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Abstract: Novel oil-based epoxy acrylate (EA)-like prepolymers were synthesized via the ring-opening
reaction of epoxidized plant oils with a new unsaturated carboxyl acid precursor (MAAMA)
synthesized by reacting maleic anhydride (MA) with methallyl alcohol (MAA). Since the employed
epoxidized oils including epoxidized soybean oil (ESO), epoxidized rubber seed oil (ERSO),
and epoxidized wilsoniana seed oil (EWSO) possessed epoxy values of 7.34–4.38%, the obtained epoxy
acrylate (EA)-like prepolymers (MMESO, MMERSO, and MMEWSO) indicated a C=C functionality
of 7.81–4.40 per triglyceride. Furthermore, effects of the C=C functionality and the addition of
hydroxyethyl methacrylate (HEMA) diluent on the ultimate properties of the resulting UV-cured
EA-like materials were investigated and compared with those of commercially available acrylated
ESO (AESO) resins. As the C=C functionality increased, the storage modulus at 25 ◦C (E’25),
glass transition temperature (Tg), 5% weight–loss temperature (T5), tensile strength and modulus
(σ and E), and hardness of the coating for both the pure EA and EA/HEMA resins increased significantly
as well. These properties indicated similar trends when comparing the EA materials with 30% of
HEMA with those pure EA materials. Specially, although ERSO had a clearly lower epoxy value that
ESO, both the UV-cured pure MMERSO and MMERSO/HEMA materials showed much better E’25,
Tg, σ, and E than their AESO counterparts, indicating that the MAAMA modification of epoxidized
plant oils was much more effective than the modification of acrylic acid to achieve high-performance
oil-based epoxy acrylate resins.

Keywords: soybean oil; rubber seed oil; wilsoniana seed oil; epoxy acrylate; UV-curable coatings

1. Introduction

The ultraviolet (UV)-curing technique has received enormous interest in modern industrial
areas such as coatings, inks, and adhesives due to its distinct advantages, including being efficient,
energy-saving, enabling, economical, eco-friendly, etc. [1–6]. The global market of UV-curable resins was
nearly $3.1 billion in 2015 and is expected to reach $4.6 billion in 2020, with an annual growth rate close to
8.7% for the period 2015–2020 [7]. However, most of the raw materials for UV-curable coatings currently
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available in the global market are from non-renewable, environmentally polluting petroleum-based
fossil resources. Therefore, developing UV-curable coatings by introducing biorenewable components
such as carbohydrates, plant oils, and rosins related to sustainability and environmental protection is
required to match sustainable development strategies [8,9].

Plant oils have the features of environmentally benign, abundance, biodegradability,
and triglyceride structures; thus, they have been used as an ideal substitute to prepare bio-based
prepolymers for UV-curable coatings [10–19]. Plant-oil-based epoxy acrylate (EA) is one of the
common UV-curable prepolymers, which is usually prepared through the ring-opening reaction of
epoxidized plant oils with acrylic acid (AA) or its derivatives. Acrylated epoxidized soybean oil
(AESO), perhaps the most often bio-based UV-curable prepolymer, has been proverbially employed in
the fields of coatings and adhesives [7,15,20–22]. However, most of the reported oil-based EA resins
usually possessed low stiffness and heat resistance, which greatly limited their application in the areas
where petroleum-based EA resins can be used. For example, the tensile modulus and Tg of bisphenol
A epoxy acrylate resin reported by Xiao et al. could reach 300–500 MPa and 75 ◦C, respectively,
while the pure AESO resin only showed a tensile modulus of around 60 MPa and Tg of about 20 ◦C
due to its lack of rigid structure [23,24]. Therefore, a variety of works dedicated to improving such
properties for oil-based EA resins have been conducted [7,20–22,25–29], among which the design of
new oil-based EA prepolymers has gained much attention. For instance, Li et al. [22] synthesized a
novel EA prepolymer from soybean oil (SO) through melt ring-opening reaction of epoxidized soybean
oil (ESO) with monomethyl itaconate. However, the resulting monomethyl itaconated epoxidized
soybean oil (IESO) materials generally exhibited no clear improvement in strength, stiffness, and heat
resistance in comparison with the AESO counterparts, which is probably attributed to that the C=C
functionality of IESO (2.39 per ESO) being similar to that of AESO (2.25 per ESO). In our group, we also
developed a novel SO-based EA prepolymer through the modification of ESO with an unsaturated
carboxylic acid precursor (HEMAMA) prepared by reacting hydroxyethyl methacrylate (HEMA) with
maleic anhydride (MA) [30]. Due to the precursor having two active C=C groups and a side methyl
group, the resultant SO-based EA prepolymers possessed both high functionality (5.51–6.05 per ESO)
and the structure of steric hindrance. Therefore, the properties such as tensile strength and modulus,
storage modulus at 25 ◦C, Tg, and pencil hardness for the UV-cured EA materials were all greatly
improved compared with the AESO material. However, up until now, novel oil-based EA resins with
high performance are still very scarce, and whether the important properties can be tuned by varying
the renewable raw materials such as epoxidized plant oils are unknown.

