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Abstract: In this paper, gas chromatography–mass spectrometry (GC–MS) and positron annihilation
lifetime spectroscopy (PALS) were used to probe the changes of oligomers and the polydimethyl-
siloxane (PDMS) network in silicone rubber, after different durations of UVA/UVB irradiation. At
the early stage (<300 h) of UVA/UVB irradiation, the concentration of D4-D9 decreases. The o-Ps
intensity of the extracted silicone rubber increases in the stage after UVB irradiation. These results
indicate the crosslinking of oligomers into the PDMS network. After a long duration (>300 h) of UVB
irradiation, D4 was generated and the lifetime of τ3 also increased, indicating the rupture of the Si-O
bond in the PDMS network. These two aging processes were termed the post curing process and
the chain session process. The new finding was that UVA could only induce the post curing process;
UVB causes the rupture of the chemical bond in silicone rubber. Photons of UVB could break the
C-H bond, and then trigger the backbiting decomposition of PDMS, breaking the Si-O bond, while
the photons of UVA cannot. The fact that D4 was generated after UVB irradiation can be used to
evaluate the UVB stability of silicone rubber in the future.

Keywords: silicone rubber; gas chromatography-mass spectrometry; positron annihilation lifetime
spectroscopy; UVA/UVB irradiation; silicone oligomers

1. Introduction

In recent years, polydimethylsiloxane (PDMS) based composite has had a myriad of
applications [1–5] such as high voltage external insulation, microfluidic devices and soft
lithography, and is promising as an insulation material for superconducting cable, and so
forth. In the area of insulation especially, compared with the traditional inorganic insulation
materials, PDMS based silicone rubber has advantages such as a lower weight, better
hydrophobicity, and unique hydrophobicity recovery [6–8]. In the running environment
of an insulation device, its surface might be polluted by dust and salt. On encountering
wet weather conditions, the polluted surface will form a continuous water film, which is
conductive because of the dissolution of salt. As a result, the leakage current and dry-band
arcing will develop on an insulation device, finally triggering flashovers on a transmission
line. Flashover induced trip is a disaster for the quality of electricity transported in a
power grid. The hydrophobicity property of silicone rubber can hinder the formation of
water films on its surface, and thus greatly reduce the possibility of flashovers. However,
as a kind of polymer, silicone rubber can age and lose its surface hydrophobicity. The
amazing thing is that, while the surface hydrophobicity of a silicone rubber can be lost, it
can regain this property gradually after a subsequent period of rest. The mechanism of this
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unique hydrophobicity recovery of silicone rubber has already been intensively studied.
Researchers have reached the conclusion that the diffusion of the low molecular weighed
(LMW) siloxanes from the bulk to the surface of a silicone rubber is the main mechanism
of the hydrophobicity recovery process [9,10]. Thus, characterizing the LMW siloxanes
in silicone rubber is vital for evaluating the long time running behavior of a silicone rubber
made insulation device.

Existing studies have focused on the variations of LMW siloxanes in silicone rubber
treated by aging factors in its typical conditions of use, such as corona discharge, biological
environment, and so on. The effect of corona discharge has already been studied by
Hillborg et al. [11], and they found that mainly cyclic silicone oligomers of D4–D9 are
generated on the surface of silicone rubber after corona aging. Kaali el al. [12] conducted
a biodegradation of silicone rubber, and they found that human patient exposure would
induce the generation of linear PDMS oligomers in silicone rubber. For a long time, it is
has been thought that PDMS is stable in UV sunlight, especially in the UVA wavelength
range (300∼380 nm) [13–15]. However, for some sunlight rich areas, such as the Yunnan
province in China, the aging effect of UVB (280∼340 nm) should be considered. Because
the atmosphere is rather thin in plateau places, even UVB can reach the Earth due to the
much weaker reflection effect of the atmosphere in these areas. In our previous study,
UVB induced aging in silicone rubber was studied with the slow positron beam method, a
technique used for depth profile analysis. It was found that an inorganic silica-like layer
is formed on the sample’s surface, and the chain scission of PDMS does occur in silicone
rubber [16]. In order to acquire a deeper understanding of this UVB induced degradation
in PDMS, gas chromatography–mass spectrometry (GC–MS) was used to probe the LMW
siloxanes’ variations in silicone rubber.

