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Abstract: In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte
impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting
technique. The structural features of the electrolyte films were investigated through the X-ray diffraction
(XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was
confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the
improvement of ionic conductivity from 10−5 S/cm to 10−3 S/cm upon the addition of plasticizer.
The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly
ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and
0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum
conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to
make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry
(CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction
has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific
capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω,
4.9 Wh/kg, and 399 W/kg, respectively.
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1. Introduction

The development of electrochemical devices such as batteries, and electrical double-layer capacitors
(EDLCs) has attracted the attention of many researchers, because of their wide applications in portable
devices [1]. The most favorable electrochemical storage devices are EDLCs with higher energy
properties [2]. EDLC is an energy storage device that supplies electricity via producing an electrical
double layer consisting of an adsorbed layer of anions and cations at the electrolyte/the electrodes
interfaces. However, traditional batteries deliver lower power and store adequate energy than the
traditional capacitors [1,3]. The EDLC with relatively high conductive polymer as electrolytes and
electrode separators, might be a potential substitute for other types of charge storage devices [4].
Recently, EDLC has attracted much attention because of its unique properties like durability, speedy
charge-discharge rate, higher energy density, reversibility, and improvement in safety, which make
it a good candidate for a wide range of applications [5]. In the fabrication of EDLCs, the electrode
of activated carbons (ACs) plays a vital role as an activated material owing to the excellent chemical
and physical characteristics for instance; large temperature stability, high specific surface area, cheap
and good conductivity that can be prepared from the variety of forerunners with the activated
agents through heat treatment. Correspondingly, coal is the most popular source of activated
carbon manufacturing due to its abundance, cost-effective, and high content of carbon that makes it
preferable [6–8]. Good mechanical property and high ionic conductivity are promising for the EDLCs
preparation. Besides, liquid electrolyte exhibits high ionic conductivity, nonetheless, there is a leakage
problem and corrosion while gel and solid-state electrolytes overcome these drawbacks, and they are
considerably preferred in EDLCs [9].

Solid polymer electrolyte (SPE) as a key material for various solid-state electrochemical devices
have been reported [10,11]. SPE can be prepared by dissolving inorganic salts in a polar polymer
chain, and the salts provide anions and cations that make the polymers conductive ionically [12,13].
It is well established that biodegradable polymers are more desirable over non-degradable polymers
in the polymer-based electrolytes, because of their biocompatibility and renewability. Among the
biodegradable polymers, polyvinyl alcohol (PVA) and chitosan (CS) are two of the utmost valuable
candidates as environmentally friendly materials in the preparation of SPEs [14,15]. Previous studies
have shown that, CS can be successfully employed in the energy storage devices [16,17]. The PVA
polymer exhibits excellent outstanding characteristics including hydrophilicity, high chemical stability,
the large capacitance of charge storage, safety, and affordability [18]. Additionally, the presence of a
hydroxyl group (OH) in the PVA backbone structure can be considered as the source of the hydrogen
bond and promoting the formation of polymer electrolytes [19]. On the other hand, chitosan is mostly
investigated and it has a variety of performances in different fields because of the enrichment of
functional groups (i.e., NH2, OH) in its backbone structure [20]. The amino group in the CS structure
is able to act as the electron donner and strongly coordinates with the inorganic salts which make it
enable to generate the proton-conducting SPEs [21].

Blending of polymers is a practical methodology undertaken to increase the room temperature
ionic conductivity and reduce the crystallinity of polymers. PVA as a semi-crystalline polymer can
be modified through blending with chitosan. Regarding this, several studies were reported in the
literature and they revealed that PVA: CS blending has the ability to be used in electrochemical devices
applications including supercapacitors, solar cells, and batteries [22–24].

The important part to be considered in EDLC design is the polymer electrolyte separated
the electrodes with conductivity between ~10−4 and 10−3 Scm−1 [25]. A little effort has been
initiated to improve the conductivity of such polymer electrolytes, for instance salt impregnation and
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plasticization [26,27]. Previous studies on various polymer electrolytes revealed that glycerol plasticizer
(GP) can increase the DC conductivity up to two powers [28–33]. Glycerol has multi hydroxyl (OH)
moiety structure which acts as an alternative pathway for free ion from the salt to move in the polymer
electrolytes [28]. Thus, GP has many OH groups to dissociate more salt and scarifying the inter and
intra-hydrogen bonding that exists in the polymer matrix and consequently increasing the amorphous
phases which are significant for ion transport mechanism.

