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Abstract: Mechanical and strain sensing capabilities of carbon nanotube (CNT) reinforced composites
manufactured by digital light processing (DLP) 3D printing technology have been studied. Both CNT
content and a post-curing treatment effects have been analyzed. It has been observed that post-curing
treatment has a significant influence on mechanical properties, with an increase of Young’s modulus
and glass transition temperature whereas their effect in electrical properties is not so important.
Furthermore, the strain sensing tests show a linear response of electrical resistance with applied
strain, with higher values of sensitivity when decreasing CNT content due to a higher interparticle
distance. Moreover, the electrical sensitivity of bending tests is significantly lower than in tensile ones
due to the compression subjected face effect. Therefore, the good gauge factor values (around 2–3)
and the high linear response proves the applicability of the proposed nanocomposites in structural
health monitoring applications.

Keywords: additive manufacturing; 3D printing; digital light processing; DLP; structural health
monitoring; thermoset; nanocomposites; carbon nanotubes; CNTs

1. Introduction

In recent years, 3D printing is positioning as a competitive manufacturing technology with respect
to traditional manufacturing technologies [1]. The main reasons that make this possible are, among
others, the massive customization capability of the final product, as well as the chance of making
small batch sizes without increasing costs derived from the manufacturing process. Moreover, it
allows manufacturing components with almost total freedom in the design, thus being able to obtain
high complexity parts, which are impossible to perform using any of the traditional manufacturing
technologies. In addition, it makes possible to shorten supply chain links and lead times, reducing
assembly, storage, and transportation costs [2–5].

However, 3D printing technologies are fully developing, so there is still a wide field for
improvement in both the production processes and the materials that can be used [6]. In this
context, developing materials with new functionalities or enhanced properties has acquired significant
relevance [7]. In particular, carbon nanotube (CNT) doped resins has been the subject of numerous
studies in the last decades due to their great mechanical, thermal, and electrical properties [8–10]. Their
addition in low contents into an insulator resin allows the formation of electrical percolating networks
inside the material, leading to an increase in electrical conductivity of the material of several orders of
magnitude [11].
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One of the main applications of these materials is structural health monitoring (SHM), which
consists in a real-time evaluation of the structure integrity, being able to detect, locate, and quantify
both strain and damage, and even make a remaining useful life prognosis [12]. In this context, CNT
doped nanocomposites have a great potential and applicability. This is explained by the intrinsic
piezoresistivity of CNTs [13,14], the contact conductive mechanism between CNTs and the tunneling
effect that takes place between adjacent nanotubes. The combination of these factors leads to an
enhanced strain sensitivity, much higher than those achieved for conventional metallic gauges [15–19].

There are several studies of materials manufactured by 3D printing with CNTs as conductive fillers.
Some specific examples are described below. Using the fused deposition modeling (FDM) technique,
Kürçad et al., developed 3D printed parts with enhanced mechanical and electrical properties [20],
Josef F. Christ et al., studied bidirectional and stretchable piezoresistive sensors [21], Kyuyoung et
al., manufactured multiaxial force sensors [22] and Dong Xiang et al., obtained highly elastic strain
sensors with an outstanding strain-sensing performance [23]. Regarding direct write (DW) 3D printing
technique, Kambiz Chizari et al., developed highly conductive nanocomposites for electromagnetic
interference shielding applications [24], Shin et al., researched about bioactive 3D printed flexible
electronics [25] and Farahani et al., explored the strain sensing capabilities of CNT doped composites
combining the direct write technique with UV curable formulations [26]. Besides that, Gustavo
Gonzalez et al., settled the bases of manufacturing CNT doped materials with a commercial digital
light processing (DLP) 3D printer [27]. Using this manufacturing technique, Tiller et al., developed a
piezoelectric microphone combining different materials [28] and Mu et al., explored some applications
like hollow capacitive sensors and smart structures with shape memory effects [29]. Despite this, there
is still a wide field of research about photocurable inks for SHM purposes.

The present study deals with the development of a conductive ink for DLP 3D printing technology
with self-sensing capabilities based on a commercial photocurable resin doped with CNTs. First, CNT
content was varied in order to analyze its influence on electrical properties of nanocomposites. In this
regard, the electrical percolation threshold has been achieved. Then, strain-sensing capabilities have
been deeply explored at tensile and bending load conditions, in order to better determine the influence
of load state and post-curing treatment on the sensitivity of these materials, which allows selecting the
best combination of mechanical and electrical properties as a function of the desired application.

