straight forward and was done only for low and medium graft
density by synthesizing azide-functionalized polythiophene and acetylene-terminated polyselenophene
via Kumada catalyst-transfer polycondensation polymerization (KCTP), followed by alkyne-azide click
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reaction between them. Using Kumada cross-coupling reaction thiophene-functionalized poly(vinyl
chloride) (PVC) macromonomer (ThPVCM) was prepared by Massoumi et al. [64] for chemical
and electrochemical grafting of polythiophene on PVC. The graft polymer was then synthesized
chemically from the macromonomer via oxidative polymerization of thiophene and electrochemically
by electrolysis under constant potential. In another interesting study, Hong et al. [65] reported a simple
approach to prepare polythiophene containing branched chains in a single step via dual initiation
polymerization technique. This approach consists of both oxidative and metal-catalyzed radical
polymerization simultaneously in presence of Cu2+/Cu+ catalyst system that allows polymerizations
of both the backbone polythiophene and branched polymers in a single step (Figure 6).

Polymers 2020, 12, x FOR PEER REVIEW 9 of 23 

 

another interesting study, Hong et al. [65] reported a simple approach to prepare polythiophene 

containing branched chains in a single step via dual initiation polymerization technique. This 

approach consists of both oxidative and metal-catalyzed radical polymerization simultaneously in 

presence of Cu2+/Cu+ catalyst system that allows polymerizations of both the backbone polythiophene 

and branched polymers in a single step (Figure 6).  

 

Figure 6. Schematic illustration and synthetic route of the synthesis of π-conjugated polymers bearing 

branched chains via the dual initiation polymerization process. Reproduced with permission [65]. 

Apart from the grafting of regular polymers people also use covalent grafting of polypeptide as 

an alternative approach to composite formation in order to prevent leaching of polypeptides from 

the scaffold materials. As for example, Akbulut et al [66] prepared polythiophne–graft–polyalanine 

(PTh–g–PAla), which after attachment with glucose oxidase (GOx) enzyme can act as a glucose 

sensor. For the synthesis, thiophene-functionalized polypeptide macromonomer by the N-

carboxyanhydride (NCA) ROP was prepared first and then electropolymerization of the 

macromonomer was done. This biosensor was reported to possess better sensitivity and repeatability 

due to inhibition of leaching. Moreover, Guler et al. [67] synthesized polythiophene–g–

polyphenylalanine (PTh–g–PPhe) and attached GOx to develop similar type of biosensor. Further, 

RGD was attached to the polyphenylalanine chains of this graft copolymer to promote better cell 

adhesion. 

In order to develop electroactive biomaterials for biomedical applications, grafting of 

biocompatible and biodegradable polymers such as poly(caprolactone) (PCL), poly(D,L-lactic acid) 

(PDLA, PLLA), poly(glycolic acid) (PGA) with conducting polymers has gained much attention as a 

novel approach. To summarize the developing research on the synthesis of conducting polymer-

based biomaterials and improvement of their properties after grafting, very recently, Sliva et al. [68] 

presented a good review article. Mainly, there are two ways to generate such conducting graft 

polymers: (i) attachment of electroactive oligomers to the biodegradable polymers via ester linkage 

(Figure 7A) and (ii) subsequent synthesis of electroactive, biodegradable polyesters macromonomer 

followed by polymerization of conductive monomers (Figure 7B). 

Figure 6. Schematic illustration and synthetic route of the synthesis of π-conjugated polymers bearing
branched chains (a) via the dual initiation polymerization process. (b) Reproduced with permission [65].

Apart from the grafting of regular polymers people also use covalent grafting of polypeptide as
an alternative approach to composite formation in order to prevent leaching of polypeptides from
the scaffold materials. As for example, Akbulut et al. [66] prepared polythiophne–graft–polyalanine
(PTh–g–PAla), which after attachment with glucose oxidase (GOx) enzyme can act as a glucose sensor.
For the synthesis, thiophene-functionalized polypeptide macromonomer by the N-carboxyanhydride
(NCA) ROP was prepared first and then electropolymerization of the macromonomer was done.
This biosensor was reported to possess better sensitivity and repeatability due to inhibition of leaching.
Moreover, Guler et al. [67] synthesized polythiophene–g–polyphenylalanine (PTh–g–PPhe) and attached
GOx to develop similar type of biosensor. Further, RGD was attached to the polyphenylalanine chains
of this graft copolymer to promote better cell adhesion.