In this work, PVA: CS blend is doped with 40% of ammonium thiocyanate (NH4SCN) and
plasticized with various contents of glycerol. The purpose of this work is to use the highest conducting
system of PVA: CS: NH4SCN: glycerol for the EDLC applications.

2. Materials and Methods

2.1. Materials

The straightforward polymeric materials are the polyvinyl alcohol (PVA) and chitosan (CS)
with the average molecular weights of 310,000–375,000 g/mol, and 35,000 g/mol, respectively. Other
raw materials used are: Ammonium thiocyanate (NH4SCN) salt was used as a dopant; acetic acid
(CH3COOH) solution was used as a solvent; and glycerol (C3H8O3) was used as a plasticizer. All the
chemical materials were from the commercial supplier Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of Samples

The fabrication of the PVA: CS: NH4SCN: glycerol based electrolyte was carried out using a
solution casting technique. For this reason, 0.5 g of PVA was dissolved in 30 mL of distilled water at
80 ◦C for several hours. In the meantime, 0.5 g of CS was dissolved in 30 mL of 1% acetic acid solution
for some hours at the ambient temperature. After cooling the PVA solution to room temperature,
the separate solutions were mixed to prepare blending solution of PVA: CS polymers. Then, a constant
weight percentage (40 wt.%) of ammonium thiocyanate (NH4SCN) was dissolved in the four individual
solutions of the PVA:CS mixture. In each section of the procedure, the magnetic stirrer has been
employed continually so as to produce a homogenous solution. Finally, various content of glycerol was
added to the PVA: CS: 40% NH4SCN systems. In the prepared samples, the glycerol content was varied
from 0 to 42 wt.%. The blended polymer electrolyte films were specified as PVCH0, PVCH1, PVCH2,
and PVCH3 incorporated with 0, 14, 28, and 42 weight percent of glycerol, respectively. To obtain
dry and free-standing films, the solutions were cast into different labeled glass Petri dishes and kept
untouched to evaporate slowly at room temperature. The composition and designation of SPE samples
are tabulated in Table 1.

Table 1. The composition and designation of the PVA: CS: NH4SCN: glycrol systems.

Sample Designation PVA:CS (g) NH4SCN (g) Glycerol (wt.%) Glycerol (g)

PVCH0 0.5:0.5 0.666 0 0
PVCH1 0.5:0.5 0.666 14 0.271
PVCH2 0.5:0.5 0.666 28 0.647
PVCH3 0.5:0.5 0.666 42 1.206

2.3. Characterization of Samples

2.3.1. XRD Pattern and Impedance Spectroscopy

To examine the structural changes of the prepared samples, the XRD has been employed.
The Siemens D-5000 X-ray diffractometer (Bruker AXS GmbH, Berlin, Germany) was used with an
operating voltage of 40 kV and a current of 40 mA. The blended SPE samples were studied through
the monochromic XRD of wavelength (λ = 1.5406 Å) with a 2θ glancing angle ranging from 10◦ to
80◦ with a step size of 0.1◦. The measurements of electrical impedance spectroscopy of the fabricated
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samples were done using an impedance analyzer of LCR meter (HIOKI 3531 Z Hi-tester, Nagano,
Japan). The operating frequencies were in the range of (50 Hz ≤ f ≤ 1 MHz) at the room temperature.
Two stainless-steel electrodes were used as a working electrode to investigate the electrolytes after the
films were cut into appropriate size.

2.3.2. TNM and LSV Analysis

Two of the uppermost conducting samples were characterized by the V&A instrument DP3003
digital DC power supply (V & A Instrument, Shanghai, China) to evaluate the ionic transference (tion),
and electronic transference (tel) number. The cell that consists of stainless-steel electrodes sandwiched
with ion conducting film was polarized with a fixed DC potential (0.8 V). The maximum operating
voltage of the uppermost conducting sample was also determined via LSV technique. The LSV was
performed utilizing the Digi-IVY DY2300 potentiostat (Neware, Shenzhen, China) at a scan rate of
10 mV s−1 from the potential range of 0 to 2.5 V. Consequently, the cell for the LSV evaluation was
prepared by means of placed the free-standing film between a pair of stainless-steel electrodes.