Soybean oil, with a global production that amounted to 56.52 million tons in 2019/2020, has become
a very attractive bio-based alternative to petroleum-based compounds in polymeric materials [10].
In addition, some woody plant oils such as rubber seed oil (RSO) and wilsoniana seed oil (WSO)
also make up a great proportion of the current consumption of bio-based feedstocks in the chemical
industries as they do not compete with agricultural food production [31–33]. In 2013, the global
total production of natural rubber latex was estimated to reach 11.9 million tons, and this figure is
expected to increase significantly with the further expansion of planting areas [34]. Wilsoniana tree is
also a widely distributed woody oil plant in the south of China, and the annual production of WSO
could reach 30 million tons [33]. The RSO and WSO have been used in the areas of coatings [35–37],
plasticizers [38], and some other fields [33,39]. Nevertheless, up to now, their employment in the
construction of UV-curable coatings has not been reported yet.

In this paper, we aim to develop high-performance oil-based EA resins using epoxidized plant
oils with different epoxy values. According to the above analysis, incorporating high functionality
and the structure of steric hindrance into the new EA prepolymers is an effective way to fulfill the
purpose. Therefore, a new unsaturated carboxyl acid precursor (MAAMA), obtained through the
reaction of methallyl alcohol (MAA) with maleic anhydride (MA), was used to modify epoxidized
plant oils including ESO, epoxidized RSO (ERSO), and epoxidized WSO (EWSO). It should be noted
that the employed epoxidized plant oils possessed a decreasing epoxy value from 7.34% to 4.38%,
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thus resulting in the corresponding EA-like prepolymers with an introduced C=C functionality of 7.81
to 4.40 per triglyceride. In addition, the effects of C=C functionality and incorporating HEMA diluent
on the physiochemical properties and UV-curing behaviors of the resultant oil-based EA resins were
investigated and compared with commercial AESO resins.

2. Experimental

2.1. Materials

ESO was obtained from Shanghai Aladdin Chemistry Co., Ltd. (Shanghai, China), and possessed
an epoxy value of 7.34%. RSO and WSO were provided by Southwest Forestry University
(Yunnan, China). AESO with a viscosity of 37,500 mPa s, was supplied by Shandong Shouguang
Luke Chemical Co., Ltd. (Shandong, China). The methallyl alcohol (MAA, 98%) and hydroxyethyl
methacrylate (HEMA, ≥97%) were provided by Macklin Chemical Reagent Co., Ltd. (Shanghai, China).
Maleic anhydride (MA, ≥99.5%) was provided by Nanjing Chemical Co., Ltd. (Nanjing, China).
Triphenylphosphine (TPP, ≥98%) was supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). 4-Methoxyphenol (MEHQ, ≥99%) was supplied by Shanghai Titan Technology Co., Ltd.
(Shanghai, China). Darocur 1173 (98%) was provided by Saen Chemical Technology Co., Ltd.
(Zhengzhou, China).

2.2. Synthesis of MAAMA

About 28.5 g of MAA, 39.2 g of MA, and 0.136 g of MEHQ were mixed into a 250 mL four-neck
round-bottom flask fitted with a mechanical stirrer, thermometer, refluxing condenser, and a nitrogen
inlet. Then, the reaction was performed at 70 ◦C under the protection of N2 until solidified MA
completely melted. Subsequently, the mixture was heated to 90 ◦C for 5 h, and a golden yellow
transparent liquid at room temperature was obtained (see Scheme 1 for synthesis route).

Polymers 2020, 12, x FOR PEER REVIEW 3 of 16 

 

7.81 to 4.40 per triglyceride. In addition, the effects of C=C functionality and incorporating HEMA 
diluent on the physiochemical properties and UV-curing behaviors of the resultant oil-based EA 
resins were investigated and compared with commercial AESO resins. 

2. Experimental 

2.1. Materials 

ESO was obtained from Shanghai Aladdin Chemistry Co., Ltd. (Shanghai, China), and possessed 
an epoxy value of 7.34%. RSO and WSO were provided by Southwest Forestry University (Yunnan, 
China). AESO with a viscosity of 37,500 mPa s, was supplied by Shandong Shouguang Luke Chemical 
Co., Ltd. (Shandong, China). The methallyl alcohol (MAA, 98%) and hydroxyethyl methacrylate 
(HEMA, ≥97%) were provided by Macklin Chemical Reagent Co., Ltd. (Shanghai, China). Maleic 
anhydride (MA, ≥99.5%) was provided by Nanjing Chemical Co., Ltd. (Nanjing, China). 
Triphenylphosphine (TPP, ≥98%) was supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, 
China). 4-Methoxyphenol (MEHQ, ≥99%) was supplied by Shanghai Titan Technology Co., Ltd. 
(Shanghai, China). Darocur 1173 (98%) was provided by Saen Chemical Technology Co., Ltd. 
(Zhengzhou, China). 

2.2. Synthesis of MAAMA 

About 28.5 g of MAA, 39.2 g of MA, and 0.136 g of MEHQ were mixed into a 250 mL four-neck 
round-bottom flask fitted with a mechanical stirrer, thermometer, refluxing condenser, and a 
nitrogen inlet. Then, the reaction was performed at 70 °C under the protection of N2 until solidified 
MA completely melted. Subsequently, the mixture was heated to 90 °C for 5 h, and a golden yellow 
transparent liquid at room temperature was obtained (see Scheme 1 for synthesis route). 