In order to develop electroactive biomaterials for biomedical applications, grafting of biocompatible
and biodegradable polymers such as poly(caprolactone) (PCL), poly(d,l-lactic acid) (PDLA, PLLA),
poly(glycolic acid) (PGA) with conducting polymers has gained much attention as a novel approach.
To summarize the developing research on the synthesis of conducting polymer-based biomaterials and
improvement of their properties after grafting, very recently, Sliva et al. [68] presented a good review
article. Mainly, there are two ways to generate such conducting graft polymers: (i) attachment of
electroactive oligomers to the biodegradable polymers via ester linkage (Figure 7A) and (ii) subsequent
synthesis of electroactive, biodegradable polyesters macromonomer followed by polymerization of
conductive monomers (Figure 7B).
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Using the oligomer attachment approach, Chen et al. [69] synthesized a series of biodegradable
electroactive shape memory-based polymer network comprising of aniline trimer as hard block, PEG
and PLLA as soft blocks for soft tissue engineering applications. By this combination the authors were
able to achieve super stretchability and low modulus required to mimic soft tissues. For muscle tissue
engineering, the same group developed biocompatible, biodegradable, electroactive copolymers of
polyurethane-urea (PUU), PLLA and aniline trimer [70]. The elastomeric properties of PUU combined
with the conductive behavior of aniline trimer and biocompatibility, biodegradability of PLLA make it
a potential candidate for repair and regeneration of soft tissues like skeletal muscle, cardiac and nerve
muscle. Although, oligoaniline (trimer, tetramer, pentamer) is a better substitute of PANI itself in terms
of biocompatibility, solubility and processability, but both the materials have harmful effect on cells for
long-term in vivo studies. To address this point, Spicer et al. [71] developed a series of oligomers of
EDOT for tissue engineering purposes.

Apart from the oligomer approach macromonomer approach is also very effective for the
development of degradable conducting graft copolymers. To exemplify, PCL grafted PPy was
synthesized by Guo et al. [72] aiming the fibrous membrane formation for biomedical applications.
First, pyrrole–g–PCL (Py–g–PCL) macromonomer was synthesized using ROP of caprolactone.
Then, PPy–g–PCL was achieved by oxidative polymerization of Py–g–PCL monomer. Recently,
Sliva et al. [73] reported a series of copolymer of PEDOT with poly(d,l-lactic acid) (PEDOT–co–PDLLA)
as a scaffold materials for neuronal tissue engineering. The copolymers were synthesized via subsequent
EDOT−PDLLA macromonomer production using ROP of lactide in presence of EDOT-OH, followed
by chemical copolymerization of EDOT monomers.
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Table 1. Representative important research works done in the field of covalent grafting of conducting polymers.

Conducting Polymer System Grafted/Attached System Approach Outcome Ref.

poly(3,4-ethylenedioxythiophene) Poly(acrylic acid) ATRP, followed by acid hydrolysis of tert-
butyl acrylate

Functional biointerface and versatile cell
culture substrate. [37]

poly(o-methoxyaniline) Polyacrylamide Oxidative-radical coupling Wastewater treatment [44]

Polyaniline Xanthan gum Oxidative polymerization Room temperature ammonia
vapor sensor [45]

Polyaniline Novolac Oxidative polymerization Conductive adhesive [47]

Polyaniline Polyacrylamide Electrospinning of copolymers in a
mixed solvent

Potential electroconductive fibrous mat
for supercapacitors [48]

Polypyrrole Poly(Schiff base) and poly
(ethylene glycol)

Electrochemical co-polymerization of pyrrole
and pre-synthesized macromonomer.

Amphiphilic conducting graft copolymer
based implantable electrode for

serotonin detection
[50]

Aniline tetramer Dextran and (4-formylbenzoic acid).