2.3.3. Construction of EDLC

The electrochemical double-layer capacitor EDLC has been constructed with some steps. In the
first step, 6.25% of carbon black (CB), and 81.25% of activated carbon (AC) were dried and merged by
planetary ball miller for less than a half-hour at 500 r/min. In the next step, 12.5% of polyvinylidene
fluoride (PVdF) like a binder was dissolved in the N-methyl pyrrolidone (NMP) solution. The mixed
powder of AC and CB was poured in the NMP-PVdF solution and stirred continuously until producing
a black solution. Afterward, acetone was used to clean the aluminum foil and compressed on the
surface of the glass. The solution mixture was cast and spread on the aluminum foil via the doctor
blade method. Eventually, an oven was employed to dry the electrodes at 60 ◦C for some hours.
For future drying, the electrodes were placed in a desiccator to eradicate any extra moisture. Also,
the dried anodes were cut into a little hover shape with an area of 2.01 cm2. Then the most conducting
sample was located among two activated carbon electrodes, and the CR2032 coin cell was used to
pack the sample in a Teflon case. The CV of an EDLC was performed utilizing the Digi-IVY DY2300
potentiostat in the potential range of 0 to 0.9 V at various scan rates. The Neware battery cycler with a
current density of 0.5 mA/cm2 was used to evaluate the charge-discharge profiles of EDLC.

3. Results and Discussion

3.1. XRD Analysis

X-ray diffraction patterns were recorded for understanding the structural changes of PVA: CS:
NH4SCN system upon the addition of glycerol plasticizer. The diffractogram of the un-plasticized
film as depicted in Figure 1 displays a crystalline narrow peak that belongs to the NH4SCN added
salt at (2θ = 29.9◦) [34,35]. It is obvious that two broad bands can be observed in the diffractogram
of the un-plasticized sample at the regions 2θ of 18◦ and 24◦. Figure 2 illustrates the XRD patterns
of plasticized systems at room temperature. The glycerol content was varied from 14, to 42 weight
percentages (wt.%). After the addition of glycerol, one can see that the crystalline peak disappeared,
and broad hallo peaks were observed. This represents an almost complete amorphous structure
because of the weakening of the intermolecular forces inside the PVA: CS polymer electrolytes [36].
Figure 2c shows that the addition of 42 wt.% of glycerol causes the decrease of the peak intensities,
and results in less sharp peaks. However, the peaks experienced broadening upon the increment
of the glycerol concentration. This shows the entire dissociation of NH4SCN salt in the amorphous
area of the PVA: CS blended polymeric chain [37]. Schematically the role of glycerol plasticizer on
ion dissociation and increase of amorphous phase is shown in Scheme 1. Earlier studies observed
that upon addition of various plasticizers amorphous humps are enhanced and they attributed to the
disruption of hydrogen bonds that built up the crystalline phase through the polymer host [29,32,33,38].
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The ionic conductivity is robustly affected by the nature of crystallinity, and the amorphousness of the
materials [39]. Remarkably, the ionic conductivity of the PVCH films expected to be enhanced when
the amorphous nature was increased [40]. This may be ascribed to the fact that in the amorphous
region, the quick segmental motions of polymeric backbone increase the charge transporter’s mobility,
promoting the ionic conductivity [41].
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Figure 1. XRD spectra for the un-plasticized of the PVA: CS: 40%NH4SCN system at room temperature.
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Figure 2. XRD patterns of plasticized PVA: CS: 40%NH4SCN systems incorporated with (a) 14 wt.%
glycerol, (b) 28 wt.% glycerol, and (c) 42 wt.% glycerol, at room temperature.
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3.2. EIS Study