 
Scheme 1. Synthesis route for new unsaturated carboxyl acid precursors obtained through the 
reaction of (a) methallyl alcohol (MAA) with maleic anhydride (MAA) (MAAMA) and (b) obtained 
epoxy acrylate-like prepolymers MMESO, MMERSO, and MMEWSO. ESO: epoxidized soybean oil, 
ERSO: epoxidized rubber seed oil, EWSO: epoxidized wilsoniana seed oil. 

2.3. Epoxidation of Plant Oils 

ERSO was synthesized as follows: approximately 42.7 g of RSO, 4.5 g of formic acid, and 50 mL 
of toluene were mixed in a four-necked round-bottom flask. Subsequently, about 3.0 g of 

Scheme 1. Synthesis route for new unsaturated carboxyl acid precursors obtained through the reaction
of (a) methallyl alcohol (MAA) with maleic anhydride (MAA) (MAAMA) and (b) obtained epoxy
acrylate-like prepolymers MMESO, MMERSO, and MMEWSO. ESO: epoxidized soybean oil, ERSO:
epoxidized rubber seed oil, EWSO: epoxidized wilsoniana seed oil.
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2.3. Epoxidation of Plant Oils

ERSO was synthesized as follows: approximately 42.7 g of RSO, 4.5 g of formic acid, and 50 mL of
toluene were mixed in a four-necked round-bottom flask. Subsequently, about 3.0 g of concentrated
sulfuric acid and 51 g of 30% hydrogen peroxide were added dropwise into the flask under 50 ◦C
within 30 min. After that, the mixture was heated to 70 ◦C for 5 h. Finally, the product was washed by
distilled water until neutral, and then a pale yellow transparent liquid that possessed an epoxy value
of 5.15% was obtained. EWSO was synthesized in the same way, and its epoxy value was 4.38%.

2.4. Synthesis of MMESO, MMERSO, and MMEWSO

The synthesis methods of MMESO, MMERSO, and MMEWSO are similar, taking the synthesis
of MMESO as an example (Scheme 1). Typically, 50 g of ESO, 35.83 g of MAAMA, 0.086 g of MEHQ,
and 0.86 g of TPP were charged into a four-neck round-bottom flask. Under the protection of N2,
the mixture was agitated under 110 ◦C for 2 h. During the work-up procedures, the resulting
crude MMESO product was washed by 10 wt % NaCl/H2O solutions three times, dissolved by
dichloromethane, dried with MgSO4, and evaporated via rotary evaporation. Finally, a light-yellow,
viscous liquid product at room temperature was obtained.

2.5. Curing of MMESO, MMERSO, and MMEWSO Resins

The UV-curable resins were obtained by mixing pure EA-like prepolymers (MMESO, MMERSO,
or MMEWSO), HEMA, and Darocur 1173 photoinitiator at room temperature. The formulations of EA
or EA/HEMA resins are shown in Table 1. Take the synthesis of MMESO/HEMA30 as an example:
about 7.0 g of MMESO, 3 g of HEMA, and 0.15 g of Darocur 1173 were mixed in a round-bottom flask
fitted with a mechanical stirrer. Then, the mixture was agitated at room temperature for about 30 min,
followed by degassing under vacuum for about 10 min. Then, the resulting samples were cast into a
self-made polytetrafluoroethylene mold or coated on polished tinplate sheets by a filmmaker. Finally,
the casted or coated samples were cured by an Intelli-Ray 400W UV light-curing microprocessor with a
UV wavelength of 320–390 nm from Uvitron International Corporation (USA). The exposure intensity
and time for all the samples were 100 mW/cm2 and 20 min, respectively.

Table 1. Composition of UV-cured epoxy acrylate (EA)-like samples. HEMA: hydroxyethyl methacrylate.

Samples * EA (wt %) HEMA (wt %) Darocur 1173 (wt %)

MMESO 100 0 1.5
MMERSO 100 0 1.5
MMEWSO 100 0 1.5

MMESO/HEMA30 70 30 1.5
MMERSO/HEMA30 70 30 1.5
MMEWSO/HEMA30 70 30 1.5

* The epoxy values of ESO, ERSO, and EWSO used for the synthesis of EA-like prepolymers were 7.34%, 5.15%,
and 4.38%, respectively.

2.6. Characterization

2.6.1. Acid Value (Av)

Acid values of samples were determined based on the procedures outlined in GB/T 2895-1982,
as provided in a previous work of us [40].

2.6.2. Epoxy Values (E)

Epoxy values were recorded based on the procedures outlined in GB 1677-81. Approximately
0.5 g of the sample was completely dissolved in 20 mL of chlorhydric acid/acetone solution; then,
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bromocresol was added as an indicator. Finally, the solution was titrated by 0.15 mol/L NaOH solution.
The epoxy value (g/100g) of the sample was determined using the following equation:

E =
(V1 −V2) ×CNaOH × 16

10m
(1)

where V1 = blank burette reading (mL), V2 = sample burette reading (mL), CNaOH = initial concentration
of NaOH solution, 16 = molar mass of oxygen atom, m = weight of sample (g).

