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Abstract: The pyrolysis behavior of corn stover and polypropylene during co-pyrolysis was studied
using a tube furnace reactor. The effects of mixing ratio of corn stover and polypropylene, pyrolysis
temperature, addition amount of catalyst (HZSM-5) and reaction atmosphere (N2 and CO2) on the
properties of pyrolysis products were studied. The results showed that co-pyrolysis of corn stover
and polypropylene can increase the yield of pyrolysis oil. When corn stover:polypropylene = 1:3, the
yield of pyrolysis oil was as high as 52.1%, which was 4.5% higher than the theoretical value. With
the increase of pyrolysis temperature, the yield of pyrolysis oil increased first and then decreased,
and reached the optimal yield at 550 ◦C. The addition of catalyst (HZSM-5) reduced the proportion of
oxygenates and promoted the generation of aromatic hydrocarbons. CO2 has a certain oxidation effect
on the components of pyrolysis oil, which promoted the increase of oxygen-containing aromatics
and the reduction of deoxy-aromatic hydrocarbons. This study identified the theoretical basis for the
comprehensive utilization of plastic and biomass energy.
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1. Introduction

In recent years, the rapid development of industry, the large consumption of fossil energy and the
demand for environmental protection have promoted the research and development of renewable
energy. Abundant, renewable, uncompetitive with food and easily available, biomass is a good
alternative to fossil fuels [1,2] which has attracted increasing attention from researchers at home and
abroad. Among all thermochemical conversions, rapid pyrolysis is considered as one of the most
promising methods due to its high liquid yield, including thermal degradation of waste in anaerobic or
low-oxygen environments, which can control the formation of harmful substances such as dioxins [3–5].

Although bio-oils are environmentally friendly, due to the characteristics of the biomass feedstock,
the bio-oils prepared by pyrolysis have high acidity and viscosity and their fuel characteristics are still
lower than fossil fuels, especially in terms of combustion efficiency [6]. In this case, the high content of
oxygenates in the pyrolysis oil [7–10] is the main reason limiting its further industrial application. While
plastic is rich in hydrogen, traditional landfills are not only difficult to decompose, but also waste land
resources, as burning not only wastes energy, but also produces dioxins to pollute the environment [11].
In addition, the co-pyrolysis technology can significantly improve the quantity and quality of pyrolysis
oil without any catalyst or high-pressure hydrogenation [1]. Therefore, feeding hydrogen-rich plastics
with oxygen-rich biomass is a simple, cheap and effective way to obtain advanced pyrolysis oil [12–14].
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The co-pyrolysis of biomass and plastics is considered to be a promising technology that can improve
the quality of oil, which also paves the way for a better utilization of municipal solid waste plastics [15].

At present, due to the diversity of experimental methods and biomass materials, there are various
experiments on co-pyrolysis of biomass and plastics, and the conclusions drawn are also different.
Özsin et al. [16] studied the co-pyrolysis behavior of polystyrene (PS), polyethylene terephthalate (PET),
polyvinyl chloride (PVC) and walnut shell, peach pit at 500 ◦C. The results showed that the co-pyrolysis
of PET, PS and biomass could effectively improve the liquid yield, but PVC inhibited the formation of
bio-oil. Pinto et al. [17] studied the effect of co-pyrolysis of cellulose and PS at different mass ratios on
the composition of liquid products. The results revealed that the mass ratio of Cellulose/PS would
greatly affect the contents of oxygenated compounds and hydrocarbons in bio-oils. To our knowledge,
there is currently no study on the analysis of biomass-plastic co-pyrolysis oil by nuclear magnetic
resonance (NMR). Due to the short reaction time, the chain length of alkenes and alkanes produced by
the depolymerization of chain plastics may be as high as C40+ during the rapid pyrolysis process [18].
In order to analyze the physicochemical properties of pyrolysis oil more accurately and to resolve the
limitations of gas chromatography–mass spectrometry (GC–MS), this study used NMR technology to
perform the co-pyrolysis of corn stover(CS) and polypropylene(PP). This is a more effective method to
analyze the composition of pyrolysis oil [19–22].

This study explored the effects of material mixing ratio, reaction temperature, catalyst addition
amount, and reaction atmosphere on the co-pyrolysis product yield and the physicochemical properties
of pyrolysis oil. In addition, there are few studies on the reaction process and synergistic effect during
the co-pyrolysis of biomass and plastic. Therefore, the interaction mechanism of CS and PP co-pyrolysis
and modification of pyrolysis oil were also discussed in this study, which provided new ideas and a
theoretical basis for the comprehensive utilization of plastic and biomass resources.