In this paper, the silicone rubber was irradiated by lamps of sunlight UVA-340 nm
and UVB-313 nm, respectively. The LMW siloxanes in the silicone rubber were extracted
by a soxhlet extraction process, and the extracts were analyzed by GC–MS. An external
standard method was used for further quantitative analysis using GC. In order to study
the crosslinking state of the PDMS network, positron annihilation lifetime spectroscopy
(PALS) was also used. Based on the obtained results, we found that the Si-O bond of
PDMS ruptured after UVB irradiation, and a possible aging mechanism of this degradation
process was finally proposed.

2. Experiments
2.1. Materials Preparation

High-temperature vulcanized silicone rubber was studied. The raw materials used
to manufacture the silicone rubber are listed in Table 1. The methyl-teinated PDMS was
purchased from Cix Xin Rui Chemical Co., Ltd. (Cixi, China). The molecular weight of the
PDMS was 45∼85 × 104 g/mol. The hydride-functional silicone oils were α,ω-dihydroxyl
polydimethylsiloxane, purchased from Hoshine Silicone Co., Ltd. (Cixi, China). The
silane coupling agent was triethoxyvinylsilane, and its molecular weight was 190 g/mol,
purchased from Shouzheng Chemical Technology Co., Ltd. (Guangzhou, China). The
manufacturing process of silicone rubber included the following four steps. First, a methyl-
terminated PDMS and the hydride-functional silicone oils were fully mixed at 50 ◦C for
5 h. During this mixing process, some necessary fillers, such as aluminium hydroxide, zinc
oxide, and amorphous silica, were also added. Second, after the mixture cooled down, we
added the 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane catalyst into the mixture by open
mixing in double-roller blending rolls for 10 min. Third, the mixture obtained from the
first two steps was vulcanized in a mould at 170 ◦C, 15 Mpa for 10 min. Fourth, we put the
vulcanized silicone rubber in an electric blast drying oven for the post-curing process at
170 ◦C for 6 h.
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Table 1. The content of the raw materials used in the silicone rubber.

Raw Material Type Raw Material Name Weight Percentage
(phr) (wt.%)

organic component methyl-terminated PDMS 100 46.51
inorganic fillers aluminum hydroxide (ATH) 70 32.56

amorphous silica (SiO2) 25 11.63
zinc oxide (ZnO) 2 0.93

assistant additives hydride-functional silicone oil 10 2.79
silane coupling agent 6 4.65

2,5-dimethyl-2,5-di(tert-butylperoxy) 2 0.93

2.2. Ultraviolet Irradiation

Before irradiation, samples were cut into a plate with a dimension of 20 × 20 × 1 mm3.
The irradiations were performed by the Q-lab’s commercial UVA-340 nm (center wave-
length 340 nm) and UVB-313 nm lamps (center wavelength 310 nm), respectively. Only one
side of the sample was exposed to ultraviolet rays. The distance between the UVA/UVB
source and the PDMS composite was 50 mm. The UVA/UVB radiation power density was
55 mW/cm2, and the temperature of the radiation chamber was regulated at 50 ◦C. All the
samples were exposed to UVA/UVB irradiation for different periods of time.

2.3. Extraction of the Uncrosslinked Siloxanes

The uncrosslinked LMW siloxanes in silicone rubber were extracted in a soxhlet
apparatus. A total weight of 25 g of sample was cut into pieces for extraction. The solvent
was n-hexane, analytical regent grade, for which the heating temperature was 90 ◦C. The
amount of used n-hexane was approximately 200 mL, which was able to immerse all the
silicone rubber samples in the soxhlet apparatus. Based on our previous study, we found
that 96 h of heating and reflux could extract all the LMW siloxanes in the bulk of a silicone
rubber. A detailed discussion can be found in the Supporting Information. After 96 h of
extraction, the extract solution was concentrated to 10 mL using a rotatory evaporator
under 90 ◦C. The purpose of using rotatory evaporation was to concentrate the extracts for
quantitative analysis. A higher concentration of the silicone oligomers solution makes it
easier for the GC–MS to detect, because the instrument has a detection limit.