Step-wise grafting of dextran and
4-formylbenzoic acid via polycondensation

coupling reaction from hexamethylene
diisocyanate-graft-aniline tetramer

Degradable, conductive, self-healing
injectable hydrogel for myoblast cell

therapy and muscle repair
[52]

Polythiophene Poly(3-methylthienylmethacrylate) Self-templating SI-ATRP combined with
oxidative polymerization

Formation of conjugated ladder-like
architecture [57]

Polythiophene poly-[N-(6-methyluracilyl)-N,N-
dimethylaminochloride]ethylmethacrylate

ATRP followed by quaternization of
amine groups

Water soluble conducting brush
exhibiting light-Induced conformational

change and thermo-responsiveness in
presence of halides.

[58]

Poly(2-(2,5-di(pyrrol-2-yl)
thiophen-3-yl) Poly(2-hydroxyethyl methacrylate) Electrochemically controlled ATRP (eATRP) New grafting method to produce

hydrophilic conducting graft copolymers. [59]

Phenylene derivative of
polythiophene

Poly(ethylene glycol) methacrylate and
propargyl functionalised

poly(2-n-propyl-2-oxazoline)
ATRP followed by click reaction Soluble thermometer [60]

Phenylene derivative of
polythiophene Poly(acetamidoalkyl acrylate) ATRP Self-healing, stretchable and

wearable electronics [61]

Polythiophene Poly(ethylene oxide) Combination of oxidative radical
polymerization and click reactions

More processable amphiphilic
conducting system. [62]
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Table 1. Cont.

Conducting Polymer System Grafted/Attached System Approach Outcome Ref.

Polythiophene Polyselenophene KCTP followed by click reaction Production of all-conjugated comb-like
graft architectures [63]

Polythiophene Polystyrene

Single step dual initiation polymerization
technique consisting of both oxidative and

metal-catalyzed radical
polymerization simultaneously

Simple single step approach to prepare
conducting polymer containing

branched chains.
[65]

Polythiophene Polyalanine First ROP, then electropolymerization Glucose sensor [66]

Aniline trimer Poly(ethylene glycol) and poly(l
-lactic acid) Coupling via polycondensation reaction.

Biodegradable shape memory-based
superstretchable electroactive elastomer

network for soft tissue engineering.
[69]

Polypyrrole Poly(caprolacton) First ROP, then oxidative polymerization Degradable, fibrous, conducting scaffold
materials for neuronal tissue engineering [72]



Polymers 2020, 12, 709 13 of 23

In recent years, the development of all-conjugated donor-acceptor based polymer solar cell
has gained high attention because the presence of both donor and acceptor segments in a single
polymer chain can contribute easily to fabricate high performance solar cell. The general methods
for the synthesis of all-conjugated donor-acceptor graft copolymers are beautifully summarized in a
mini-review article by Wang et al. [74]. The synthetic routes (Figure 8) are categorized into four types:
(i) step-wise monomer addition via catalyst transfer polycondensation, (ii) attachment of end-terminal
P3HT and end-functionalized n-type polymers (iii) copolymerization of end-functionalized conducting
polymers (mainly P3HT) with n-type monomers by Suzuki coupling, Yamamoto coupling, Stille
polycondensations, etc. and (iv) catalyst-transfer polycondensation from acceptor polymers
based macroinitiator.
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The above examples give a good idea about how the covalent grafting of conducting polymers
are a steadily growing area. The key issue in this effort is to define the purpose of grafting. The nature
of grafted materials entirely depends on that purpose. Therefore, the same conducting polymer
backbones are being grafted with various polymeric or oligomeric materials. In the covalent grafting
approach, the grafted materials have a high degree of contribution to the overall system. Therefore,
complementarity in property and function makes this approach unique.

3. Non-Covalent Grafting of Conducting Polymers

The term grafting more commonly refers to a covalent attachment to the polymer backbone.
However, in cases, covalent grafting might have its own demerit too. Complex synthetic design and
modification techniques, undesired property modification, irreversible nature of attachments, are a few
key issues which prompted chemists to think about a more adaptive approach. Such concerns give
birth to an entirely unconventional grafting strategy where the associated components stay together
via noncovalent bonding. Therefore, one might also term this as supramolecular grafting.