2. Materials and Methods

2.1. Material Preparation

CS was collected on a farm in Lianyungang, Jiangsu Province, China. The obtained CS was
ground and sieved with a 60-mesh sieve, and dried in a vacuum drying box at 60 ◦C for 48 h before
pyrolysis. PP powder (~100 mesh) was purchased from HuaChuang Plastic Co., Dongguan, China.
Table 1 summarized the proximate and ultimate analyses of CS and PP. ZSM-5 (SiO2/Al2O3 = 46) was
purchased from Nankai University Catalyst Co., Ltd., Tianjin, China. Prior to the experiments, the
ZSM-5 zeolite was converted to HZSM-5 by calcining in nitrogen at 600 ◦C for 6 h.

Table 1. Proximate and ultimate analysis of CS and PP.

Sample
Proximate Analysis wd/% Ultimate Analysis wd/%

Moisture Ash Volatile Fixed Carbon C H O * N

CS 2.73 6.43 74.06 16.78 42.93 6.38 49.5 1.19
PP 0 0.06 99.82 0.12 85.43 14.57 0 0

* by difference.

2.2. Tube Furnace Pyrolysis

In this study, a tube furnace device was employed to pyrolyze the raw materials, which was
introduced in our team’s previous research [23]. One side of the device is a gas supply unit, which can
be connected to nitrogen and carbon dioxide gas. Prior to heating, control the mass flow controller to
ensure that the gas flow rate is 150 mL/min and hold for 30 minutes to exhaust air from the system. Then,
the heating time and reaction temperature of the tube furnace were adjusted. When the box reached
the required temperature, immediately put the quartz tube containing the raw materials into the box
to heat and set the reaction time to 15 minutes. The oil from the reaction flowed through the condenser
equipped with −10 ◦C ethanol to the collection bottle and was washed out with dichloromethane after
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the reaction for subsequent chemical analysis. The gas entered the gas sampling bag through the dry
tube and was discharged after treatment. The oil and carbon yields were calculated by an electronic
balance, and the gas yields were calculated by the difference.

2.3. Elemental Analysis of Pyrolysis Oil

The constituents of pyrolysis oil was explored by using the EURO EA3000 element analyzer
(EuroVector Inc., Pavia, Italy). The hydrogen and carbon contents were obtained by combustion and
the oxygen content was confirmed by mass difference.

2.4. NMR Analysis of Pyrolysis Oil

All NMR samples were derived from 100 mg pyrolysis oils dissolved in 1000 µL deuterated
chloroform (CDCl3-d1). AVANCE III HD 600MHz NMR spectrometer (Bruker Inc., Zurich, Switzerland)
was used to obtain 13C NMR spectra of pyrolysis oil generated under different conditions, with operating
parameters set to 1500 scans and 3s pulse delay [19,22]. For 1H NMR, the operation parameters were set
to 16 transients and 5 s pulse delay. All NMR spectra were processed by MestReNova v12.0 (Mestrelab
Research, Santiago De Compostela, Spain).

2.5. Synergy Analysis

In order to study the interaction between CS and PP co-pyrolysis, the synergistic effects of
product yields and the synergistic effects of physicochemical properties of pyrolysis oil were evaluated,
respectively. Based on the weight loss of pyrolysis of CS and PP alone, the theoretical yield of pyrolysis
products was calculated using Equation (1). The difference between the experimental and theoretical
yield was expressed by Equation (2). Based on the physicochemical properties of CS and PP separately
pyrolyzed oils, Equation (3) was used to calculate the theoretical content of the physiochemical
properties of the co-pyrolysis oil. The difference between the experimental and theoretical contents of
physiochemical properties is expressed by Equation (4).

Ycal = Xcs Ycs + Xpp Ypp, (1)

∆Y = Yex − Ycal, (2)

Zcal = (Xcs Ycs Zcs + Xpp Ypp Zpp)/(XcsYcs + XppYpp), (3)

∆Z = Zex − Zcal, (4)

where Xcs and Xpp represent the mass percentages of CS and PP in the feedstock, respectively. Ycs
and Ypp represent the experimental yields of CS and PP separately pyrolyzed, respectively. Zcs and
Zpp represent the physicochemical properties of CS and PP separately pyrolyzed oil, respectively.
Ycal and Yex represent the calculation and experimental yield of co-pyrolysis, respectively. Zcal and
Zex represent the calculation and experimental content of physiochemical properties of co-pyrolysis
oil, respectively.

