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Abstract: This study focuses on preparation and valuation of the biodegradable, native, and modified
gelatin film as screen-printing substrates. Modified gelatin film was prepared by crosslinking
with various crosslinking agents and the electrode array was designed by screen-printing.
It was observed that the swelling ratio of C-2, crosslinked with glutaraldehyde and EDC/NHS
(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) was found to be lower
(3.98%) than that of C-1 (crosslinked with only glutaraldehyde) (8.77%) and C-0 (without crosslinking)
(28.15%). The obtained results indicate that the swelling ratios of both C-1 and C-2 were found to be
lower than that of C-0 (control one without crosslinking). The Young’s modulus for C-1 and C-2 was
found to be 8.55 ± 0.57 and 23.72 ± 2.04 kPa, respectively. Hence, it was conveyed that the mechanical
strength of C-2 was found to be two times higher than that of C-l, suggesting that the mechanical
strength was enhanced upon dual crosslinking in this study also. The adhesion study indicates that
silver ink adhesion on the gelation surface is better than that of carbon ink. In addition, the electrical
response of C-2 with a screen-printed electrode (SPE) was found to be the same as the commercial
polycarbonate (PC) substrate. The result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide) assay suggested that the silver SPE on C-2 was non-cytotoxic toward L929 fibroblast cells
proliferation. The results indicated that C-2 gelatin is a promising material to act as a screen-printing
substrate with excellent biodegradable and biocompatible properties.

Keywords: gelatin; crosslinking; flexible substrate; biocompatibility; screen-printed electrode

1. Introduction

In order to study the electrical activity of biological cells, electrode arrays can provide useful
information. In general, electrode arrays have been fabricated on hard substrates such as silicon [1],
glass [2], and plastics [3]. However, the reliable communication between a biological cell and an
electrode would be seriously affected by the mechanical mismatch between the soft biological tissues
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and the rigid electronic device [4,5]. Numerous studies have been carried out to construct electrode
arrays on flexible substrates such as polyimide [6], parylene [7], and polydimethylsiloxane (PDMS) [8].

Non-toxic, lightweight, and relatively inert PDMS as an electroactive substrate possessing superior
optical transparency has been commonly used as biosensor in biomedical, industrial, and environmental
analyses [9–11]. Hence, in order to meet the requirements for specific applications in the biological
field, several researchers significantly studied the surface modification of PDMS with bioactive
molecules [12–14]. Wu et al. treated the PDMS surface by bioactive chlorogenic acid to modify
the surface properties of PDMS [15]. The development of micro patterns of gelatin hydrogels on
PDMS for the culture of induced pluripotent stem cell (iPSC)-derived cardiomyocytes was reported
by Nawroth et al. [16]. However, surface treatment for improving cell adhesion and proliferation
would be affected by various limiting factors such as the poor degradation and biocompatibility of
the cell, the hydrophobic surface, and poor adhesion property of PDMS [17]. Therefore, the potential
application of natural bioactive molecules such as gelatin and natural polymers was studied as an
alternate direct substrate and the studies indicated that they could facilitate enhancing the degradation
and biocompatibility of cells.

The increased biocompatibility, biodegradability, non-toxic, and low-cost are the major advantages
of gelation. Gelatin obtained by the thermal denaturation of collagen, possesses biodegradation with
excellent biocompatibility, making it extensively used in the biomedical field [18–22]. Gelatin possesses
outstanding properties for the cell–biomaterial interactions, including exposure of ligands, hydrophilicity,
and surface roughness that promote cell attachment and proliferation [23,24]. In addition, gelation consists
of various functional groups (OH, C=O, NH, and NH2) which facilitate the surface modification to improve
its applicability in the field of biosensor and tissue engineering [25]. However, in some cases depending
upon the fabrication process, gelatin substrates usually lack mechanical strength and high swelling
behavior, which has prevented this unique biomedical material from being used as an electrode substrate.
Therefore, there is a great need to develop a size stable gelatin substrate with enhanced mechanical strength
for electrode substrate applications. Several attempts have succeeding in improving the mechanical
strength of gelatin substrate and a significant improvement of the gelatin membrane strength was achieved
after two-step crosslinking reactions [26]. The crosslinking method chosen to stabilize gelatin structures
for biomedical applications is crucial. Glutaraldehyde has been widely used as a gelatin crosslinker
and it provides good improvement in mechanical properties and scaffold stability [27,28]. The another
most widely used chemical crosslinking method for gelatin relies on EDC/NHS (1-ethyl-3-(3-dimethyl
aminopropyl) carbodiimide/ N-hydroxysuccinimide). The EDC/NHS crosslinking method has notable
advantages, including a high conversion efficiency, mild reaction conditions, and excellent preservation of
gelatin biocompatibility [23,29].