2. Materials and Methods

Different dispersions were prepared with different CNT contents (0.030, 0.050, 0.075, 0.100, and
0.150 wt %) in order to obtain the electrical percolation threshold of the nanocomposite. Moreover,
strain sensitivity and mechanical properties were measured by tensile and three-point bending tests.

In addition, TOM and FEG-SEM characterization was performed to study the dispersion state
as well as its stability. Finally, DSC tests were carried out to know the curing degree of the
manufactured nanocomposites.

2.1. Materials

CNTs used in this study were the NC7000 supplied by Nanocyl (Sambreville, Belgium). These
multi-walled carbon nanotubes (MWCNTs) have an average diameter of 9.5 nm and a length up to
1.5 µm. They also present high UV resistance, which is important to prevent properties loss during
manufacturing process.

High Temp Resin V1, supplied by Formlabs (Somerville, MA, USA), was used as matrix. It is an
acrylate-based UV-curable resin designed to be used in high temperature applications since it performs
a heat deflection temperature under 0.45 MPa of 298 ◦C.

2.2. Manufacturing of the Nanocomposite Specimens

First, CNTs were dispersed in the resin by three roll milling technique (Exakt 80E by Exakt
Technologies, Oklahoma City, OK, USA), performing a seven cycles process, optimized in previous
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studies [30]. Table 1 shows the parameters for each cycle, where the speed of the last roll is kept
constant at 250 r.p.m.

Table 1. Gap distance between rolls during calendering process.

Gap 1 (µm) Gap 2 (µm) Number of Cycles

120 40 1
60 20 1
45 15 1
15 5 4

Once the dispersion is completed, the mixture was added to the resin vat of the 3D printer used
(B9Creator by B9Creations, Rapid City, SD, USA) for the manufacturing of the different test specimens.
The printing technique is based on digital light processing (DLP) technology, in which the light source
of a digital projector is focused on the bottom surface of the resin vat with the desired geometrical shape,
photocuring the first layer of the specimen. This process is repeated layer by layer until the complete
part is finished. The most relevant printing parameters were 30 µm of layer thickness and 5.12 s of
exposure time per layer, except for those specimens with a 0.150 wt % CNTs, where the exposure time
was increased to 6.84 s. This is due to the higher CNT content that induces a more prevalent UV light
shielding effect caused by CNTs, reducing UV radiation exposure of the photoinitiator and leading
thus to an underexposure condition. On the other hand, overexposure conditions were observed for
specimens with CNT contents below 0.100 wt % and longer UV light exposure times than 5.12 s.

Six specimens for each CNT content (0.030, 0.050, 0.075, 0.100, and 0.150 wt %) and test type
(electrical conductivity, tensile, and three-point bending tests) were 3D printed. Dimensions were
established according to the ASTM D257, ASTM D638, and ASTM D790 standards respectively.

Finally, half of the specimens of each manufacturing condition underwent an UV post-curing
treatment during 30 min in order to study the influence of this post-curing stage on the strain sensing
capability and the mechanical properties. This stage was carried out in a B9A-LCB-020 oven by
B9C reations.

Figure 1 shows some examples of 3D printed parts with a 0.100 wt % CNT. First, manufactured
tensile and three-point bending specimens are shown in Figure 1a while Figure 1b shows some parts
with complex geometries, which demonstrates the cabability of printing conductive complex parts
with this material and manufacturing technique.
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specimens and (b) complex geometry parts.
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2.3. Characterization

2.3.1. TOM and FEG-SEM

Nanoparticle dispersion of uncured CNT-acrylate mixture, containing 0.100 wt % CNTs, was
analysed by using a Leica transmission optical microscope (TOM) equipped with a Nikon 990 camera
(Tokyo, Japan). In this regard, several samples were taken at different times after dispersion procedure
in order to get a deeper knowledge about the stability of the dispersion. Moreover, an analysis of
fracture surface under cryogenic conditions was carried out to better characterize the CNT dispersion
in the final nanocomposite. These fracture surfaces were observed by a field emission gun SEM
(FEG-SEM) using a Nova NanoSEM 230 apparatus from Philips (Amsterdam, Netherlands).