3. Results and Discussion

3.1. Co-Pyrolysis Analysis of CS and PP in Different Proportions

3.1.1. Product Yield Analysis

The yield of products pyrolyzed at 500 ◦C with different CS/PP ratios (1:0, 3:1, 1:1, 1:3, 0:1) is
shown in Figure 1. At 500 ◦C, the oil production rate of PP alone pyrolysis reached 57.1%, far higher
than that of CS pyrolysis alone, which was 19.1%. Compared with the higher oil yield, the carbon
generated by PP pyrolysis alone was only 0.2%, as PP is rich in volatiles and relatively low in fixed
carbon and ash contents. With the increase of PP content in the co-pyrolysis, it is worth noting that
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the yield of pyrolysis oil increased from 30.8% to 52.1%. In addition, compared with CS pyrolysis
alone, the addition of PP can significantly reduce the carbon yield. When the CS/PP ratio was 1:3, the
carbon yield was at a minimum of 6.8%. On the one hand, the carbon produced by PP pyrolysis alone
was lower than that of CS pyrolysis alone. On the other hand, because the H/Ceff of PP is higher than
CS, When the content of PP increases, PP acts as a hydrogen donor and combines with the unstable
free radicals generated during pyrolysis of CS, which inhibits the polymerization and cross-linking
reactions, leading to the decrease of carbon yield [24,25].
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3.1.2. Synergy Analysis of Product Yield

The experimental and calculated yields of different CS/PP ratios pyrolyzed at 500 ◦C are
summarized in Table 2. When CS:PP = 1:1 was co-pyrolysis at 500 ◦C, the calculated yields of
pyrolysis oil, carbon and gas were 38.1%, 14.9% and 47.0%, respectively. It can be seen from Table 2
that the carbon and gas yields were both lower than the theoretical values, while the liquid yields
were higher than the theoretical values. This is due to the positive synergistic effect of CS and PP
co-pyrolysis on the yield of pyrolysis oil, which increases the liquid yield. Moreover, with the increase
of PP content in the co-pyrolysis, the synergistic effect became more pronounced. Because pyrolysis
occurs through free radicals [26], CS pyrolysis generates a large number of small free radicals, while
PP pyrolysis generates relatively large free radicals. When CS and PP are co-pyrolyzed, the small free
radicals generated by CS cross-react with large free radicals generated by PP to promote the formation
of high-molecular weight organic compound oils [27], thus inhibiting the formation of low-molecular
weight gas compounds.

Table 2. Experimental and calculated yields of different CS / PP ratios at 500 ◦C co-pyrolysis.

Sample Experimental Yield Calculated Yield Synergistic Effect

CS:PP Oil (%) Char (%) Gas (%) Oil (%) Char (%) Gas (%) Oil (%) Char (%) Gas (%)

1:0 19.1 29.6 51.3 - - - - - -

3:1 30.8 21.1 48.1 28.6 22.25 49.15 2.2 −1.15 −1.05

1:1 41.8 12.6 45.6 38.1 14.9 47 3.7 −2.3 −1.4

1:3 52.1 6.3 41.6 47.6 7.55 44.85 4.5 −1.25 −3.25

0:1 57.1 0.2 42.7 - - - - - -
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3.1.3. Elemental Analysis of Pyrolysis Oil

The C, H, and O analysis of pyrolysis oil produced from different CS/PP ratios at 500 ◦C co-pyrolysis
is shown in Table 3. As can be seen from the Table 3, when CS was pyrolyzed alone, the oxygen content
in pyrolysis oil was as high as 29.6 wt %, while the deoxidation rate of bio-oil was only 40.9%. When
CS:PP = 1:1 was co-pyrolysis, the generated oils contained a large amount of C and H, while the content
of O was only 6.3 wt %, and the deoxidation rate of pyrolysis oil was up to 74.9%. From the equation of
Lloyd and Davenport [28]: HHV (MJ/kg) = –0.3578C – 1.1357H + 0.0845O − 0.0594N − 0.1119S, where
C, H, O, N and S are mass percentages of carbon, hydrogen, oxygen, nitrogen and sulfur, respectively.
The higher heating value (HHV) of the bio-oil pyrolyzed by CS alone was 28.44 MJ/kg. The low HHV
limits its widespread use as a renewable energy source. The HHV of oil from the pyrolysis of PP alone
was 46.83 KJ/kg. Therefore, the co-pyrolysis of biomass with plastic is an effective method to improve
the characteristics of bio-oil fuels. When CS:PP = 1:1 was co-pyrolysis, the HHV of pyrolysis oil was
41.78 KJ/kg, which is comparable to the HHV of diesel (42–45 KJ/kg) and gasoline (42–46 KJ/kg) [29].