2.4. GC–MS and GC Analysis

GC–MS was mainly used to identify the structure of the LMW siloxanes in the silicone
rubber extracts. The instruments used were the Varian 450-gas chromatography 320-mass
spectrometry, coupled with a thermal conductivity detector (TCD). The separation was
carried out in a Varian VF-5ms capillary column. Helium was used as the carrier gas. The
injector port temperature was set at 280 ◦C. The initial oven temperature was 50 ◦C. This
temperature was kept for 3 min, after which the temperature was linearly increased to
290 ◦C at a rate of 20 ◦C/min. The final temperature was held for another 10 min. The
TCD detector temperature was set at 280 ◦C. The mass spectrometer was operated at 70 eV.
The transfer line between GC and MS was 260 ◦C. The mass spectra of LMW species were
verified by comparison of the identified species with the NIST08 database.

GC was used to quantify the extracted LMW siloxanes, using an external standard
method. The instrument was an Agilent 6890 gas chromatography, equipped with a
flame ionization detector (FID). The injector port temperature and the heating program
were set to the same as the GC–MS. Octamethyl cyclotetrasiloxane (D4) was used as the
standard substance. A linear relationship between D4 concentration and its peak area was
determined. The calibration was based on the assumption that the D4 calibration curves
were also valid for other LMW siloxanes.
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2.5. Positron Annihilation Lifetime Spectroscopy

Positron annihilation lifetime spectroscopy (PALS) was used to probe the free volume
changes in silicone rubber after UVB irradiation. Before PALS measurement, each sample
was extracted in a soxhlet apparatus using n-hexane. In order to remove the solvent,
n-hexane, the extracted samples were stored in a vacuum chamber at 5 Pa for 24 h. Then,
the silicone rubbers were cut into dimensions of 20 × 20 × 1 mm3 for PALS measurement.
The PALS data were collected using a conventional fast–fast coincidence system with a
time resolution of 300 ps. A 22Na positron source was sandwiched between two pieces of
silicone rubber. The measurement was conducted at room temperature and each spectrum
had a total count of one million. Each obtained lifetime spectroscopy was analyzed by
the PATFIT program [17]. Other details of the experiment can be found in our published
works [18].

3. Results and Discussion
3.1. Extracts in Silicone Rubber Identified by GC–MS

In GC–MS, the function of GC is to separate the substances, while the mass spectrom-
etry is to identify the corresponding structure of the substance. As shown in Figure 1,
each peak in GC has a corresponding mass spectrum, so each of them represents a kind of
extracted LMW silicone. Two methods were used to identify the structure of each extracted
LMW silicone by mass spectra: first, through automatic matching with the standard cards
in the NIST08 database in the GC–MS software and second, through manual analysis of
the mass spectrum.
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Figure 1. Gas chromatogram showing the homologous peak marks of the extracts in virgin sili-
cone rubber.

In Figure 1, the peaks marked from D4 to D10 are identified by comparing with
the NIST08 data base. The result indicates that the extracts are mainly siloxanes. Lager
retention time peaks, from N-1 to N-19, cannot be identified by this method because their
mass spectrum peaks are similar, resulting in a rather low comparing similarity with the
standard card. As a result, the structures of the peaks from N-1 to N-19 were identified by
the manual analysis.

In mass spectra, unknown peaks from N-1 to N-19 all contain m/z of 73, 147, 207, 221,
and 281, as shown in Figure 2, where m is the mean atomic mass and z is the charge of the
detected ion. Here, the m/z of 73, 147 and 221 correspond to the structure of [+Si(CH3)3],
[+(CH3)2SiOSi(CH3)3], and [+((CH3)2SiO)2Si(CH3)3], which originate from the methyl shift
process after the electron impact. By contrast, the m/z of 207, 281 results from the loss of a
methyl group (CH3) in D3 and D4, respectively [19]. The results indicate that peaks from
N-1 to N-19 are also siloxanes, judging by the distinctive mass number, that is, m/z of 73,
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147, 207, 221 and 281. Therefore, we propose that successive peaks in Figure 1 correspond
to a unit increase in the number of dimethylsiloxane units.
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Figure 2. Mass spectra of N-3 and N-11 in GC–MS of the silicone rubber extracts.