To date, there are only a few reports on supramolecular grafting with nonconducting polymer,
which for example, utilized quadruple hydrogen bond formation [75], and host-guest complexation
between adamantyl group and β-cyclodextrin [76], or between ferrocene and β-cyclodextrin [77].
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The importance and usefulness of supramolecular grafting approach is perhaps even more important
for conducting polymers compared to the nonconducting polymer family. While grafting of the
conducting polymer can introduce the desired durability and processability on top of its unbeatable
electrical and electronic properties, in cases, direct attachment to the conducting polymer backbone
might have detrimental effect on the main chain conjugation. Therefore, supramolecular attachment to
the conducting polymer might add the property of the grafted species and also minimize the main chain
perturbation at the same time. As this particular area is not fully developed and there are only limited
reports available in the literature, interesting works involving polymer–polymer supramolecular
attachments will also be included in the present discussion as the pathway toward efficient and
successful supramolecular grafting. Selected works on non-covalent grafting of conducting polymers
are summarized in Table 2.

In order to prepare soluble polyaniline, in one of the earliest examples, Geng et al. doped
polyaniline (PANI) by phosphonic acid containing hydrophilic tail. When poly(ethylene glycol)
monomethyl ether (PEGME)with molecular weight Mw 550 was used as the hydrophilic chain of the
dopant, the doped polymer was soluble in water, NMP and chloroform [78]. Free-standing films could
also be cast from water, chloroform and NMP solutions. The film cast from aqueous solution showed
good electrochemical redox reversibility. Interestingly, reversible phase transformations in DSC spectra
at 19.1 and −9.8 ◦C for heating and cooling curve respectively, was observed due to the melting and
crystallization events of hydrophilic PEGME segments. In this system design, the attachment of two
polymeric components are ionic in nature. Later, self-assembly property of the same composite system
was studied by Nandan et al., where the strong PANI backbone-PEG side chain repulsion resulted
in a microphase-separated lamellar morphology consisting of alternating ionic layer composed of
PANI backbones and ionic headgroups of the dopant and nonionic layers consisting of PEG side chain
(Scheme 5) [79]. The thickness of the nonionic layer increased with increasing binding fraction because
of higher chain stretching as the separation distance between the junction points at the PANI backbone
increased. In addition, the lamellar interface was found to be almost planar. An order–disorder
transition near 225 ◦C due to deprotonation in the complex was captured from temperature dependent
SAXS studies. The conformational rigidity of PANI backbone coupled with the strong backbone-side
chain ionic attachment strongly retarded the crystallization kinetics and the crystallizability of the PEG
side chains in the complexes. In general, conformationally flexible PEG segment experienced a higher
degree of property modification compared to the conformationally rigid PANI backbone. Another
example of a doping approach for attaching polymeric component to PANI backbone is the work
by Nandi and co-worker, where, interestingly, the attached polymer itself was another conducting
polymer [80]. In this work, polythiophene–g–poly(methacrylic acid) (PTMA) was prepared by ATRP
of tert-butyl methacrylate upon a polythiophene backbone followed by hydrolysis of tert-butyl groups.
The resultant grafted polythiophene acted as both a template and a dopant for the synthesis of PANI
nanostructures by oxidative polymerization of aniline. A nanorod hybrid morphology was observed
up to a 1:10 composition (PTMA–PANI; w/w). On the other hand, for 1:20 composition a helical
nanorod was produced along with some small size spheroids. The hybrids were semiconducting in
nature and exhibited reproducible photoconductivity by alternate “On” and “Off” switching of white
light. Polymerization of adsorbed aniline on the surface of the micellar polythiophene moiety has been
postulated and considered responsible for helical PANI chain and variable morphology based on the
relative ratios of involved conducting polymer components (Figure 9).
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Figure 9. Chemical structure of grafted polythiophene dopant (left) and schematic illustration of
hybrid helical structure formation. Violet spheres stand for polythiophene core, red hairs correspond
to polymethacrylic acid chain, green spheres stand for aniline molecule and green chain with green
spheres represents polyaniline. Reproduced with permission [80].