Table 3. C, H and O analysis of pyrolysis oil produced from different CS / PP ratios at 500 ◦C co-pyrolysis.

Sample Pyrolysis Oil Composition (wt %) Deoxygenation 1

(%)
HHV (KJ/kg)

CS:PP C H O

1:0 63.0 7.4 29.6 40.9 28.44

3:1 76.3 10.9 12.8 65.9 38.60

1:1 82.4 11.3 6.3 74.9 41.78

1:3 84.4 13.9 1.7 86.4 45.84

0:1 85.8 14.2 0 - 46.83
1 Deoxygenation = (Ofeed − Ooil)/Ofeed [30].

3.1.4. NMR Analysis of Pyrolysis Oil

The chemical shift databases of various components in 13C and 1H NMR of pyrolysis oil are
collected [21]. Tables 4 and 5, respectively, show the contents of various functional groups and different
types of protons in pyrolysis oils during pyrolysis at 500 ◦C with different proportions of CS/PP.
Relatively more oxygen-containing functional groups were generated by the pyrolysis of CS alone.
Compared with the pyrolysis of CS, there were only aliphatic carbon (94.21%) and aromatic carbon
(5.79%) in the pyrolysis oils of PP, but no oxygen-containing functional groups. As PP was an aliphatic
hydrocarbon polymer, the content of aromatic carbon in the pyrolysis oils was very small, which was
consistent with the conclusions reached by Jin et al. [31] and Sharypov et al. [32] during the pyrolysis of
PP. Therefore, when PP was added to CS for co-pyrolysis, the aliphatic carbon content in the pyrolysis
oils was increased and oxygen-containing functional groups were reduced.

The experimental and theoretical contents of physicochemical properties in pyrolysis oils
with different ratios of CS/PP co-pyrolysis at 500 ◦C were compared. The synergistic effects of
carbon-containing functional groups and different types of proton are shown in Figures 2 and 3,
respectively. The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical
values (16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins
derived from PP and the furans derived from CS [33–38], promoting the formation of aromatic
compounds. Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system
was increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content
of H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and
carbonyl groups in co-pyrolysis oils were less than the theoretical values, which also indicated that
co-pyrolysis was indeed beneficial to the deoxidation of pyrolysis oil. It is worth noting that, in all
aromatic carbons, the aromatic C–O bonds and aromatic C–C bonds were larger than the theoretical
values, while aromatic C–H bonds were smaller than the theoretical values, which may be due to the
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recombination reaction of alkyl and hydroxyl radicals with benzene rings, thus replacing the hydrogen
atoms on the benzene rings [39,40]. The content of H–PAH was less than the theoretical value, which
further proved that the protons on the benzene ring were substituted. The aromatic methyl carbon
content was greater than the theoretical value and the aromatic methyl proton content was less than
the theoretical value, which further illustrated that alkyl substitution occurred on the benzene ring and
the protons on the substituted alkyl carbon atoms decreased. The aromatic hydroxyl proton content
was greater than the theoretical value, which further validated the combination of hydroxyl radicals
with benzene rings. Therefore, the possible collaborative reaction pathways of CS/PP co-pyrolysis are
shown in Figure 4.

Table 4. Carbon percentage of pyrolysis oil produced from different CS / PP ratios at 500 ◦C co-pyrolysis.