In ion-conducting electrolyte materials, which are decisive from both of the technological and
fundamental aspects, it is significant to grasp the mechanism of charge transport and electrical properties.
In this regard, one of the influential techniques is the examination of impedance spectroscopy to
illustrate the transport process and establish the relationships between structure and property [42,43].
It is well-known that the conductivity of the polymer electrolytes greatly depends on the actual density
of conducting ion species and their mobilities. The impedance spectra (Zi versus Zr) of glycerol
plasticized solid polymer blend electrolytes based on PVA: CS: NH4SCN at room temperature are
depicted in Figure 3a–d. Usually, two well-defined regions are observable in the plots that include a
lower-frequency inclined spike, and high-frequency semicircle. The semicircle that exists at the high
frequency regions embodies the bulk effect of the electrolyte samples. While the polarization effect
and the surface inhomogeneity between the electrodes and electrolyte interfaces are ascribed by the
inclined spike at a lower-frequency region [44–46]. It can be denoted that the semicircle was observed
in the un-plasticized electrolyte system of PVA: CS incorporated with 40 wt.% of NH4SCN while the
semicircle disappeared upon adding glycerol plasticizer along with the entire experimental frequency
range [47].

The bulk resistance Rb values were given by the point where the semicircle intersects the horizontal
axis (Zr-axis). Also, the ionic conductivity (σdc) was determined for the PVCH electrolyte films through
the known Rb value along with the sample’s dimensions using the relation below:

σdc =

[
1

Rb

]
×

[ t
A

]
(1)

where Rb stands for the bulk resistance, t is the film thickness, and A is equal to the known electrode
area [48–51]. It was discovered that the un-plasticized system has the ionic conductivity of 10−5 S/cm,
while it increases to 10−3 S/cm through adding 14 wt.% of glycerol (see Table 2). Clearly, upon an
increment of the glycerol concentration in the system, the ionic conductivity was significantly improved
because of the increase in the mobility of the charge carriers [52]. The glycerol has a great impact
on the enhancement of ionic conductivity by promoting the salt dissociation through weakening the
Coulombic force between the opposite charges [53]. Rathod et al. [54] recognized the room-temperature
ionic conductivity as 3× 10−6 S/cm for the PVA: CS: 20% LiClO4 system. Also, the PVA: CS: NH4I system
showed the maximum conductivity of 7.6 × 10−7 S/cm [23]. Benitez et al. [55] investigated the polymer
electrolyte system of the PVA: CS incorporated with 50% of hypophosphorous acid (H3PO2), and the
obtained maximum conductivity has found to be 1.4 × 10−2 S/cm. Accordingly, Hamsan et al. [56]
prepared the glycerol plasticized of the PS: MC: NH4NO3 based polymer electrolytes and recorded the



Polymers 2020, 12, 1938 7 of 21

maximum DC conductivity of ~10−3 S/cm. It is noteworthy that the obtained maximum conductivity
in this work is comparable with the above-mentioned systems reported in the literature.
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Figure 3. Impedance plot (Zi versus Zr) of the PVA: CS: 40%NH4SCN incorporated with (a) 0% glycerol,
(b) 14% glycerol, (c) 28% glycerol, and (d) 42% glycerol.

Table 2. The ionic conductivity σdc of un-plasticized and plasticized of PVA: CS: NH4SCN systems at
ambient temperature.

Sample Code Ionic Conductivity σdc (S cm−1) Bulk Resistance (Rb) (Ohm)

PVCH0 1.4 × 10−5 995
PVCH1 1.4 × 10−3 9.8
PVCH2 2 × 10−3 7.1
PVCH3 3.5 × 10−3 3.9

3.3. TNM Study

The conductivity in the polymer electrolyte is given mainly by the conduction of ions and
insignificantly by electrons. Electrolytes are considered to be the heart of electrochemical devices,
and their ionic conductivity examination is significant from the perspective of device applications
such as supercapacitor and battery [57]. The TNM has been employed to figure out the main charge
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carrier at the working voltage of 0.2 V. Figure 4a,b displays the polarization curve of current against
time for the two of the most conducting samples (i.e., PVCH2 and PVCH3) at ambient temperature,
respectively. Figure 4a belongs to 28 wt.% of added glycerol to the PVA: CS: 40%NH4SCN system,
and shows a current of (7.9 µA) at the TNM initiation. Therefore, an extreme drop can be seen until
the time of 30 s, even though the current is continued to decrease gradually up until the time of 250 s.
On the other hand, the polarization curve of the uppermost conducting sample (i.e., PVCH3) reveals
a very high initial current value of 200 µA. A rapid initial current can be observed with time up to
20 s, subsequently, the current slowly moved to stabilize at about 0.1 µA. The drop of the initial total
current versus time is mainly due to the lessening of the ionic charge carrier species in the electrolyte
systems [58,59]. Based on the TNM plots, the ions and electrons transference number were evaluated
using the following equations:

tion =
Ii − ISS

Ii
(2)

tion = 1− tel (3)

where tion is the ion transport, tel stands for the electron transport, Ii stands for the initial current which
embraces’ electrons and ions, and Iss is the steady-state current holds electron only. The tion result
outcomes value was found to be 0.97 and 0.989 for the samples of PVCH2, and PVCH3, respectively.
The prepared PVCH3 system is purely ionic because the tion value is ~1. This indicates that the charge
immigration in the SPE is mainly as a result of ions [60]. Our previous work for the glycerolized CS:
NH4F system possesses 0.976 of tion value, which is in good agreement with the current study [38].
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3.4. LSV Study

The analysis of electrochemical stability is central for the real applications of the electrochemical
devices. LSV has been engaged to specify the maximum operating voltage of the uppermost conducting
sample at the scan rate of 10 mV s−1 mV/s [61]. Figure 5 represents a potential window of the PVCH3
blend polymer electrolyte film at ambient temperature. An applied voltage has been measured in
the range of 0 to 2.5 V using two stainless-steel working electrodes [62]. It was found that there is no
residual electronic current up to 1.75 V, and the breakdown voltage of the PVA: CS: 40%NH4SCN:
42%glycerol system was found to be ~2 V. Beyond 2 V the drastic rise in the current density is observable,
which signifies the breakdown of the film at the inert electrode surface. Consequently, the prepared
PVCH3-based SPE has adequate anode stability that can be used as electrode separators in the
application of electrochemical devices [63,64]. The result is analogous with other glycerol plasticizer and
ammonium salt-based blend solid polymer electrolytes. The system including methylcellulose/potato
starch (MC:PS) integrated with ammonium nitrate (NH4NO3) and plasticized with glycerol reported by
Hamsan et al. [65] has the breakdown voltage of 1.88 V. Yusof et al. [66] documented the decomposition
voltage of 1.9 V for glycerol plasticized of the starch-chitosan-NH4I system. Obviously, their results
were found to be lower than the outcome obtained in this work.
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Figure 5. Linear sweep voltammogram for the PVCH3 electrolyte sample at room temperature.

3.5. CV Study

The electrochemical routines of the prepared PVCH3-based solid polymer electrolyte system
has been investigated using CV technique. The CV investigation of the fabricated device is vital to
be measured in order to use the device for EDLC application [67]. The CV curve of the maximum
ion-conducting sample in a potential window ranging from 0 to 0.9 V at various scan rates of 10–100
mV/s is depicted in Figure 6 at room temperature. Overall, the leaf shape can be seen for all the CV
plots, and the specific capacitance of the fabricated EDLC has been determined via the following
equation:

CCV =

∫ V f

Vi

I(V)dV

2ma
(
V f −Vi

) (4)

where Vi and V f are the initial and final voltages, respectively. m stands for the mass of active material,
υ stands for the scan rates, and

∫
(V)dV is the real area of the CV curve. The rectangular-like shapes of

cyclic voltammogram were obtained once the capacitance is potential independent, whereas if the
capacitance relies on voltage the state of cyclic voltammogram displays an alternate profile [68–70].
The highest specific capacitance Cs for the sample that is incorporated with 42 wt.% of glycerol was
calculated based on Equation (4), and found to be 25.05 F/g, at the scan rate of 10 mV/s [71]. It is also
noticeable that the specific capacitance Cs values varied with changing the scan rates, as shown in
Table 3. Furthermore, the values of specific capacitance decrease with increasing scan rates because of
the unreachable portion for ions dispersion at the interfaces between the electrodes and electrolyte
sample. It can be said that the PVCH3 electrolyte film admirably has electrochemical stability because
of the almost nearly rectangular mirror images of the shape of the voltammograms, especially at a high
sweep rate. Meanwhile, the CV curve shows an ideal capacitor since the plot possesses no visible peaks
in the polarization curve, which means no redox reaction occurred with the voltage of 0.9 V [72–74].
The specific capacitance Cs value of fabricated EDLC achieved in this work was found to be higher
than some previously reported works. Shukur et al. [75] fabricated EDLC with activated carbon using
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CS: NH4Br: Glycerol, which obtained 7.5 F/g from CV analysis at scan rate of 10 mV/s. Also, the Cs

value of our previous study for the CS: PEO: NH4SCN system was 3.8 F/g at 50 mV/s [4].
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Figure 6. Cyclic voltammogram responses of the EDLC fabrication for the PVCH3 at different scan
rates in the potential rage of 0 to 0.9 V.