2.6.3. Fourier Transform Infrared Spectroscopy Analysis (FT-IR)

FT-IR tests were conducted on a Nicolet iS10 IR spectrometer from Thermo-Fisher Corporation
(Thermo-Fisher Corporation, Waltham, Massachusetts, USA) within a scanning range from 650
to 4000 cm−1.

2.6.4. Nuclear Magnetic Resonance Analysis (NMR)

1H NMR tests were conducted on a DRX-300 Advance NMR spectrometer from Bruker Corporation
(Bruker Corporation, karlsruhe, Germany) with CDCl3 as a solvent.

2.6.5. Gel Content (Cgel)

The Cgel tests of MMEVO samples were performed via Soxhlet extraction. Typically, approximately
0.5 g of the cured samples were precisely weighed (recorded as m0), extracted by acetone for 24 h,
and finally dried at 60 ◦C until a constant mass was obtained (recorded as m1). The Cgel values of
samples were calculated as m1/m0 [41].

2.6.6. Dynamic Mechanical Analysis (DMA)

The DMA test of the samples was carried out on a Q800 solids analyzer (TA Corporation,
New Castle, PA, USA) under the conditions including a stretching mode, a frequency of 1 Hz,
a temperature within a range of −50 to 200 ◦C, and a heating rate of 3 ◦C/min. The size of the tested
samples was about 40 × 6 × 1 mm3.

2.6.7. Thermogravimetric Analysis (TGA)

The TGA test of the samples was performed using an STA 409PC thermogravimetry instrument
from Netzsch Corporation (Netzsch Corporation, bavaria, Germany) under N2 at a flow rate of
100 mL/min. The cured samples were ground to powders before the test. About 10 mg of the powder
for each sample was tested in a temperature range of 40 to 600 ◦C and at a heating rate of 15 ◦C/min.

2.6.8. Mechanical Properties

The tensile properties of samples were analyzed using a UTM 4304 universal tester (Shenzhen Suns
Technology Corporation, Shenzhen, China) with a speed of 5 mm/min. Five specimens with a size of
80 × 10 × 1 mm3 were evaluated for each sample to calculate the average values.

2.6.9. Coating Properties

Adhesion of the UV-cured coatings was evaluated by an adhesion test machin (Tianjin Shiboweiye
Glass Instrument Corporation, Tianjin, China) according to the procedures specified in GB 1720-79(89).
The adhesion grade ranged from 1 to 7 grade (1 grade is the best). The pencil hardness of the
UV-cured coatings was measured on a QHQ-A pencil hardness tester from Tianjin Litengda Instrument
Corporation based on the procedures listed in GB/T 6739-2006. The pencil hardness mainly includes 6H
to H, HB, and B to 6B (from the hardest to the softest). Flexibility of the UV-cured coatings was tested
by a QTY-32 paint film cylindrical bending machine from Tianjin Litengda Instrument Corporation
(China) according to the procedures listed in GB/T 1731-93. The class of flexibility involves 2, 3, 4, 6, 8,
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10, 12, 14 mm, etc., (2 mm is the best). Detailed procedures for the coating tests were indicated in a
previous work of ours [30,42].

2.6.10. UV-Curing Kinetics

The UV curing behaviors of the obtained liquid resins were tested by a modified Nicolet
5700 spectrometer (Thermo-Nicolet Instrument Corporation, Madison, WI, USA). The C=C conversion
rate (αC = C) was recorded by monitoring the absorption intensity of the C=C peak at approximately
810 cm−1, which can be calculated using the following equation [43,44]

αC=C =
A0 −At

A0
× 100% (2)

where A0 and At are the C=C peak areas at the original time and t time, respectively.

3. Results and Discussion

3.1. Synthesis and Characterization of Oil-Based EA-Like Prepolymers

The synthesis of pure EA-like prepolymers mainly involved two steps, as displayed in Scheme 1.
Av values of the products were used to monitor the reaction extents. First, the synthesis process of the
MAAMA precursor was investigated, as shown in Figure S1. After being performed at 90 ◦C for 5 h,
its Av value was basically stable at around 329.8 mgKOH/g, which was very close to the theoretical acid
value of 332.1 mgKOH/g. Second, MAAMA was used to modify ESO, ERSO, and EWSO, and after being
reacted at 90 ◦C for 2 h, the Av values of the reaction mixtures were all below 25 mgKOH/g (as shown in
Table 2). Finally, the corresponding EA-like precursors (MMESO, MMERSO, and MMEWSO) products
were obtained.

Table 2. Properties of UV-cured EA-like samples. AESO: acrylated ESO.

Samples Av
a mgKOH/g NC=C

b Cbio
c (%) Cgel

d (%)

AESO 18.2 2.25 84.1 93.1
MMESO 20.2 7.81 59.0 95.9

MMERSO 23.2 5.92 65.1 93.3
MMEWSO 22.4 4.40 71.3 87.1

AESO/HEMA30 - - 58.8 98.0
MMESO/HEMA30 - - 41.3 99.9

MMERSO/HEMA30 - - 45.6 99.5
MMEWSO/HEMA30 - - 50.0 98.5

a Acid value. b Introduced C=C functionality per triglyceride. c Bio-based. content. d Gel content.