Functional
Group

Integration Region
(ppm) CS:PP = 1:0 CS:PP = 3:1 CS:PP = 1:1 CS:PP = 1:3 CS:PP = 0:1
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The experimental and theoretical contents of physicochemical properties in pyrolysis oils with 
different ratios of CS/PP co-pyrolysis at 500 °C were compared. The synergistic effects of carbon-
containing functional groups and different types of proton are shown in Figures 2 and 3, respectively. 
The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical values 
(16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins derived 
from PP and the furans derived from CS [33–38], promoting the formation of aromatic compounds. 
Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content of 
H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and 
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Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
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The experimental and theoretical contents of physicochemical properties in pyrolysis oils with 
different ratios of CS/PP co-pyrolysis at 500 °C were compared. The synergistic effects of carbon-
containing functional groups and different types of proton are shown in Figures 2 and 3, respectively. 
The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical values 
(16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins derived 
from PP and the furans derived from CS [33–38], promoting the formation of aromatic compounds. 
Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content of 
H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and 
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The experimental and theoretical contents of physicochemical properties in pyrolysis oils with 
different ratios of CS/PP co-pyrolysis at 500 °C were compared. The synergistic effects of carbon-
containing functional groups and different types of proton are shown in Figures 2 and 3, respectively. 
The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical values 
(16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins derived 
from PP and the furans derived from CS [33–38], promoting the formation of aromatic compounds. 
Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content of 
H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and 
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The experimental and theoretical contents of physicochemical properties in pyrolysis oils with 
different ratios of CS/PP co-pyrolysis at 500 °C were compared. The synergistic effects of carbon-
containing functional groups and different types of proton are shown in Figures 2 and 3, respectively. 
The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical values 
(16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins derived 
from PP and the furans derived from CS [33–38], promoting the formation of aromatic compounds. 
Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content of 
H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and 
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The contents of aromatic carbon (16.60%, 11.19%, 8.4%) were greater than the theoretical values 
(16.17%, 10.98%, 7.86%), which may be due to the Diels–Alder reaction between the olefins derived 
from PP and the furans derived from CS [33–38], promoting the formation of aromatic compounds. 
Due to the addition of PP, the effective hydrogen-carbon ratio (H/Ceff ratio) of the system was 
increased, which reduced generation of polycyclic aromatic hydrocarbons (PAHs), so the content of 
H-PAH was far less than the theoretical value. In addition, the contents of aliphatic C–O bonds and 
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Table 5. Hydrogen percentage of pyrolysis oil produced from different CS / PP ratios at 500 ◦C co-pyrolysis.

Type of Protons Ranges
(ppm)

Hydrogen Percentages

CS:PP = 1:0 CS:PP = 3:1 CS:PP = 1:1 CS:PP = 1:3 CS:PP = 0:1

–CHO, –COOH 9.6–10.0 0.16 0.05 0.03 0.01 0
H-PAH 7.5–9.0 3.90 0.48 0.26 0.10 0.09

H–single ring aromatic 6.0–7.5 21.84 2.90 0.74 0.69 0.43
Aromatic–OH, water ~4.0–5.0 6.21 5.55 4.17 3.07 0

CH3–O–aromatic, water ~3.8 5.17 0.48 0.32 0.11 0
CH3–O–aliphatic ~3.3 11.46 3.27 1.61 0.48 0

CH3–aromatic ~2.2 7.35 2.67 2.29 1.83 1.60
CH2/3–aliphatic 0.0–2.0 43.92 84.60 90.58 93.71 97.88
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benzene ring and the protons on the substituted alkyl carbon atoms decreased. The aromatic 
hydroxyl proton content was greater than the theoretical value, which further validated the 
combination of hydroxyl radicals with benzene rings. Therefore, the possible collaborative reaction 
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3.2. Co-Pyrolysis Analysis of CS and PP at Different Temperatures

3.2.1. Product Yield Analysis

The co-pyrolysis of CS:PP = 1:1 at different temperatures (450 ◦C, 500 ◦C, 550 ◦C, 600 ◦C, 650 ◦C) was
performed, and the yields of gas, carbon and oil are shown in Figure 5. As shown in Figure 5, the yield of
pyrolysis oil first increased and then decreased with the increase of temperature, and the optimal yield
was 44.8% at 550 ◦C. This is because the increase of temperature will promote the secondary pyrolysis
reaction, and the liquid yield would decrease with the further increase of temperature. Although the
carbon yield decreased from 22.4% at 450 ◦C to 11.2% at 650 ◦C, it is worth noting that there was little
significant change from 550 ◦C (12.0%) to 650 ◦C (11.2%). With the carbon yield almost unchanged, the
gas yield increased sharply from 43.2% at 550 ◦C to 52.7% at 650 ◦C, which is due to the conversion
of steam into smaller organic molecules or other non-condensable gaseous products by secondary
cracking [36]. Considering the maximum yield of co-pyrolysis oil obtained at 550 ◦C, the following
discussions of the impact of other conditions on co-pyrolysis are employed 550 ◦C.
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3.2.2. NMR Analysis of Pyrolysis Oil