Among various fabrication techniques, the traditional method very often used to prepare the
electrode for biosensor is known as screen-printing technology [30–35]. The screen-printed electrode is
prepared by printing a pattern of choice onto the substrate followed by the solidification of printed
pattern via either heating or UV irradiation. Thus, the screen-printing technique seemed to be simple
and effective. The circuit pattern on the substrate could function as the electrical stimulation and could
also measure the cellular growth behavior [36]. Among many types of screen-printing substrates,
flexible substrates received greater attention in biomedical application [37,38].

The objective of this study is to discover the potentiality of natural polymers to act as substrates
for screen-printing electrode arrays. Among the natural polymers, gelatin not only exhibited improved
biodegradation but also possessed excellent biocompatibility and hence the film was selected as a
substrate for screen-printing.

The main aim of this study is to explore the effects of various crosslinking agents on modifying
gelatin film and using the crosslinked gelatin as a screen-printing substrate. Widely used sensing
electrodes such as carbon and silver electrode arrays were screen-printed onto the crosslinked gelatin
substrate, and basic parameters including swelling ratio, mechanical strength, and electrode adhesion
test were evaluated. The cytotoxic effects of the crosslinked gelatin substrate and electrode arrays
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were investigated with L929 fibroblast cells using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide) assay. In this study, biodegradable gelatin film with enhanced size stability,
lower swelling, and higher mechanical strength was successfully developed using dual crosslinking
materials and evaluated as a novel screen-printing substrate.

2. Materials and Methods

2.1. Chemicals and Reagents

Type A gelatin, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC), N-hydroxysuccinimide
(NHS), and glutaraldehyde were purchased from Sigma (St. Louis, MO, USA). Polycarbonate (PC)
substrate was obtained from Jan Yan Print Int’l Corp (Taoyuan City, Taiwan) and used as received
without any modification. All the chemicals used in this study were of reagent grade.

2.2. Preparation of Gelatin Film

Gelatin was dissolved in deionized (DI) water at 60 ◦C to prepare 15 w/v % gelatin solution.
The gelatin solution was poured into a Petri dish and then air-dried at room temperature for 24 h.
Three types of gelatin samples were prepared in this study: (1) gelatin film without any crosslinking
(C-0, no crosslinking); (2) gelatin film crosslinked with 2% glutaraldehyde (pH 4.8) for 24 h (C-1,
single crosslinking); and (3) gelatin film crosslinked with 0.50% EDC/0.18% NHS (pH 6.4) for 24 h
followed by crosslinking with 2% glutaraldehyde for 24 h (C-2, dual crosslinking). Finally, these
resultant gelatin films were washed repeatedly with DI water to remove any traces of reacting agents
and then air-dried in an oven at 40 ◦C overnight. All the prepared gelatin films were stored in a
vacuum desiccator at room temperature. The morphology of the gelatin film was examined by a
scanning electron microscope (SEM, Hitachi-4700, HORIBA, Kyoto, Japan). The gelatin film samples
were sputter-coated with gold prior to SEM examination.

2.3. Swelling Test of Gelatin Film

In order to obtain the swelling film, the gelatin film was immersed into phosphate-buffered saline
(PBS) at room temperature. At predetermined time intervals (1, 2, 3, 4, 5, 10, 20, 30, and 60 min),
the film was removed from PBS and the film area was immediately measured (A1). The swelling ratio
was calculated by using Equation (1) with A0 as the surface area of gelatin film before immersing in
PBS. Each measurement experiment was repeated three times and expressed as average ±SD.

Swelling ratio = (A1 − A0)/A0 (1)

2.4. Mechanical Strength Test of Gelatin Film

The mechanical property tests were performed according to the ASTM D882 standard test
method [39]. Gelatin films were cut into 1 cm × 6 cm rectangular shape and soaked in 0.1 M PBS
(pH 7.4) for 24 h. The mechanical properties of these soaked gelatin films were calculated and recorded
automatically by using a mechanical testing machine (Tinius Olsen, Horsham, PA, USA) at a crosshead
speed of 10 mm/min.