As shown in Figure 2, structures for m/z of 295, 355, 369, and 429 are plotted. It can be
seen that the m/z of 355 and 429 are fragments of cyclic siloxanes, while the m/z of 29 and
369 are fragments of linear siloxanes. The differences between the mass spectra of N-3 and
N-11 are that N-3 has more m/z of 295, 369 than N-11, and N-11 has more m/z of 355, 429
than N-3. The result indicates that N-3 has many more methyl end-groups. Referring to the
data on soft ionization published in the literature [20], we propose that peak N-3 is a linear
LMW siloxane, and peak N-11 is a cyclic LMW siloxane. Thus, the peak N-11 represents the
substance of D11, while N-3 represents the substance of L10 (Ln=CH3[(CH3)2SiO]nSi(CH3)3).
Based on the above discussion, peaks from N-11 to N-19 are cyclic siloxanes from D11 to
D19, and peaks from N-1 to N-10 are linear siloxanes from L8 to L17.

3.2. Quantitative Analysis of Extracts in Silicone Rubber Irradiated by Sunlight UV

An overall variation trend of LMW siloxanes in silicone rubber after UVA/UVB
irradiation is shown in Figure 3. Each peak’s intensity in GC remains almost unchanged
after UVA irradiation, while the intensity of peak D4 grows after UVB irradiation. This
result indicates that the PDMS networks in silicone rubber are stable in UVA light, and this
also corresponds with the results reported in the literature [13,14]. However, after UVB
irradiation, the PDMS network in silicone rubber would decompose. This result is related
to the photon energy differences between UVA and UVB. The wavelength range of UVB
(280∼340 nm) is much shorter than UVA (300∼380 nm), and thus the maximum photon
energy of UVB (4.44 eV) is much higher than that of UVA (4.14 eV). In our previous study,
we found that UVB light could break the Si-C bond in PDMS and lead to the generation of
a silica-like layer on a silicone rubber surface. In this study, it was found that UVB light
could also cause the generation of D4 in the bulk of a silicone rubber.

In order to conduct the quantitative analysis, the calibration curve of D4 was obtained,
as shown in Figure 4. The value of the correlation coefficients (R2) is 0.999, very close to
1.0, indicating good linearity of the detector within the considered concentration range. In
Figure 4, the obtained linear function between the D4 concentration and its peak area in
n-hexane is y = 0.2124*x, where y is the peak area, x is the D4 concentration. The formula
used to calculate the concentrations of the extracted LMW is:

CLMW = SLMW/k, (1)

where CLMW is the concentration for one kind of LMW, SLMW is the peak area of the LMW
peak in GC, k is the parameter obtained by the D4 calibration, which is 0.2124 mg/L−1 in
our study.
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0 800 1600 2400 3200 4000 4800
0

200

400

600

800

1000

Pe
ak

 A
re

a

Concentration D 4 (mg/L)

y = 0.2124*x
R2 = 0.999

Figure 4. The calibration curve for D4 in n-hexane: GC peak area as a function of D4 concentration.

Using Equation (1) for further calculation, as shown in Figure 5 (upper), the concen-
trations of cyclic siloxanes with a low repeat unit (D4–D9) decrease after UVA irradiation,
while the concentrations of the larger cyclic siloxanes (D10–D19) remain almost unchanged.
The variations of Ln are shown in Figure S3, showing that Ln also remains unchanged.
Here, mg/g is a unit that describes the content of the oligomer (mg) in each gram of silicone
rubber. Combined with the data obtained by PALS, we propose that D4–D9 are crosslinked
to the PDMS network in silicone rubber, which is discussed in the PALS part of this paper.
For a cyclic siloxane, its stability is usually related to its ring stain, and a lower repeat unit
results in a higher ring stain. Since the high ring strain is more likely to lead to the breaking
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of chemical bonds, the D4–D9 will be more reactive than those with a high repeat unit in
regular conditions. Moreover, these siloxanes with a low repeat unit (D4–D9) could diffuse
freely in the bulk of silicone rubber. This contributes to a higher possibility of taking part in
the crosslinking reaction, which could be catalyzed by the impurity ions in the fillers. As a
result, D4–D9 are more likely to crosslink than D10–D19, resulting in a lower concentration
of D4–D9 after UVA/UVB irradiation.
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Figure 5. The calculated concentration of cyclic LMW siloxanes in virgin and exposed samples: UVA
exposed (upper); UVB exposed (below).