In addition to the product yield, the reaction temperature also plays an important role in the
distribution of chemical components in pyrolysis oils. The percentages of different carbon-containing
functional groups of pyrolysis oil produced by CS:PP = 1:1 co-pyrolysis at different temperatures are
shown in Figure 6. With the increase of temperature, the aromatic carbon first increased and then
decreased, reaching the maximum content of 16.56% at 600 ◦C. The aromatic C–C bonds and aromatic
C–H bonds have the same trends as the aromatic carbon with the temperature change, reaching the
maximum values of 6.44% and 7.91% at 600 ◦C, respectively. The aromatic C–O bonds decreased with
the increase of temperature and reached a minimum value of 1.10% at 650 ◦C. Different from aromatic
carbon, the oxygen-containing functional groups decreased first and then increased with temperature,
and reached the minimum content of 4.21% at 600 ◦C, which indicated that 600 ◦C was conducive
to the aromatization and deoxidation reaction in the co-pyrolysis process. In addition, the aliphatic
C–C bonds and the aromatic methyl groups first increased and then decreased with the increase of
temperature, reaching the maximum contents of 84.70% and 28.25% at 500 ◦C and 550 ◦C, respectively.
At high temperature, the linear hydrocarbons from PP form alkenes through end-chain β-breaking
and hydrogen abstraction reactions, and then form benzene and its derivatives through a cyclization
reaction, thus reducing the formation of aliphatic hydrocarbons [41–43].
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3.3. Co-Pyrolysis Analysis of CS and PP with Different Catalyst Ratios

3.3.1. Product Yield Analysis

The yields of co-pyrolysis at different feedstock / catalyst ratios (1:0, 1:2, 1:3, 1:4, 1:5) at 550 ◦C with
CS:PP = 1:1 is shown in Figure 7. As shown in Figure 7, the addition of catalyst significantly affected
the distribution of gas, carbon and oil during the co-pyrolysis of CS and PP. With the increase of catalyst
amount, the carbon yield increased to 16.7%; the oil yield decreased to 22.5%. Further, the gas yield
increased first and then decreased, and reached a maximum of 61.2% at feedstock:catalyst = 1:4. As the
residence time of the pyrolysis steam through the catalytic micropores is prolonged with the increase
of the catalyst, the steam generated by the co-pyrolysis of CS and PP undergoes secondary cracking
through excessive HZSM-5 zeolite, which results in more condensable oils being converted into gas.
In addition, a higher catalytic amount facilitates the generation of PAHs, mainly naphthalene [44],
which are the precursors of coke, leading to an increase in carbon yield as the catalyst amount increases.
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3.3.2. NMR Analysis of Pyrolysis Oil

In addition to the product yield, the influence of catalyst on the chemical composition of pyrolysis
oil is shown in Figure 8. When the ratio of catalyst to feedstock was lower than 3:1, HZSM-5 did not
significantly improve the aromatic carbon in co-pyrolysis oils, which may be due to the presence of
CS leading to catalyst deactivation, resulting in the reduction of the aromatic carbon conversion rate.
With the further increase in the amount of catalyst, the aromatic C–C bonds and aromatic C–H bonds
increased significantly, which may be the high catalyst amount promoted the Diels-Alder reaction
during the co-pyrolysis process [33]. In addition, the addition of HZSM-5 promoted the deoxidation
reaction in the co-pyrolysis process. When catalyst:feedstock = 2:1, the carbonyl content was 0. When
catalyst:feedstock = 3:1, the content of levoglucosan was 0. When catalyst:feedstock = 5:1, the aliphatic
C-O bonds and methoxyl content reached their minimum values of 0.44% and 0.03%, respectively. It is
worth noting that the presence of HZSM-5 significantly reduced the content of aromatic methyl carbon
in pyrolysis oils, promoting the dealkylation reaction during the co-pyrolysis process.Polymers 2019, 11, x FOR PEER REVIEW 11 of 15 
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3.4. Co-Pyrolysis Analysis of CS and PP in Different Atmospheres