2.5. Fabrication of Screen-Printed Electrode (SPE) on Gelatin

Carbon ink (SC-1010, ITK) and silver ink (NT-6307-2, PERM TOP) were printed onto the crosslinked
gelatin and polycarbonate (PC) substrates by using a screen-printing machine (NSP-1A, Yulishih
Industrial, New Taipei City 235, Taiwan) equipped with a 200 threads per inch polyester screen and
polyurethane (PU). The size of all substrates was 1 × 3 cm2. The printed carbon-SPE and silver-SPE
were dried at 60 ◦C for 30 min and 120 ◦C for 60 min, respectively.
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2.6. Adhesion Test of the SPE

The adhesion strength of the screen-printed electrodes was evaluated by using a tape test according
to ASTM D 3359-95 [40] to evaluate the effect of the carbon and silver ink adhesion to the crosslinked
gelatin film substrate. The extent of adhesion between the inks and the substrate was analyzed by
measuring the fraction of detached area after the test. The adhesion was evaluated by comparison with
description and illustration in the ASTM D3359 manual. An evaluation scale (5B to 0B) was provided,
where 5B indicates the best and 0B indicates the poorest.

2.7. Cyclic Voltammetry (CV) Measurement

The CV measurement was carried out using an IM6-eX electrochemical workstation (ZAHNER
Zennium IM6, ZAHNER-elektrik GmbH & Co. KG, Kronach, Germany). The three-electrode system
consisted of the screen-printed electrode as a working electrode, an Ag/AgCl wire as a reference
electrode, and a platinum wire as a counter electrode. The CV scanning was performed at a scan rate
of 100 mV/s with 0.1 mM, pH 7.2 potassium ferricyanide (K3Fe(CN)6) as the redox probe.

2.8. Cell Biocompatibility Assay

The biocompatibility test of gelatin film was performed according to ISO 10993 [41] by MTT assay
using L929 fibroblast cells. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay
was used to evaluate the cell viability based on the mitochondrial conversion of the tetrazolium salt
into a purple colored formazan product at an absorbance of 570 nm. The mouse fibroblast cell line L929
was cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin. Each sample was placed into one well
in a 24-well plate and L929 cells were seeded on each well at 2 × 104 cells/well. After 1, 2 or 3 days
incubation, the original medium in each well was replaced with 100 µL MTT solution (5 mg/mL),
and then the wells were incubated for 4 h at 37 ◦C in 5% CO2 incubator to enable the formation of
formazan crystals. After removing the solution, dimethyl sulfoxide (DMSO) was added to all the wells
and mixed thoroughly to dissolve the dark blue crystals. After a few minutes in order to ensure that
all crystals were dissolved, the plates were read at 570 nm on a multi-well scanning ELISA reader
(Thermo Scientific, Waltham, MA, USA).

2.9. Statistics

All the data were expressed as mean ± standard deviation (SD). The data were compared by
one-way analysis of variance (ANOVA) to evaluate differences among the groups. A difference with
p < 0.05 was considered statistically significant.

3. Results and Discussion

3.1. Characterization of Gelatin Films

3.1.1. Morphology of Gelatin Film

Optical photographs and SEM images of PC, gelatin without any crosslinking (C-0), the single
crosslinked gelatin film (C-1), and the dual crosslinked gelatin film (C-2) are presented in Figure 1.
The optical photographs showed that the crosslinked gelatin films became yellow, suggesting the
formation of a successful crosslinking structure. The SEM surface image showed that all gelatin films
had a smooth surface, and moreover, the cross-section of C-1 and C-2 gelatin films showed a finer scale
microstructure. This indicates that the crosslinking could effectively increase the compactness of the
gelatin film [28], and such a smooth and compact gelatin surface is appropriate for screen-printing.
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Figure 1. Optical photographs: (a) polycarbonate (PC), (b) C-0 (without crosslinking), (c) C-1 
(crosslinked with only glutaraldehyde), (d) C-2 (crosslinked with EDC/NHS (1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) and glutaraldehyde); and scanning 
electron microscopy (SEM) images of surface: (e) C-0, (f) C-1, (g) C-2; and cross-section: (h) C-0, (i) C-
1, (j) C-2. 