Chemical structures of the MAAMA, ESO, and final EA-like prepolymers MMESO were
characterized by FT-IR, as depicted in Figure 1. The FT-IR spectra of ERSO, MMERSO, EWSO,
and MMEWSO are depicted in Figure S2. In the MAAMA spectrum, the strong absorption bands
around 2500–3400 cm−1, 1643 cm−1, and 816 cm−1 were attributed to the characteristic peaks of carboxyl
groups, C=C extensional vibration, and C=C bend vibration, respectively [45]. In the spectra of ESO,
ERSO, and EWSO, the peaks at 823 cm−1 related to epoxy groups were observed [23]. As for the
spectra of MMESO, MMERSO, and MMEWSO, the epoxy peak at 823 cm−1 and the carboxyl peak at
2500–3400 cm−1 basically disappeared, while a new small peak at around 3540 cm−1 assigned to the
hydroxyl group appeared [22,46,47]. These changes indicated that the epoxy groups on epoxidized
plant oils (EPO) successfully reacted with the carboxyl group on MAAMA. Besides, new peaks at 816
and 1643 cm−1 appeared, which could be assigned to the C=C bend vibration and C=C stretching
vibration, respectively. All these changes indicated that EPO has been successfully grafted by MAAMA.
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Figure 1. FT-IR spectra of (a) MAAMA, (b) ESO, and (c) MMESO.

The 1H NMR spectra of MAAMA, ESO, and MMESO are presented in Figure 2. The 1H NMR
spectra of ERSO, MMERSO, EWSO, and MMEWSO are depicted in Figure S3. In the spectrum of
MAAMA, the peak at 11.9 ppm corresponds to the protons of carboxyl groups due to the ring-opening
reaction of MA [30]. The peaks at 4.94 and 6.37 ppm could be assigned to the C=C protons on methallyl
ester and maleate, respectively [4]. The peaks at 1.73 ppm were assigned to the three-terminal methyl
protons in methallyl alcohol, which are always used as a reference since its intensity should not alter
during the modification. According to Figure S4, the C=C functionality of MAAMA can be calculated
from the peaks at 4.8–5.1 ppm and 6.0–6.9 ppm and it was 1.98, which was very close to the theoretical
value of 2. In the spectra of ESO, ERSO, and EWSO (Figure 2 and Figure S3), the peaks at 2.8–3.2 ppm
correspond to the protons on epoxy groups [48]. The peaks at around 0.88 ppm were assigned to the
terminal methyl protons in triglycerides, which can be used as a reference to estimate the amount
of epoxy group, since it is inactive throughout the modification process. Based on Figures S5–S7,
the introduced oxirane groups per triglyceride of ESO, ERSO, and EWSO were 4.36, 3.0, and 2.53,
respectively. In the spectra of MMESO, MMERSO, and MMEWSO (Figure 2 and Figure S3), the peaks
at 11.9 ppm and 2.8–3.2 ppm respectively corresponding to the carboxyl groups and the epoxy group
almost disappeared, indicating the reaction between them. Meanwhile, a new peak at about 4.0 ppm
attributed to the methine protons on the connecting structure of MAAMA and ESO, ERSO, and EWSO
occurred [30]. Besides, new strong peaks at around 4.8–5.1 ppm and 6.0–6.9 ppm appeared, which can
be ascribed to the introduced C=C protons from MAAMA. The introduced C=C functionality on the
EA-like prepolymers could also be calculated according to the reference peak at 0.88 ppm. Based on
Equation (3) and Figures S8–S10, the introduced C=C functionality for ESO, ERSO, and EWSO was
7.81, 5.92, and 4.40, respectively, which was much higher compared to the commercial AESO products
(2.25, see Equation (S1) and Figure S11) [40].

NC=C =

(
A4.8–5.1 ppm + A6.0–6.9 ppm

)
/2

A0.88 ppm/ 9
=

9(A4.8–5.1 ppm + A6.0–6.9 ppm
)

2A0.88 ppm
(3)
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Figure 2. 1H NMR spectra of (a) MAAMA, (b) ESO, and (c) MMESO.

In theory, the C=C functionality introduced (NC=C) in MMESO, MMERSO, and MMEWSO should
be twice the amount of epoxy groups consumed (Cepoxy) in ESO, ERSO, and EWSO, respectively.
In reality, the C=C functionality introduced was slightly less than twice the oxirane group consumption.
This may be due to the incomplete reaction or side reactions that occurred during EA synthesis.
For instance, it could allow an oligomerization between oxirane and oxirane groups caused by the
residual MAA or MA [26,30,49].

3.2. Bio-Based Content of the UV-Cured EA-Like Materials

The bio-based content of a material can be defined as the amount of bio-based carbon as a
percentage of the total organic carbon weight in the product [2,42,47]. According to this definition,
the bio-based contents of the neat ESO, ERSO, EWSO, MAAMA, HEMA, HEA, and Darocur 1173 were
100%, 100%, 100%, 0%, 0%, 0%, and 0%, respectively. The bio-based contents of the resulting materials
are listed in Table 2. As the C=C functionality increased, the bio-based content of the UV-cured pure EA
resins decreased gradually. Since the pure MMESO material possessed the highest C=C functionality,
it presented the lowest bio-based carbon content of 59.0%. In contrast, AESO contained the lowest C=C
functionality and therefore exhibited the highest content up to 84.1%. Similar trends were observed
for the EA/HEMA materials. In addition, a significant decrease in the bio-based content of EA-like
resin was observed when incorporating 30% of HEMA diluent. For instance, the bio-based content of
MMESO/HEMA30 dropped from 59.0% in pure MMESO to 41.3%.