2.3.2. DSC

Non-isothermal Differential Scanning Calorimetry (DSC) tests were carried out with a
Mettler-Toledo 882e (Columbus City, OH, USA) device from 0 to 300 ◦C at 10 ◦C/min. Glass
transition temperature (Tg) and enthalpy (∆H) were evaluated in order to compare the curing degree
achieved between the different specimens. Despite the used resin is an UV curable one, it is possible to
compare the curing degree between specimens since it also presents thermal post-curing capabilities.
Thus, two scans were performed to ensure that all the thermal curing enthalpy was recorded during
the first scan. Figure 2 shows an example of DSC test including first and second scan. In the first scan,
Tg and normalized ∆H per gram of specimen are obtained. In addition, the second scan confirms that
the thermal curing process was completed in the first scan and then all thermal ∆H was recorded.Polymers 2020, 12, x FOR PEER REVIEW 5 of 16 
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Figure 2. Example of DSC test including first and second scan.

DSC samples were taken from the same corner of the 3D printed three-point bending test specimens
of each manufacturing condition in order to obtain representative results, since the curing degree of
the specimens may vary depending on the specimen type and zone.

2.3.3. Electrical Conductivity

DC volume conductivity tests were performed in 10 × 10 × 1 mm3 samples to characterize their
electrical properties accordingly to ASTM D257 standard. It was determined by the slope of I–V curve
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with a voltage window of 0–50 V using a Source Measurement Unit (SMU, Keithley Instrument Inc.
mod. 2410, Cleveland, OH, USA).

2.4. Electromechanical Tests

Tensile and three-point bending tests were carried out in order to determine the electromechanical
behavior of the manufactured materials. These tests were carried out in a Zwick Z100 (Ulm, Germany)
universal tensile machine accordingly to standards ASTM D638 and D790, respectively. Tensile
specimens were tested at a rate of 5 mm/min while bending tests were first conducted at 1 mm/min up
to 0.7% strain to determine the flexural modulus and then at 10 mm/min up to failure to obtain the
flexural strength. Simultaneously to mechanical tests, electrical characterization was done by using an
Agilent 34410 A module (Santa Clara, CA, USA). It was conducted by means of electrical resistance
measurements between two electrodes made of copper wire and silver ink in order to ensure a good
electrical contact with sample surface. A schematic of electrode disposition is shown in Figure 3. It is
important to highlight that, for the tensile test specimens, the electrodes are positioned all around the
perimeter of the cross section while for three-point bending ones, the electrodes are positioned just on
the tensile face.
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Here, the electrical sensitivity to the applied strain, or gauge factor, is estimated as the change
of the normalized resistance (∆R/R0) divided by the applied strain (ε). The electrical sensitivity was
calculated at low strain levels, up to 0.01 mm/mm.

3. Results and Discussion

3.1. Dispersion State Analysis

Figure 4a–c show the changes in the dispersion state as a function of time after dispersion was
performed and how it affects the electrical conductivity of manufactured nanocomposites. Individual
CNT agglomerates and larger CNT aggregates can be distinguished which refer to the aggregation
of multiple individual CNT agglomerates. TOM micrographs in Figure 4a evince the worsening
of dispersion state from a uniform CNT distribution to a re-aggregated one along time, which are
quantified in both Figure 4b,c. Firstly, Figure 4b reveals that the fractional area occupied by CNTs
decreases about a 57% over time while larger CNT aggregates grow in size more than a 500%. It
means that there is a CNT re-agglomeration over time, as can be also distinguished in the histogram
of Figure 4c. All these phenomena are closely linked because of the van der Waals interacting forces
affecting CNTs that induce a re-agglomeration effect for both individual CNTs and aggregates. This
could consequently affect the electrical and mechanical properties, among others. In this case, by
analyzing the changes in electrical conductivity, a decrease of almost one order of magnitude was
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observed for samples taken 20 h after dispersion was performed (Figure 4b). It is explained since the
more aggregated the CNTs are, the more difficult the electrical current flow through the composite
is, as the CNTs tend to cluster into isolated colonies, making the electrical resistance by tunneling
effect among the different colonies much higher. Finally, electrical conductivity tends to stabilize from
21 h onwards.Polymers 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 4. Changes on the dispersion state as a function of time after dispersion process was performed
and as a function of CNT content. (a) TOM micrographs of dispersion containing 0.100 wt % CNT at 0,
8, 21, and 30 h after dispersion was carried out; (b) fractional area occupied by CNTs, average larger
aggregate size and their influence in electrical conductivity as a function of time since after dispersion;
(c) individual agglomerate size as a function of time after dispersion; (d) TOM micrographs at 0 h after
dispersion as a function of CNT content; and (e) individual agglomerate size at 0 h after dispersion as a
function of CNT content.