3.1.2. Swelling Ratio of Gelatin Films 

Figure 2 shows the swelling ratio measured at different time intervals for the C-0, C-1, and C-2 
films. The swelling ratio for C-0 was increased drastically and reached saturation in 20 min with the 
swelling ratio of 28.15% and remained constant up to 60 min. Similarly, for C-1 the swelling ratio 
increased with time and attained 8.77% at 60 min, whereas for the dual-crosslinked gelatin film (C-
2), the swelling ratio reached saturation in 5 min with the swelling ratio of 3.98% and remained 
constant up to 60 min, which is lower than C-0 and C-1. Gelation could adsorb water molecules as it 
is hydrophilic in nature. Upon incorporation of glutaraldehyde, the swelling property of the gelatin 
film was found to decrease possibly due to the increase in hydrophobicity of the matrix [42]. Another 
reason that could be attributed to this phenomenon was the increase in the crosslinking density 
between the glutaraldehyde and gelatin [43]. When glutaraldehyde was added to gelatin, the reaction 
between the amine (NH2) group of gelatin and the carbonyl (C=O) groups of glutaraldehyde would 
occur leading to the formation of a gelatin hydrogel network [27]. EDC/NHS crosslinking of gelatin 
film along with glutaraldehyde further reduced the swelling behavior of the gelatin film which could 
be possibly due to high crosslinking at longer duration (48 h). This is also possible from the 
production of short-range molecular crosslinks since reaction of EDC/NHS with gelatin matrices 
brought gelatin films more low-swelling structure [44]. In general, the degree of swelling was 
reduced for the polymer with high crosslinking and hence among all, the dual-crosslinked gelation 
film possessed a small rate of swelling indicating the low water adsorption capacity and increased 
hardness of the material [45]. 

Figure 1. Optical photographs: (a) polycarbonate (PC), (b) C-0 (without crosslinking), (c) C-1 (crosslinked
with only glutaraldehyde), (d) C-2 (crosslinked with EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide/N-hydroxysuccinimide) and glutaraldehyde); and scanning electron microscopy (SEM)
images of surface: (e) C-0, (f) C-1, (g) C-2; and cross-section: (h) C-0, (i) C-1, (j) C-2.

3.1.2. Swelling Ratio of Gelatin Films

Figure 2 shows the swelling ratio measured at different time intervals for the C-0, C-1, and C-2
films. The swelling ratio for C-0 was increased drastically and reached saturation in 20 min with
the swelling ratio of 28.15% and remained constant up to 60 min. Similarly, for C-1 the swelling
ratio increased with time and attained 8.77% at 60 min, whereas for the dual-crosslinked gelatin film
(C-2), the swelling ratio reached saturation in 5 min with the swelling ratio of 3.98% and remained
constant up to 60 min, which is lower than C-0 and C-1. Gelation could adsorb water molecules as it is
hydrophilic in nature. Upon incorporation of glutaraldehyde, the swelling property of the gelatin film
was found to decrease possibly due to the increase in hydrophobicity of the matrix [42]. Another reason
that could be attributed to this phenomenon was the increase in the crosslinking density between the
glutaraldehyde and gelatin [43]. When glutaraldehyde was added to gelatin, the reaction between
the amine (NH2) group of gelatin and the carbonyl (C=O) groups of glutaraldehyde would occur
leading to the formation of a gelatin hydrogel network [27]. EDC/NHS crosslinking of gelatin film
along with glutaraldehyde further reduced the swelling behavior of the gelatin film which could be
possibly due to high crosslinking at longer duration (48 h). This is also possible from the production of
short-range molecular crosslinks since reaction of EDC/NHS with gelatin matrices brought gelatin
films more low-swelling structure [44]. In general, the degree of swelling was reduced for the polymer
with high crosslinking and hence among all, the dual-crosslinked gelation film possessed a small rate
of swelling indicating the low water adsorption capacity and increased hardness of the material [45].
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Figure 2. Swelling ratio of un-crosslinked (C-0), single crosslinked (C-1), and dual crosslinked (C-2)
gelatin films in phosphate-buffered saline (PBS) at room temperature.

3.1.3. Mechanical Properties of Gelatin Films

It was reported that glutaraldehyde crosslinking affects the stiffness of gelatin films [31]. Figure 3
shows the typical stress–strain curves recorded from gelatin films crosslinked with glutaraldehyde (C-1)
and EDC/NHS/glutaraldehyde (C-2). A decrease in the extensibility and increase in the stress at break
were observed for the C-2 gelatin film. The calculated Young’s modulus for the C-1 and C-2 gelatin films
was 8.55 ± 0.57 and 23.72 ± 2.04 kPa, respectively. From the results, it was noted that an increase in the
Young’s modulus would result in lower elasticity and higher size stability. This was possibly due to
the compact space between the films contributed by higher crosslinking density. Thus, the structure of
film was retained without any stretching. Cao et al. [32] reported a similar trend for polycarbonate film.
This result indicates the improved mechanical strength of C-2 gelatin film and hence dual crosslinking
makes gelatin film highly durable to physical pressure and is suitable for screen-printing. The mechanical
strength test cannot be performed in the un-crosslinked gelatin film due to its poor mechanical properties.
C-2 gelatin film was used as a substrate for printing electrode arrays.
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3.2. Gelatin Film as Screen-Printing Electrode Substrate

Screen printing has evolved as a potential fabrication tool because it enables simple, rapid,
and inexpensive electrode array preparation on a large scale [33]. In this work, we use C-2 gelatin film as a
substrate on which carbon and silver electrode arrays were realized by employing screen-printing technique.