A similar approach involving supramolecular polar interaction could be adopted to form other
conducting polymer hybrids. Electrostatic interaction between cationic conducting polymer and
anionic biopolymer like DNA has been used successfully to align two polymeric materials. The key
difference with conventional grafted system is that here the attachment is multipoint along the parent
polymer backbone. A supramolecular hybrid formation between poly(o-methoxyaniline) (POMA) and
DNA was utilized by this author as a tool for the formation of semiconducting DNA hybrid and POMA
radical cation stabilization. An uncoiling of POMA chain on the DNA template facilitated by the
attractive interaction between DNA anion and POMA radical cation and repulsive interaction among
POMA radical cations was key event involved in this stable hybrid formation [81–83]. Such a system
was further utilized to produce a large-band-gap semiconducting nano-biocomposite in presence
of silver ion [84]. Similarly, DNA/polypyrrole supramolecular hybrid by oxidation of pyrrole in
DNA-containing solution was achieved by Dong et al. [85]. Interestingly, reactions carried out on
surface-immobilized DNA and on DNA free in solution resulted different nanostructures. The former
method resulted in a beads-on-a-string appearance for the strands, whereas, nanowires prepared
in solution had continuous coverage of DNA (Figure 10). The latter type of strand was electrically
conducting and conformationally flexible, allowing alignment of the polymer nanowires by molecular
combing, which can be considered a convenient way of fabricating a simple electrical device by
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stretching DNA/PPystrands across an electrode gap. Expanding this approach to other conducting
polymer, supramolecular assembly of poly[3-(6’-(trimethylphosphonium)hexyl)thiophene-2,5-diyl]
(P3HT-PMe3) with single-stranded oligonucleotides or long genomic DNA has been studied in a very
recent work by Leclercq et al. [86]. Self-assembly of two polymeric components in buffered aqueous
solution yielded polyplexes with hydrodynamic radii ranging from 7 nm to around 25 nm. In these
polyplexes, chirality was transcribed to achiral polymer from chiral DNA in supramolecular manner
as evidenced from circular dichroism spectra (Figure 11). When the hybrid solution is deposited on a
surface formation of dendritic fibers extending over tens of µm was observed. Such chemistry has
prospective applications in cell transfection, or self-assembled fibers for organic bioelectronics.

Polymers 2020, 12, x FOR PEER REVIEW 15 of 23 

 

pyrrole in DNA-containing solution was achieved by Dong et al. [85]. Interestingly, reactions carried 

out on surface-immobilized DNA and on DNA free in solution resulted different nanostructures. The 

former method resulted in a beads-on-a-string appearance for the strands, whereas, nanowires 

prepared in solution had continuous coverage of DNA (Figure 10). The latter type of strand was 

electrically conducting and conformationally flexible, allowing alignment of the polymer nanowires 

by molecular combing, which can be considered a convenient way of fabricating a simple electrical 

device by stretching DNA/PPystrands across an electrode gap. Expanding this approach to other 

conducting polymer, supramolecular assembly of poly[3-(6’-

(trimethylphosphonium)hexyl)thiophene-2,5-diyl] (P3HT-PMe3) with single-stranded 

oligonucleotides or long genomic DNA has been studied in a very recent work by Leclercq et al. [86]. 

Self-assembly of two polymeric components in buffered aqueous solution yielded polyplexes with 

hydrodynamic radii ranging from 7 nm to around 25 nm. In these polyplexes, chirality was 

transcribed to achiral polymer from chiral DNA in supramolecular manner as evidenced from 

circular dichroism spectra (Figure 11). When the hybrid solution is deposited on a surface formation 

of dendritic fibers extending over tens of μm was observed. Such chemistry has prospective 

applications in cell transfection, or self-assembled fibers for organic bioelectronics. 

 

Figure 10. Proposed mechanism of self-assembly of DNA/PPy nanowires. (a) Oxidation of pyrrole 

monomer with FeCl3, (b) association of oligomers on DNA through supramolecular interactions, (c) 

polymer growth on DNA template. Reproduced with permission [85]. 

Figure 10. Proposed mechanism of self-assembly of DNA/PPy nanowires. (a) Oxidation of pyrrole
monomer with FeCl3, (b) association of oligomers on DNA through supramolecular interactions,
(c) polymer growth on DNA template. Reproduced with permission [85].Polymers 2020, 12, x FOR PEER REVIEW 16 of 23 

 

 

Figure 11. Chemical structure of the cationic (P3HT-PMe3) (left) and UV-Vis and CD spectra of dT20 

(black line), P3HT-PMe3 (red line) and dT20(oligonucletide)/P3HT-PMe3 complex (blue line) at a 1:1 

DNA/polymer charge ratio. Reproduced with permission [86]. 