3.3. Gel Contents of the UV-Cured EA-Like Materials

Gel content (Cgel) is closely related to the final properties of thermosetting materials because it
can reflect the cross-link extent of the thermosets [2]. The Cgel values of the UV-cured EA or EA/HEMA
materials are displayed in Table 2. The UV-cured pure MMESO and MMERSO materials demonstrated
a higher Cgel than commercially available AESO resins, suggesting that they had a higher cross-link
extent than AESO. Similar trends were observed when comparing the three EA/HEMA30 materials with
the AESO/HEMA30 materials. As the C=C functionality on EPO rose from 4.40 to 7.81, the Cgel values
of the pure EA materials increased from 87.1% to 95.9%, and the values of the EA/HEMA materials
increased from 98.5% to 99.9%. These results indicated that the improved functionality of thermosets
can effectively enhance the cross-link extent of the resulting UV-cured materials. Furthermore, the Cgel

values of the cured EA/HEMA resins containing 30% of HEMA diluent were apparently improved
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compared to those of pure EA resin, which demonstrated that the incorporation of diluent was
beneficial to the improvement of the cross-linking of the UV-cured materials.

3.4. Properties of the UV-Cured EA-Like Materials

3.4.1. Dynamic Mechanical Analysis

The dynamic mechanical analysis including the storage modulus (E’) and loss factor (tan δ) of the
UV-cured EA-like samples is demonstrated in Figure 3, and the related data are summarized in Table 3.
The glass transition temperature (Tg) was defined as the peak temperature of tan δ curves, and the
cross-link density (νe) of the cured resins was calculated using the following equation [2,22,50]

νe =
E′

3RT
(4)

where E’ is the storage modulus of the resins in the rubber state (the E’ at Tg + 60 ◦C was selected to
calculate νe in this work), R represents the gas constant, and T represents the absolute temperature.
Firstly, the pure MMESO material showed the E’ at 25 ◦C (E′25) values of 697.5 MPa and Tg values of
69.4 ◦C, which were 7.0 and 4.4 times the values of the neat AESO material, respectively. The pure
MMERSO material also showed much better E’25 and Tg than the pure AESO material, although ERSO
had a clearly lower epoxy value that ESO. Similar results were demonstrated when comparing the
MMESO/HEMA30 and MMERSO/HEMA30 materials with the AESO/HEMA30 material. All the results
indicated that the MAAMA modification of epoxidized plant oils was much more effective to achieve
high-performance plant oil-based EA resins than the common acrylic acid (AA) modification. Secondly,
for the UV-cured pure EA materials, as the C=C functionality increased, the E’25 improved from 42.6 to
697.5 MPa, Tg improved from 17.2 to 69.4 ◦C, and νe increased from 0.86 × 103 to 5.74 × 103 mol/m3.
The improvement of E’25 and Tg probably results from the increase of νe and the incorporation of
more methyl steric structure from MAA. Similar trends were observed for the EA/HEMA materials,
except that the MMEWSO/HEMA30 system demonstrated two Tg values, which indicated the existence
of phase separation. For instance, the MMESO/HEMA30 material showed a Tg value of 84.0 ◦C,
which was clearly higher than that of bisphenol A epoxy acrylate resin [24]. In addition, compared
to the pure EA systems, the E′25 and Tg values of the EA/HEMA materials increased significantly,
while the νe values decreased during this change. The decline of νe values probably lies in that the
added diluent is a monofunctional monomer, which increased the effective molecular weight between
cross-linked sites [41]. Therefore, the growth of E′25 and Tg values can be ascribed to the methyl steric
hindrance from HEMA [22,41]. These results also suggested that the steric structure of HEMA played
a more crucial part than the νe values in determining the thermal–mechanical properties of the novel
EA-like materials.
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Figure 3. Storage modulus (a,b) and loss factor(c,d) of the UV-cured EA-like materials.

Table 3. Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA) results of the
UV-cured EA-like materials.

Samples E’25
a

(MPa) Tg
b (◦C)

E’Tg + 60
c

(MPa) νe
d (×103 mol/m3) T5

e (◦C ) Tp
f (◦C) Wchar

g (%)

AESO 99.2 15.7 31.6 3.63 331.2 401.0 1.54
MMESO 697.5 69.4 57.6 5.74 271.1 399.8 3.01

MMERSO 343.5 55.6 28.8 2.97 265.9 401.6 1.96
MMEWSO 42.6 17.2 7.5 0.86 251.0 399.8 3.08

AESO/HEMA30 550.9 56.2 18.6 1.91 292.2 432.2 2.14
MMESO/HEMA30 1017.2 84.0 19.8 1.92 281.3 426.3 3.37

MMERSO/HEMA30 695.7 73.9 12.2 1.20 271.4 411.3 4.09
MMEWSO/HEMA30 43.7 17.5, 107.8 2.7 0.25 263.8 408.9 4.05

a Storage modulus at 25 ◦C. b Glass transition temperature, for MMEWSO/HEMA30 system, the second ones were
employed to calculate cross-link density. c Storage modulus at Tg + 60 ◦C. d Cross-link density. e 5% Thermal weight
loss temperature. f Peak temperature at the curves of the weight-loss rate. g Char yield.