These results demonstrate the importance of additive manufacturing with less time delay since the
nanoparticles are dispersed in the resin, to prevent loss of properties in the resulting nanocomposite as
this time delay induces a re-agglomeration of nanoparticles which would lead to a decrease of electrical
conductivity as well as the presence of higher aggregates that could affect mechanical properties.
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Moreover, the effect of CNT content can be observed in the TOM images of Figure 4d. It can be
noticed that the higher the amount of CNTs the higher the presence of aggregates in the mixture. This
can be confirmed by an analysis of the aggregate size (Figure 4e) where the correlation between the
larger aggregates and the smaller ones increases with CNT content due to a higher tendency of the
CNTs to be agglomerated.

Regarding 3D printed composites, Figure 5 shows FEG-SEM micrographs of a specimen with
0.100 wt % CNTs. At low magnifications, Figure 5a, a homogeneous distribution of CNT can be seen.
Despite this, it can be distinguished that there are still some aggregates of nanoparticles, since the
calendering process cannot completely disperse the CNT in the resin, being less effective than in
other systems with higher viscosity [31]. However, at higher magnifications, Figure 5b an adequate
distribution of nanoreinforcement is observed. In addition, CNTs appear to be well integrated in the
matrix, which is important to ensure adequate mechanical behavior [32].
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3.2. Electrical Conductivity

Figure 6 shows the electrical conductivities determined in 3D printed specimens for the different
tested conditions. Here, electrical percolation threshold was determined as the critical CNT content
where the material becomes electrically conductive, which corresponds to the moment where a sudden
increase of electrical conductivity was observed. In this case, it is found at 0.050 wt %, which is in good
agreement to that found in other studies with similar CNTs [31].

For contents above percolation threshold, up to 0.100 wt %, an increase of electrical conductivity
was observed as expected due to a higher volume fraction of nanoparticles. However, conductivity
decreases at a content of 0.150 wt %. The reason of the detriment on electrical properties was
found in the role of CNT agglomerates inside the material. Up to CNT contents below 0.100 wt %,
a relatively good CNT dispersion was found, but, at higher contents, a supersaturation of CNTs in the
percolation network takes place, which implies a higher tendency to form aggregates. These aggregates
create preferential electrical pathways but also regions without enough nanoreinforcements—called
non-percolated regions—that do not form effective conductive pathways.
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More specifically, an analysis of CNT aggregation state for the different conditions is summarized
in Figure 7a. Here, the role of agglomerated and dispersed areas is highlighted. It was based on a
previously proposed analytical model [31], whose basic principle is shown in the schematic of Figure 7b.
The material can be divided in different regions accordingly to the aggregation state of CNTs within
the network, where ξa, ξd, and ξnon correspond to the fraction of agglomerates, well dispersed and
non-percolated regions, respectively. Thus, electrical conductivity can be calculated by the equivalent
parallel circuit with the following Formula (1)

1
R

= ξa·
1

Ra
+ ξd·

1
Rd

+ ξnon·
1

R∞︸    ︷︷    ︸
∼0

→ R =
RaRd

(ξdRa + ξaRd)
(1)

In this case, and knowing the CNT geometry, it is possible to estimate the values of ξa, ξd, and
ξnon for each nanoparticle content as well as to calculate the correlation between aggregated and well
dispersed areas, also called aggregate ratio ϕ = ξa/ξd. It can be observed that the higher CNT content
the higher the aggregate ratio, which means a poor dispersion of nanoparticles. When analyzing in
detail, it is observed that the values of aggregate ratio are much higher than those found for similar
contents in the previous study. This is explained because of the lower viscosity of the resin used in this
research in comparison to that used in the previous study (600 and 5600 mPa·s, respectively). This
leads to a lower effectiveness of the three roll milling process due to a reduction of the shear forces
involved during the dispersion procedure, also explaining the lower conductivity values obtained
in comparison to other studies [31]. Furthermore, it can be also observed that the aggregate ratio
increases with CNT content. It indicates that the correlation of larger aggregates to well-dispersed
areas is increasing, as previously observed by the analysis of aggregate size of Figure 4e,f with an
increase of larger aggregates with CNT content. It is important to point out that this model only gives
information about the ratio of aggregate to well-dispersed areas but does not give information about
the values of each individual fraction.
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study [31] and (b) schematics of block disposition for the electrical model indicating the aggregated,
well-dispersed and non-percolated regions [31] (Reproduced with permission from X.F. Sánchez-Romate
et al., Composites Science and Technology; published by Elsevier, 2019).