Table 3. The specific capacitance (F/g) value of PVCH3 sample at the scan rates of 10, 20, 50, and 100 mV s−1.

Scan Rate (mV/s) Specific Capacitance (F/g)

10 25.052
20 17.962
50 7.994

100 3.763

3.6. Charge-Discharge Study

Figure 7 demonstrates the typical galvanostatic charge-discharge (GCD) curve of constructed
EDLC over 150 cycles at a constant current density of 0.5 mA/cm2 in the potential ranging from 0 to 0.9 V
at room temperature. One can see that these nine cycles indicate the outstanding capacitive performance
of EDLC because of their shape of almost perfect symmetrical patterns [76]. However, a slight deviation
can be observed in the voltage drop of discharge characteristics from their triangle-like shapes attributed
to the roughness of activated carbon, internal resistance, and bulk electrolyte. The discharge slop
linearity represents the relatively pure electrostatic interactions between the ions and charged pore
surface [77]. Furthermore, the existence of the non-Faradaic charge storage process can be recognized
through symmetric triangles of the GCD curve [78].
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Figure 7. Charge-discharge profile of the fabricated EDLC at selected cycles.

The drop voltage (Vd) of the constructed EDLC and equivalent series resistance (Res) versus cycle
number are presented in Figure 8a,b, respectively. The value of drop voltage Vd acquired for the
first cycle was found to be about 0.07 V, while it gradually increased over the cycles beyond 120th.
Afterthought, the drop potential is raised and attained the maximum value (i.e., 0.28 V) at the 140th
cycle. This phenomenon takes place because of the increment in the internal resistance which is known
as the equivalent series resistance Res that can be determined from the following equation:

Res =
Vd
i

(5)

where Vd stands for the drop voltage before the discharge process initiates, and i is the applied
current [79]. From Figure 8b, the ESR value at the first cycle was found to be 65 Ω. It can also be
observed that the values of (Res) increase with increasing the cycle number and reached the maximum
value of approximately 275 Ω at the cycle number of 140 because of the voltage drop, Vd is the highest
value. In the fabricated EDLC, the presence of internal resistance is mainly attributed to the electrolyte
used for the current collector, and the gap between electrolyte with current collector [80,81]. In this
investigation, the result of (Res) for the manufactured EDLC is tolerable and comparable to some other
previously reported activated carbon-based EDLC works [76,79,82].
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Figure 8. The EDLC parameters of (a) drop voltage (Vd) of discharge process initiation, (b) equivalent
series resistance (ESR) pattern up to 150th cycles.
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The variation of the specific capacitance, Cs of the fabricated EDLC for the 150th cycles is presented
in Figure 9. The Cs value of the constructed EDLC was determined via the equation below:

Cs =
i

gm
(6)

where i is the applied current, g stands for the gradient of discharge fragment, and m is the weight
of active material. It is worth noting that the first cycle discharge Cs value was found to be 35.5 F/g,
and followed by a slight decrease at the 150th cycle to 34 F/g, which may be owing to the decomposition
of the prepared polymer electrolyte [83]. An interesting observation is that the specific capacitance
Cs values are almost constant over 150 charge-discharge cycles, which verify its perfect cycling
stability [84,85]. Moreover, the low lattice energy of the salt is noteworthy as enhancing the specific
capacitance value, which possesses high dissociation [86]. The obtained Cs value in our previous
study for the CS: Dextrane: NH4F system was 12.4 F/g, which is lower than the present Cs value [87].
The Cs pattern in our previous study for CS: Dextran: NH4I is completely different from the results
of the Cs pattern present work. This is may be due to the lattice energy of NH4SCN salt is lower
compared to NH4F. Thus, the strong interaction between NH4