After 287 h of UVB irradiation, as shown in Figure 5 (below), the concentration of D4-
D9 also decreases, suggesting a crosslinking process of these silicone oligomers. However,
as the UVB irradiation time increases to 993 h, only the concentration of D4 increases. Since
the concentrations of other oligomers (D5–D20) remain almost unchanged, we deduce
that the newly generated D4 originates from the decomposition of the PDMS network
in silicone rubber, rather than those oligomers larger than D4. Hence, the concentration of
D4 can be used as a feature parameter to evaluate the degradation in the PDMS network of
silicone rubber after UVB irradiation. As shown in Figure 6, the concentrations of D4 as a
function of irradiation time are plotted. The concentration of D4 in virgin silicone rubber
is 4.5 × 10−3 mg/g. After 291 h of UVA irradiation, the concentration of D4 decreases to
2.4 × 10−3 mg/g. This decrement of D4 has also been found during the first 287 h of UVB
irradiation. As mentioned above, this decrement of D4 indicates a UVA/UVB irradiation
induced crosslinking process in silicone rubber. The same crosslinking process has also been
found in other polymers during the first few hundred hours of UV irradiation [21], which
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is termed the “post curing” process (Stage I). After 651 h or 1110 h of UVA irradiation,
the concentration of D4 in silicone rubber is unchanged, remaining at approximately
2.0 × 10−3 mg/g. By contrast, longer durations (670, 993 h) of UVB irradiation cause the
generation of D4 in silicone rubber. This is the newly found aging behavior of silicone
rubber under UVB irradiation, and we call it the “chain scission” process (Stage II). Based on
the above discussion, the differences between the impacts of the UVA and UVB irradiation
on the aging of silicone rubber are obtained: UVA irradiation only causes a post curing
process; UVB irradiation could cause chain scission in silicone rubber. The generated D4
also facilitates the hydrophobic recovery process of silicone rubber, which is discussed in
Figure S5 (in the Supporting Information).

1.7

9.1*10-2

1.3*10-3 1.8*10-32.3*10-32.4*10-3

9931110670651287

C
on

ce
nt

ra
tio

n 
of

 D
4 (

m
g/

g)

UV Irradiation Time (h)

 UVA
 UVB

virign 291

4.5*10-3

Stage I

Stage II

10-3

10-2

10-1

100

101

Figure 6. The calculated concentration of D4 in virgin and UVA/UVB irradiated samples.

3.3. Free Volumes Characterized by PALS

The PALS was used to probe the free volume changes in silicone rubber after UVB
irradiation. Free volume is the space that is not occupied in a polymer [22]. The variation
of free volume is usually related to the crosslinking state of the polymer network [23,24]. A
positron is the antiparticle of an electron, and it will annihilate with an electron. When a
positron penetrates into a polymer, it might directly annihilate with an electron, or capture
an electron to form a positronium, a hydrogen-like bound state of positron and electron,
and then annihilate. Direct annihilation of a positron and an electron is called free positron
annihilation, the duration of which is approximately 300 ps. By contrast, a positronium has
two kinds of annihilations due to its two kinds of spin states. One is the spin antiparallel
state, which results in the para-positronium (p-Ps) annihilation with a lifetime of about
125 ps; the other is the spin parallel state, which results in the ortho-positronium (o-
Ps) annihilation [25,26]. The lifetime of o-Ps is 142 ns in a vacuum, but if it is formed
in a polymer, its lifetime would be shortened to 1–5 ns, due to the so-called “pick-off”
annihilation [27,28]. The lifetimes of p-Ps, a free positron, and o-Ps are usually recorded by
τ1, τ2, and τ3, respectively. Here, only the o-Ps annihilation is related to the free volume
information in a polymer. For some polymers containing a rich free volume, the o-Ps
would annihilate in more than one kind of free volume. In order to obtain a better fitting
variance in PATFIT, a fitting of four lifetimes would be used to analyze the PALS spectrum.
In this paper, τ3 and τ4 are both contributed by the o-Ps annihilation. According to our
previous study, τ3 is ascribed to the o-Ps annihilation in free volumes that exist near the
PDMS crosslinking site, while τ4 is ascribed to the o-Ps annihilation in the free volumes
between the clusters of the network [18,29].