However, the percolation threshold obtained in this study is lower than found in other studies
based on CNT doped resins for DLP 3D printing technology, which suggests a better dispersion
of CNTs than those obtained in these studies with similar [27] and even higher aspect ratios of the
nanofillers [29].

3.3. Mechanical Properties

Mechanical properties were measured by tensile and three-point bending tests. Figure 8 shows
Young’s modulus of 3D printed specimens with and without UV post-curing treatment as a function
of CNT content. UV post-cured specimens present a higher stiffness in both tensile (Figure 8a), and
three-point bending tests (Figure 8b), compared to the not post-cured ones. This is because of the
higher crosslinking degree reached during post-curing treatment, limiting polymeric chains movement
leading, thus, to a strengthening of the material [33]. However, the effect of the CNT content is quite
more complex. On the one hand, there is an increase in tensile modulus at lower CNT contents due to the
effective reinforcement of the nanotubes. On the other hand, there is a reduction of the Young’s modulus
at higher CNT contents for both tensile and three-point bending tests, which could be explained by
the higher UV light shielding effect caused by CNTs. They are black-colored, so they absorb part of
the UV radiation from the 3D printer projector, blocking UV absorption by the photoinitiator, which
leads to a lower curing degree and therefore to worse mechanical properties. This effect has already
been observed by other authors and it can be sorted out by increasing exposure time per layer during
the printing process, increasing the UV light intensity, adding higher photoinitiator concentrations or
optimizing the post-curing stage [27,29,34]. Moreover, a higher content of nanoparticles could hamper
the mobility of the chains during the photocuring process, leading to a lower curing degree and then
to a worsening of mechanical properties [35].
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Both the effect of the UV post-curing treatment and the addition of CNTs on the mechanical
properties above mentioned can be deeply explained through the performed DSC characterization,
whose results are shown in Figure 9. Here, the post-cured specimens present a higher Tg than the
not post-cured ones. This is due to the higher crosslinking degree achieved during UV post-curing
treatment, improving the mechanical performance. Furthermore, the changes observed in Tg are
directly related to ∆H measurements. The lower the ∆H, the higher the curing degree since it releases
less energy correlated to the curing of the specimen during the DSC test.Polymers 2020, 12, x FOR PEER REVIEW 12 of 16 
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Figure 9. Glass transition temperature (Tg) and cure enthalpy (∆H) measured by DSC of 3D printed
composites as a function of CNT content.

Besides that, a decrease of the Tg when the CNT content increases is observed for both post-cured
and not post-cured specimens. This is again explained by the lower curing degree achieved when
increasing the CNT content because of the prevalence of the UV shielding effect, leading to a detriment
of mechanical properties. This can be also confirmed by ∆H measurements, which raises with the
increase in the content of CNTs. In addition, the changes in the Tg and ∆H, correlated to the curing
degree, with the CNT content is more pronounced for the post-cured specimens. The UV post-curing
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treatment is performed once the specimen is printed so that the whole specimen is irradiated at once in
the UV oven. Because of the UV shielding effect caused by CNTs, this post-curing treatment is much
more effective on the outer regions of the specimen since the inner regions did not receive the same UV
light intensity. Therefore, the post-cured specimens without CNTs show a much higher Tg than the
specimens containing nanoreinforcements. This is because the neat resin specimen is clear-colored,
without carbon nanoparticles absorbing part of the UV light from the UV oven so that both the outer
and the inner regions can achieve practically the same crosslinking degree. Conversely, the Tg and
∆H of the as-fabricated specimens without post-curing treatment has not undergone such significant
changes since the only UV light they have received comes from the 3D printer and it is emitted layer
by layer, being that the UV shielding effect less pronounced.

Specimens containing 0.150 wt % CNTs has not been represented in both Figures 8 and 9.
The comparison of the mechanical properties and curing degree between specimens containing 0.150
wt % CNTs with respect to the other specimens is not particularly meaningful since they present
different exposure times per layer, which changes their curing conditions. In addition, the significantly
higher shield effect of the CNTs at these conditions did not make a complete curing possible, even with
the UV-post curing and the samples presenting a very high distortion.