Utilizing a similar electrostatic protocol, polyaniline-poly(styrene sulfonate) (PANI-PSS) 

hydrogels have been developed by Dai et al. [87]. A hierarchical porous microstructure consisting of 

oriented 1D nanofibers was observed in the hydrogels (Figure 12). The hydrogels transformed into 

colloidal particles in alkaline solutions because of dedoping of PANI. Interestingly, the PANI-PSS 

hydrogels demonstrated improved capacitance performance such as higher energy density, higher 

power density and better electrochemical stability, compared to the conventional PANI-PSS colloids. 

 

Figure 12. Illustration showing the effects of the reagent concentrations on the formation of the 

molecular networks. (a) In dilute solutions, PANI and PSS chains spontaneously assemble to colloidal 

particles. (b) In concentrated solutions, molecular network structures are formed and established. The 

red circles denote the linking points of the networks, where the interactions between the polymer 

chains take functions. Reproduced with permission [87]. 

In addition to polar interaction, solvophobic interaction can be a leading driving force for 

supramolecular association. Shinkai and co-workers pioneered in using β-1,3-Glucan 

polysaccharides as novel one-dimensional hosts for various species including conducting polymers 

[88]. In one of their works, they used a modified polysaccharide (Curoeg) to form a “loose” but helical 

macromolecular complex with an achiral cationic polythiophene (PT1) [89]. The effective conjugation 

length of PT1 was changed consistently with temperature between 5 and 85 °C (Figure 13). As the 

color changes in the absorption and the fluorescence were detectable by naked eye and are reversibly 

controlled under thermal cycles, authors termed this system as molecular thermometer. Interestingly, 

Figure 11. Chemical structure of the cationic (P3HT-PMe3) (left) and UV-Vis and CD spectra of dT20
(black line), P3HT-PMe3 (red line) and dT20(oligonucletide)/P3HT-PMe3 complex (blue line) at a 1:1
DNA/polymer charge ratio. Reproduced with permission [86].
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Utilizing a similar electrostatic protocol, polyaniline-poly(styrene sulfonate) (PANI-PSS) hydrogels
have been developed by Dai et al. [87]. A hierarchical porous microstructure consisting of oriented
1D nanofibers was observed in the hydrogels (Figure 12). The hydrogels transformed into colloidal
particles in alkaline solutions because of dedoping of PANI. Interestingly, the PANI-PSS hydrogels
demonstrated improved capacitance performance such as higher energy density, higher power density
and better electrochemical stability, compared to the conventional PANI-PSS colloids.
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Figure 12. Illustration showing the effects of the reagent concentrations on the formation of the
molecular networks. (a) In dilute solutions, PANI and PSS chains spontaneously assemble to colloidal
particles. (b) In concentrated solutions, molecular network structures are formed and established. The
red circles denote the linking points of the networks, where the interactions between the polymer
chains take functions. Reproduced with permission [87].

In addition to polar interaction, solvophobic interaction can be a leading driving force for
supramolecular association. Shinkai and co-workers pioneered in using β-1,3-Glucan polysaccharides
as novel one-dimensional hosts for various species including conducting polymers [88]. In one of their
works, they used a modified polysaccharide (Curoeg) to form a “loose” but helical macromolecular
complex with an achiral cationic polythiophene (PT1) [89]. The effective conjugation length of PT1 was
changed consistently with temperature between 5 and 85 ◦C (Figure 13). As the color changes in the
absorption and the fluorescence were detectable by naked eye and are reversibly controlled under
thermal cycles, authors termed this system as molecular thermometer. Interestingly, the polymeric
complex also showed vapor chromism in the film state (Figure 13). In solution as well as in film state the
driving factor was the conformational rearrangement of the conducting polymer on the polysaccharide
surface in presence of stimuli. The significant part of this study is that because of the nonpolar type of
interaction conducting polymer backbone or its electronic property was least influenced because of
the attachment.