3.4.1. Product Yield Analysis

The co-pyrolysis of CS:PP = 1:1 under different atmospheres (N2, CO2) at 550 ◦C was conducted.
The yields of gas, carbon and oil are shown in Figure 9. The production rates of oil, gas and carbon
were 44.8%, 43.2% and 12.0% under N2 atmosphere, respectively. Obviously, the co-pyrolysis yield has
obvious difference under different atmosphere. Compared with N2 atmosphere, the oil and carbon
yields in CO2 atmosphere decreased by 5.6% and 0.4% respectively, while the gas yield increased by
6.0%. The slight reduction in carbon yield is due to the reaction of carbon with CO2, which is limited
by temperature. In a CO2 atmosphere below 700 ◦C, there is almost no significant difference in the
weight loss of carbon [23]. The decrease of oil yield is due to the CO2 atmosphere promoting the
further decomposition of oil, which in turn forms small molecules of gaseous compounds, leading to
the increase of gas yield in the pyrolysis system.
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3.4.2. NMR Analysis of Pyrolysis Oil

In addition to the product yield, the reaction atmosphere also significantly affects the distribution
of chemical components in pyrolysis oils. The percentage of carbon-containing functional groups
of oil produced by co-pyrolysis in different reaction atmospheres is shown in Figure 10. Compared
with N2 atmosphere, the content of all oxygen-containing functional groups increased in the CO2

reaction atmosphere, which may be due to the participation of CO2 in the reaction of pyrolysis oil.
In addition, the contents of Aromatic C–C bonds and Aromatic C–H bonds reduced to 2.41% and
4.65%, respectively, and the total aromatic content reduced by 2.1%. In summary, the influence of
reaction atmosphere on the co-pyrolysis is obvious.
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4. Conclusions

The effects of mixing ratio of CS and PP, pyrolysis temperature, addition amount of catalyst
(HZSM-5) and reaction atmosphere (N2 and CO2) on the properties of pyrolysis products were studied.
The study showed that due to the interaction between CS and PP, the co-pyrolysis not only had a
promoting effect on the production of oil, but also influenced a great change in properties. Compared
with CS pyrolysis alone, the co-pyrolysis oils had lower oxygen content and higher HHV, which are
more conducive to their future application in industry. In addition, with the increase of pyrolysis
temperature, 550 ◦C was beneficial for maximizing yield and 600 ◦C was favorable for aromatization
and deoxygenation during co-pyrolysis. Although the addition of catalyst (HZSM-5) reduced the
production of co-pyrolysis oil, it improved the quality of oil and promoted the generation of aromatic
hydrocarbons. Compared to N2 atmosphere, CO2 had a certain oxidation effect on the components
of pyrolysis oil, which reduced the production of co-pyrolysis oil and promoted the increase of
oxygen-containing aromatics in co-pyrolysis oils. In terms of oil yield and degree of aromatization, the
optimal co-pyrolysis condition of CS:PP = 1:1 was 550 ◦C under the N2 atmosphere with the catalyst
addition of 1:4.

Author Contributions: F.W. and H.B. conceived and designed the experiment; F.W. conducted all the major
experiments and wrote the manuscript; Y.Y. and H.J. did some NMR tests and helped with the manuscript
preparation; G.H. provided the NMR facility in Qingdao University to finish some additional tests from China;
R.W. provided very valuable input for the conceptualization of the study, and helped write the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation of China, grant number 51706044, the Natural
Science Foundation of the Jiangsu of China, grant number BK20170666, and the Recruitment Program for Young
Professionals in China. The APC was funded by Southeast University.

Acknowledgments: The authors would like to acknowledge the financial support from the National Science
Foundation of China (51706044), the Natural Science Foundation of the Jiangsu of China (BK20170666), and the
Recruitment Program for Young Professionals in China.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abnisa, F.; Wan Daud, W.M.A. A review on co-pyrolysis of biomass: An optional technique to obtain a
high-grade pyrolysis oil. Energy Convers. Manag. 2014, 87, 71–85. [CrossRef]

http://dx.doi.org/10.1016/j.enconman.2014.07.007


Polymers 2020, 12, 973 13 of 14

2. Ahtikoski, A.; Heikkilä, J.; Alenius, V.; Siren, M. Economic viability of utilizing biomass energy from young
stands—The case of Finland. Biomass Bioenergy 2008, 32, 988–996. [CrossRef]
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