3.4. Structural Health Monitoring

Figure 10a shows an example of tensile electromechanical behavior for post and non-post cured
specimens with 0.100 wt % CNT. As a first sight, the electromechanical properties are not significantly
different between the post and not-postcured specimens. In fact, the variation of electrical resistance
with applied strain is very similar, showing in both cases a mainly linear behavior. This indicates
that the CNT network is not prevalently affected by the post-curing treatment as expected, since the
gelation process takes places at the same time in both samples. Moreover, the linear behavior indicates
a prevalence of in contact mechanisms over tunnelling effect ones, which changes in an exponential
way with applied strain [36]. Bending tests (Figure 10b) show a similar electromechanical behavior
with an increase of electrical resistance with strain, given by the increase of tunnelling distance between
adjacent CNTs in the tensile-subjected face of the flexure specimen.
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Figure 10. Examples of electromechanical tests comparing specimens with and without post-curing
treatment in (a) tensile tests for specimens containing 0.100 wt % CNT and (b) three-point bending
tests for specimens containing 0.050 wt % CNT.

When comparing the strain sensitivity, defined by the change of the normalized resistance
with applied strain, and summarized in Figure 11a, it is observed that there are slight differences
attending the CNT content. On the one side, the highest values of sensitivity are obtained at the
lowest nanoparticle content. This is explained by the previously commented prevalence of tunnelling
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mechanisms in the well-dispersed areas. This induces an exponential change of electrical properties
and, thus, a higher variation of electrical resistance with mechanical strain. When increasing the
CNT content, there is an increasing saturation of the CNT network, leading to a predominance of
agglomerated areas. Here, the main conducting mechanisms are given by the electrical contact between
adjacent CNTs, and the electrical resistance due to this effect is supposed to be invariable with applied
strain. These statements are in good agreement with other studies [31,37,38] as well as with the
calculated values of the aggregate ratio, previously shown in Figure 7a, indicating this prevalence of
contact mechanisms through the aggregated areas when increasing the CNT content.
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Figure 11. (a) Strain sensitivity as a function of CNT content for tensile and three-point bending tests,
(b) schematic of CNTs distribution during tensile test, and (c) schematic of CNTs distribution during
tensile test three-point bending test.

In addition, there is a decrease of electrical sensitivity when comparing tensile and bending
tests. This is explained by the influence of compression-subjected face of the flexure specimen on
the whole electrical resistance of the specimen, as observed in the schematics of Figure 11c. This
compression-subjected face acts in an opposite way than the increasing electrical resistance due to
tensile effects in the opposite face, leading thus to a reduction of sensitivity when comparing to
pure-tensile loading state, shown in Figure 11b, as observed in other studies [39].

Therefore, the electromechanical results are robust and allows to better understand the role of the
dispersion and main conducting mechanisms inside these materials.

4. Conclusions

The electrical and mechanical behavior of 3D printed CNT doped nanocomposites has been
investigated for different CNT contents. In addition, the effect of an UV post-curing treatment has
been also explored.

First, the dispersion state and stability were characterized by TOM and FEG-SEM, evincing the
importance of 3D printing the doped resins within the first hours after the dispersion process was
performed. A homogeneous CNT distribution was obtained for the specimens manufactured within
the first hours after the dispersion process by calendering was completed. However, the low viscosity
of the mixture favors the re-agglomeration effect between individual CNTs and aggregates. In addition,
the proper CNT distribution achieved, allows obtaining a lower electrical percolation threshold, around
0.050 wt % CNTs, than the values compared to other studies with similar manufacturing techniques
and materials.

Regarding mechanical properties, the UV post-curing treatment significantly increased material
stiffness, determined by tensile and three-point bending tests due to the rise in the crosslinking degree
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of the polymeric chains. On the other hand, an increase of CNT content induces a decrease of Young’s
modulus. This is explained because of the higher UV shielding effect, which leads to lower curing
degrees and thus to worse mechanical properties.

Nevertheless, the best results in terms of strain sensitivity were also found for the lowest CNT
contents since they are closer to the percolation threshold, with the tunnelling effect being the most
dominant mechanism of electrical charge transport. Moreover, strain sensitivity was found to be
significantly lower for three-point bending tests than for tensile tests as expected because of the effect
of the compression-subjected face on the whole electrical resistance of the specimen.

Therefore, the results prove the excellent capabilities of CNT reinforced DLP-manufactured
nanocomposites in strain-sensing applications and shed light into how an UV post-curing treatment
and CNT content affects the electromechanical properties of these materials.
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