3.4.2. Thermogravimetric Analysis

TGA analysis of the UV-cured EA-like materials is depicted in Figure 4 and the corresponding
data involving 5% weight-loss temperature (T5), the peak temperature of the weight-loss rate curves
(Tp), and char yield (Wchar) are summarized in Table 3. Firstly, the T5 values for the pure EA and
EA/HEMA materials were clearly lower than those of the AESO counterparts. This is because the
EA prepolymers contained more ester groups than AESO, which is detrimental to the initial thermal
stability of the resulting polymeric materials [2,44]. Differently, the Tp values of the pure EA materials
were almost the same as those of the pure AESO material, while the Tp values of the EA/HEMA
materials were lower than those of the AESO/HEMA material. The decline of Tp probably results
from that the EA/HEMA materials showed a larger drop of νe than the AESO/HEMA material when
incorporating HEMA into the materials. Secondly, for the pure EA materials, as the C=C functionality
increased, the T5 values increased from 251.0 to 271.1 ◦C, while the Tp values fluctuated at about 400 ◦C.
However, for the EA/HEMA materials, both T5 and Tp values increased clearly with the increase of
C=C functionality. The rise of T5 and Tp values is probably ascribed to the growth of νe for both the
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pure EA and EA/HEMA systems. In addition, the obtained EA/HEMA materials showed better T5

and Tp values than the neat EA materials, indicating that the incorporation of HEMA diluent had a
positive effect on the thermal stability of the EPO-based materials.Polymers 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 4. TGA curves (a,b) and their derivatives (c,d) of the UV-cured EA-like materials.

3.4.3. Mechanical Properties

Figure 5 exhibited the typical stress–strain curves of the resulting EA-like materials, and the
related data are listed in Table 4. Notably, the neat MMESO material exhibited tensile strength and
modulus (σ and E) of 9.42 MPa and 200.3 MPa, respectively, which was 9.2 and 3.4 times the neat
AESO resin. The neat MMERSO material also indicated much better tensile σ and E than the neat
AESO material, although ERSO had an obviously lower epoxy value that ESO. Similar results were
discovered in the cured EA materials with HEMA diluent. These results also demonstrated that the
MAAMA modification of epoxidized plant oils was much more effective than the AA modification
for high-performance oil-based epoxy acrylate resins, which agreed very well with the DMA results
mentioned above. For the pure EA materials, as the C=C functionality increased, σ improved from
1.17 to 9.42 MPa, E improved from 19.4 to 200.3 MPa, and breaking strain (ε) decreased from 6.26% to
2.49%, respectively. Similar trends were demonstrated for the EA/HEMA materials. These variations
can be attributed to the increase of cross-link density. As we know, an increase in cross-link density
usually results in the improvement of stiffness and decrease of flexibility and toughness, and vice
versa [30,51]. In addition, as the HEMA diluent content increased from 0 to 30%, the values of σ, E,
and ε improved remarkably. For instance, the cured MMESO/HEMA30 material exhibited a σ value of
15.81 MPa and E value of 259.2 MPa, which were comparable to the similar ESO-based UV-curable
coatings [7]. The obtained MMERSO/HEMA30 possessed a σ value of 10.12 MPa, E value of 186.7 MPa,
and ε value of 14.56, which were 3.5, 2.4, and 2.6 times the values of the pure MMERSO material,
respectively. These results meant that the addition of HEMA diluent not only enhanced the rigidity of
the resin but also improved the flexibility and toughness of resins. The reason for these changes lies in
that the incorporation of HEMA could introduce methyl steric hindrance in the resulting bio-based
materials, which was in good accordance with the DMA results, too.
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Figure 5. Stress–strain curves of the UV-cured EA-like materials.

Table 4. Mechanical properties and coating performance of the UV-cured EA-like materials.

Samples σ a (MPa) E b (MPa) ε c (%) Ad. d (Grade) P.H. e Fl f (mm)

AESO 1.02 ± 0.17 59.5 ± 8.2 1.75 ± 0.91 4 6B 2
MMESO 9.42 ± 0.79 200.3 ± 29.0 2.49 ± 0.86 3 5B 2

MMERSO 2.90 ± 0.32 76.6 ± 5.4 5.55 ± 0.79 4 6B 2
MMEWSO 1.17 ± 0.26 19.4 ± 2.4 6.26 ± 1.33 4 6B 2

AESO/HEMA30 5.30 ± 0.12 83.3 ± 5.0 15.61 ± 0.56 2 2H 2
MMESO/HEMA30 15.81 ± 0.13 259.2 ± 7.3 8.99 ± 0.60 3 H 2

MMERSO/HEMA30 10.12 ± 0.55 186.7 ± 6.9 14.56 ± 1.11 2 2B 2
MMEWSO/HEMA30 2.41 ± 0.29 11.8 ± 0.6 19.58 ± 1.36 2 4B 2

a Tensile strength. b Tensile modulus. cElongation at the break. d Adhesion. e Pencil hardness. f Flexibility.