3.2.1. Adhesion Test of SPE

Adhesion strength is a significant factor for the reliability and functionality of metal electrode
arrays onto various substrates. Both carbon and silver inks were screen-printed onto C-2 gelatin
and PC substrates. In order to determine the adhesion capacity of the crosslinked C-2 gelatin film,
the percentage of the adhesion was determined according to the procedure explained by ASTM
D-3359-95 standard test methods and compared with PC substrate. From the test results (Figure 4),
the screen-printed carbon ink and silver ink onto the PC film were rated as 4B and 5B, respectively.
Carbon ink on C-2 gelatin film revealed poor adhesion (Grade-1B). However, silver ink on C-2 gelatin
film exhibited strong adhesion (Grade-5B). The adhesion test confirmed that the silver electrode has a
strong adhesion strength to the C-2 gelatin film substrate. Hence, silver screen-printed electrode was
chosen for subsequent experimental analysis.
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Figure 4. Optical microscopic images of adhesion test results for the screen-printed electrodes (SPes)
on C-2 gelatin and PC substrates. Adhesion is assessed on a 0B to 5B scale, where 0B is the poorest and
5B is the best.

3.2.2. Electrochemical Characterization of SPE

The fabricated silver SPEs on C-2 gelatin film were characterized by cyclic voltammetry (CV) in
potassium ferricyanide solutions and their performances compared with silver SPEs on PC substrate.
Analytical data obtained from CV studies are shown in Figure 5. The results showed that the cyclic
voltammograms for Ag electrode on PC and C-2 gelatin film almost exhibited the same common features.
There were two redox peaks in each curve, which could be attributed to the redox of ferric ions. The upward
peak is an anodic peak, reflecting the oxidation process from ferrous ion to ferric ion. Correspondingly,
the downward peak is a cathodic peak, reflecting the reduction process from ferric ion to ferrous ion [34].
The sigmoidal response and its degree of symmetry indicated the irreversible nature (between silver ink
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and potassium ferricyanide) of the electroactive substances. This CV response suggests that the SPEs on
soft gelatin substrate are very suitable for obtaining electrical signals from biological cells.
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0.1 mM K3[Fe(CN)6]. Scan rate 100 mV/s, reference electrode Ag/AgCl, counter electrode Pt.

3.2.3. Cell Viability Assay

MTT assay was executed to test the cell viability on C-2 gelatin substrate. L929 fibroblast cells
were cultured on PC film and C-2 gelatin film for three days both in the presence and absence of
Ag-SPE and the biocompatibility test with MTT assay results are shown in Figure 6. The MTT assay
results exhibited that the proliferation of L929 fibroblasts is insignificant on C-2 gelatin substrate
and C-2 gelatin substrate with Ag-SPE. On the first day, the cells proliferated, and then the growth
became stagnant for all groups, although PC film and Ag-SPE gelatin film showed significant difference
(p < 0.05). This result clearly indicates that C-2 gelatin substrate and Ag-SPE are not cytotoxic toward
cell proliferation. Thus, the C-2 gelatin film could provide a biocompatible surface with exposed
ligands that promotes cell attachment and proliferation by integrin-mediated interactions [23].
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4. Conclusions

In this study, biodegradable gelatin film with enhanced size stability, lower swelling, and
higher mechanical strength was successfully developed and evaluated as a screen-printing substrate.
The results showed that the C-2 film facilitated effective screen-printing. Moreover, the swelling
behavior of gelation film was not affected by the immersion of SPEs in PBS solution. Furthermore, the C-2
gelatin film with silver ink produced a harmless effect toward cells growth. Thus, gelatin-based
electrode arrays with biocompatible characteristics could potentially be used as electronic devices for
continuous real-time monitoring of human physiological signals. By applying both screen-printing
and biopolymer crosslinking techniques, an inspired interdisciplinary platform could be developed for
wearable or portable electronic devices in the field of biomedical engineering.
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