+ with F− is predictable than NH4
+ with

SCN−. Compared to Figure 8, the trend of Cs with cycle number is different. The ESR is calculated
from drop voltage. With increasing cycle number, the drop voltage also increased. Thus ESR, which
is proportional to drop voltage, also rises with increasing cycle number. On the other hand in the
equation of specific capacitance the drop voltage is absent. Thus its trend is different. Usually the
slop of linear part of discharge curve excluding the drop voltage was used to calculate the slop (g) in
Equation (6).
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Figure 9. The specific capacitance, Cs of the constructed EDLC versus cycle number.

There are two more significant parameters that have to be determined for the EDLC, which are:
energy (Ed, Wh/kg) and power (Pd, W/kg) densities to confirm the EDLC practical device applications.
Figure 10a and b demonstrate the values of energy density (Ed) and power density (Pd) at selected
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cycles for the PVA: CS: NH4SCN:glycerol-based EDLC, respectively [88]. Both the EDLC parameters
value of energy density (Ed) and power density (Pd) were calculated using the following equations [79]:

Ed =
CSV2

2
(7)

Pd =
V2

4m(Res)
(8)

where Cs stands for the specific capacitance, V is the applied voltage, m and Res are the weight of
active material and equivalent series resistance, respectively. It can be seen that the Ed value at the first
cycle is 4.9 Wh/kg, and beyond it just about unchanged toward the 150th cycle with an average of
~4.8 Wh/kg (see Figure 10a). This display implies the almost same energy barrier for the transportation
of ions in the prepared electrolyte film, from the 1st to 150th cycle [89]. Pandey et al. [88] have stated
the energy density, Ed of (0.3 Wh/kg) in their electrolyte system, which is worse than the current work.
Additionally, the outcome of energy density, Ed achieved in this work is near to the reported (5.5 Wh/kg)
one for the based gel polymer electrolyte [90].

From Figure 10b, it is predictable that the power density, Pd decreased with the increment of the
cycle number because of the increase of drop voltage and ESR (see Figure 8a). The power density,
Pd value for the first cycle was found to be 399 W/kg. It also dropped to about 180 W/kg at the 50th cycle
with continuously released to 100 W/kg, once the EDLC finalized the 150 cycles. The drop in Pd value
is due to ion accumulation from the recombination of charge species during a quick charge-discharge
procedure, which blocks the transport of ions [91]. Liew et al. [92] documented that the Pd value of
18.37 W/kg obtained in the first cycle using the PVA-CH3COONH4-BmImTf system, is obviously lower
than this study.
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Figure 10. The EDLC parameters of (a) energy density (Ed), and (b) power density (Pd) at selected cycles.

4. Conclusions

In conclusion, the plasticized polymer blend electrolytes have been prepared via solution-casting
method. Polyvinyl alcohol (PVA) and chitosan (CS) were used as the basic polymeric materials.
Ion-conducting carriers from ammonium thiocyanate (NH4SCN) and glycerol plasticizer were
used to increase the number of free ions and enhance the amorphous phase. The XRD results
confirmed the role of plasticizer to enrich the amorphous content. Appearance of broad humps and
disappearance of the crystalline sharp peaks in plasticized systems established that plasticization is a
novel approach to improve the performance of polymer electrolytes for device application. Through the
EIS technique, the sample incorporated with 42 wt.% of plasticizer possesses the maximum conductivity
of 3.5 × 10−3 S/cm with the electrochemical stability window up to 2 V. The results from TNM analysis
for the two of the highest conducting samples portrayed that the ions in the PVCH systems were the
dominant charge carriers. The uppermost conducting sample (i.e., PVCH3) verified that it can be
employed in the preparation of the EDLC. The (CV) plot displays an ideal capacitor since the EDLC did
not experience either reduction or oxidation reaction. The constructed EDLC offers an initial specific
capacitance (Cs) of 35.5 F/g, equivalent series resistance (Res) of 65 Ω, energy density (Ed) of 4.9 Wh/kg,
and power density (Pd) of 399 W/kg. In the present study, the result outcomes imply that the PVCH
electrolyte systems have the potential to be used in EDLC devices.
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