3.4.4. Coating Properties

The coating properties of the cured EA-like materials were analyzed, and the related results are
listed in Table 4. Firstly, the pure MMESO film exhibited better adhesion and pencil hardness than the
neat AESO film, which is most likely because of the higher νe. The neat MMERSO and MMEWSO
films possessed equal adhesion, pencil hardness, and flexibility as those of neat AESO film. However,
compared to the AESO/HEMA30 materials, the UV-cured EA/HEMA materials demonstrated lower
pencil hardness, which is possibly ascribed to the larger drop of νe. Secondly, as the C=C functionality
rises, the adhesion and pencil hardness of the neat EA-like films increased slightly, while only the pencil
hardness of the EA/HEMA films increased apparently. The increase in hardness can also be attributed
to the improvement of νe. Finally, a significant improvement of adhesion and pencil hardness values
was observed when incorporating 30% of HEMA diluent, indicating that the addition of HEMA diluent
had a positive impact on the coating performances.

3.5. UV-Curing Kinetics of the EA-Like Resins

Photopolymerization behaviors of the EA-like resins were measured by the Real-time Fourier
Transform Infrared Spectroscopy (RT-IR) technique. The real-time C=C conversion of liquid resin was
analyzed by monitoring the 810 cm−1 peak intensity [43,44], as shown in Figure 6. Obviously, the C=C
functional groups of both EA and EA/HEMA materials were rapidly polymerized and reached the
highest rates of C=C conversion (dα/dt) in less than 50 s, and the C=C conversions were all above 60%
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after 150 s. Therefore, we can conclude that they have excellent copolymerization reactivity. As the
C=C functionality increases, the final C=C conversion of the pure EA materials improved from 74.7%
to 85.0%. For the EA/HEMA materials, the final C=C conversion improved from 77.1% to 92.9%.
When incorporating 30% of HEMA diluent into the EA prepolymers, the final C=C conversions were
also improved, which is probably caused by the good diluting effect of HEMA [21,22]. Specially,
the pure MMESO resin demonstrated a lower final C=C conversion compared to the AESO resins,
which is mainly caused by the effect of a steric hindrance for both maleic and allylic C=C groups in
the oil-based EA systems. However, due to the higher C=C functionality of the MMESO oligomer
compared to that of the AESO, the resulting MMESO material still indicated higher cross-link density
when cross-linking [30]. Similar results were demonstrated when comparing the MMESO/HEMA30
materials with the AESO/HEMA30 materials.Polymers 2020, 12, x FOR PEER REVIEW 13 of 16 
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Figure 6. Double bonds conversion rates (a,b) and polymerization rates (c,d) of the UV-cured
EA-like materials.

4. Conclusions

In this study, we firstly synthesized a series of novel oil-based EA-like prepolymers with different
C=C functionality through the modification of epoxidized plant oils with MAAMA, which is a new
unsaturated carboxyl acid compound with two active C=C groups and a methyl group. Both the
UV-cured pure MMESO and MMESO/HEMA materials showed much better stiffness and heat
resistance such as E′25 Tg, σ, and E than the corresponding AESO materials. Both the UV-cured pure
MMERSO and MMERSO/HEMA materials also exhibited clearly better stiffness and heat resistance
than the corresponding AESO materials, although ERSO had an obvious lower epoxy value that
ESO. These results indicated that the MAAMA modification of epoxidized plant oils was much more
effective than the AA modification for preparing high-performance oil-based epoxy acrylate resins.
In addition, we investigated two important effects, the C=C functionality of such EA-like prepolymers
and the incorporation of HEMA diluent, on the ultimate properties and UV-curing behaviors of the
resulting UV-cured materials and established the structure–property relationships successfully for
the obtained EA-like materials. By the increase of C=C functionality of the EA prepolymers or the
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incorporation of HEMA diluent, most of the important properties including E’25, Tg, T5, Tp, σ, E,
and hardness of coating increased generally for both the pure EA and EA/HEMA resins. The growths
mainly result from the rise of νe or the incorporation of methyl steric hindrance or both. In general,
this study could not only provide several high-performance UV-curable oil-based EA resins which
can be applied in the fields of coatings such as wood coatings but also offer substantial fundamental
research for tuning their properties and the UV-curing process for the coating application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/9/2165/s1,
Figure S1: Acid values of MAAMA, Figure S2: FT-IR spectra of (a) ERSO, (b) MMERSO, (c) EWSO, and (d)
MMEWSO, Figure S3: 1H NMR spectrum of (a) ERSO, (b) MMERSO, (c) EWSO, and (d) MMEWSO, Figure S4:
1H NMR spectrum of MAAMA, Figure S5: 1H NMR spectrum of ESO, Figure S6: 1H NMR spectrum of ERSO,
Figure S7: 1H NMR spectrum of EWSO, Figure S8: 1H NMR spectrum of MMESO, Figure S9: 1H NMR spectrum
of MMERSO, Figure S10: 1H NMR spectrum of MMEWSO, Figure S11: 1H NMR spectrum of AESO, Equation (S1):
Determining the grafted C=C functionality for AESO.
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