As mentioned earlier, the hypothesized effectiveness of supramolecular grafting lies in its minimal
interference with the electronic and electrical properties of conducting polymer. Therefore, a host-guest
interaction mediated grafting strategy could be promising technique because of two key reasons: first,
nonpolar nature of attachment will ensure retention of electronic property along the conducting polymer
backbone; and second, strong host-guest binding could reproduce the close association of covalent
grafting for significant property mixing. To the best of our knowledge, the only work of supramolecular
conducting polymer grafting in its true sense is reported by these authors, where PANI was grafted with
PEG coupled with b-cyclodextrin (βCD-PEG) forming a pseudorotaxane with the aniline moiety [90].
The supramolecularly grafted PANI (βCD-PEG-PANI) in the doped state showed an extremely high
solubility in aqueous as well as in organic solvents. Interestingly, the grafted PANI exhibited a higher
degree of doping and a highly efficient radical cation stabilization, compared to a control PANI system
synthesized under identical conditions. It is worth noticing that the redox switching property of PANI
was fully retained in the grafted state. In addition, a novel disk-like morphology was observed in the
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βCD-PEG-PANI system. A pseudo-micellar assembly formation of βCD-PEG-PANI could explain the
high solubility, efficient radical cation stabilization, and morphology of the grafted PANI (Figure 14).
The restricted conformation in a pseudo-micellar assembly structure in solution, forming a uniform
disk-like morphology was the cause behind efficient radical cation stabilization and a lesser electron
delocalization in βCD-PEG-PANI. The present system represents a powerful integration of three key
elements: first, fascinating electronic and physicochemical properties of parent PANI; second, extremely
high aqueous solubility; and third, biocompatibility transcribed from PEG and βCD. The self-assembled
supramolecularly grafted system exhibited adaptivity towards PANI-DNA complexation in aqueous
solution, which could be considered a step forward towards biocommunication.
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Figure 13. (a) Chemical structure of the polymeric components, (b) schematic representation of the
vapor-induced color change in PT1/Cur-oeg complex film and (c) photographs of the PT1/Cur-oeg
complex solution under the temperature control from 5 to 85 ◦C; upper line: bright images, lower line:
fluorescence images (λex = 365 nm), [PT1]unit = 0.2 mM, [Cur-oeg]unit = 0.6 mM, in water containing 5
vol % DMSO. Reproduced with permission [89].
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ofβCD-PEG-PANI. Here, the involvement ofβCD units (attached to PEG chains), during polymerization
is considered random. Reproduced with permission from [90].
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Table 2. Representative important research works done in the field of non-covalent grafting of
conducting polymers.

Conducting Polymer System Grafted/Attached System Approach Outcome Ref.

Polyaniline Poly(ethylene glycol) Acid doping: Electrostatic attachment Solubility enhancement, film formation [78,79]

Polythiophene Poly(methacrylic acid) ATRP Novel hybrid morphology; Electrical and
photoconduction [80]

Poly(o-methoxyaniline) DNA Acid doping: Electrostatic attachment Enhanced radical cation stabilization;
Semiconducting hybrid [81–83]

Poly(o-methoxyaniline) DNA and silver Redox and electrostatic Large-band-gap semiconductor [84]

Polypyrrole DNA In-situ polymerization in DNA
solution

Distinct nanostraucture based on surface
or bulk polymerization [85]

Polythiophene derivative Oligonucleotide, DNA Co-assembly in buffer Formation of extended dendritic fiber [86]

Polyaniline Poly(styrene sulfonate) Doping: electrostatic attachment Porous microstructure; Improved
capacitance performance [87]

Cationic polythiophene Polysaccharide Electrostatic
Hybrids with temperature responsiveness
in solution and vapor responsiveness in

film state
[89]

Polyaniline Poly(ethylene glycol) Pseudo rotaxane formation

Solubility enhancement; morphology
transition; high radical cation stability;
adaptive complexation with DNA in

aqueous medium

[90]

Authors believe that in supramolecular grafting the synchronization of additive approach and
adaptive behavior can revolutionize polymer modification techniques to address multiple issues
associated with processability and device fabrication based on conducting polymers. Finally, the
non-covalent mode of attachment of the monomer implies that a strategy applied to one conducting
polymer can potentially be employed for a wide range of conducting polymers.

4. Outlook

Grafting is undoubtedly a fascinating expansion of the conducting polymer family bridging its
chemical assets with the real-world demands. Unparallel electronic and electrical property together with
environmental responsiveness can couple sensibly with flexibility, processability and biocompatibility
of nonconducting traditional polymeric systems to generate many breakthroughs in technology
generation and biocommunication strategy. Apart from conducting and non-conducting polymer
pair, association or co-assembly of multiple conducting polymers in the same system could also be an
excellent extension of the above chemistry.
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