As shown in Figure 7, the value of τ3 remains at approximately 0.85 ns after the first
287 h of UVB irradiation, and then increases to 1.0 ns as the UVB irradiation time extends
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to 993 h. The increase of τ3 indicates the growing size of free volumes near the PDMS
crosslinking sites. According to the data obtained by GC, UVB irradiation could result in
the chain session of PDMS and the generation of D4 in silicone rubber. As the crosslinked
PDMS network decoposes in bulk of silicone rubber, the size of free volumes near the
crosslinking sites will increse, thus resuling in the increment of τ3. By contrast, the value
of τ4 remains almost unchanged during the 993 h of UVB irradiation. The result indicates
that, UVB irradiation dose induce chain scissions in a silicone rubber, but affects little in the
size of the bigger free volumes localized in the clusters of the PDMS network, suggesting a
relatively high-elastic state of the irradiated silicone rubber.
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Figure 7. The o-Ps lifetimes (τ3, τ4) and the corresponding free volume sizes (according to Tao’s
model [30]) in silicone rubbers after different durations of UVB irradiation.

The variation of o-Ps intensity is shown in Figure 8. The o-Ps intensity is the sum
intensity of τ3 and τ4, reflecting the total amount of free volumes in the sample. The o-Ps
intensity first increases slightly from 60.6% to 61.7% during the first 287 h of UVB irradiation,
and then starts to decrease, reaching 57.5% as the UVB irradiation time is prolonged to 993 h.
It has already been proven that o-Ps does not form in the ATH—the most used inorganic
filler in silicone rubber [18,31]. The o-Ps usually forms in the organic component in a
polymeric composite. In this way, we propose that the o-Ps intensity is mainly determined
by the relative content of organic PDMS in silicone rubber. It should be mentioned that
the organic PDMS has two existing states: one is the crosslinked PDMS network; the other
is the uncrosslinked PDMS oligomers. In our study, the uncrosslinked PDMS oligomers
had already been removed by an extraction process before the PALS measurement, hence
the o-Ps intensity only reflects the relative content of the crosslinked PDMS network in
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silicone rubber. The increase of the o-Ps intensity in the first 287 h of UVB irradiation is
due to the crosslinking of the uncrosslinked PDMS oligomers in the “post curing" process,
which results in the increased content of the crosslinked PDMS. The decrease of the o-Ps
intensity is due to the decomposition of the PDMS network into D4 in the “chain scission"
process, which leads to the decomposition of the PDMS network into the uncrosslinked
oligomers. The PALS result corresponds well with the GC result, and it provides new
evidence for the UVB induced post curing and chain scission processes in silicone rubber.
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Figure 8. The o-Ps intensity of silicone rubber after different durations of UVB irradiation.

3.4. Aging Mechanism of Silicone Rubber under UVA/UVB Irradiation

Two aging processes in silicone rubber under UVA/UVB irradiation are obtained:
the first is the post curing process; the second is the chain scission process. The former
usually occurs after the first few hundred hours of irradiation, and has already been found
after UVA and UVB irradiation. The latter occurs after a long duration (>300 h) of UVB
irradiation, and only τ4 is generated. Since the average photon energy of UVB (428 kJ/mol)
is much higher than that of UVA (399 kJ/mol), photons of UVB can initiate the rupture
of chemical bonds more effectively. The bond energies of C-H, Si-C and Si-O in PDMS
are 414 kJ/mol, 301 kJ/mol, and 447 kJ/mol, respectively [32]. The photon energy of
UVB is enough to break the C-H and Si-C bond, but not enough to break the Si-O bond.
This indicates that the UVB induced rupture of the Si-O bond is not determined by the
photon energy.

For the UVB induced PDMS decomposition found in this study, we propose that the
rupture of the C-H bond is important for the aging process. The C-H bond is stable with
UVA, and it reflects UVA light like an umbrella from the outward structure of PDMS, so
the Si-C or Si-O can hardly be influenced by the UVA light. By contrast, the C-H bond will
break under the UVB irradiation, and then the Si-C bond can also be broken, resulting in
the generation of free radicals that contain silicon atoms. These unstable free radicals will
further react with ambient water molecules to generate the silanol groups. According to
the studies reported in the literature, a silanol group at the end of the PDMS chain could
trigger a so-called “end-initial” decomposition of PDMS [11,33]. It is worth noting that
only D4 is generated in this process. The UVB induced backbiting decomposition tendency
of PDMS might be related to the chemical environment provided by the fillers in silicone
rubber. The fact that D4 is generated after a long duration (>300 h) of UVB irradiation is
the newly found degradation behavior of silicone rubber in this study. This finding can be
used to quantitatively evaluate the UVB stability of silicone rubber by way of GC, and also
provides new insight for optimizing the insulation strategy in UV-rich plateau places.
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4. Conclusions

In this paper, it is found that silicone rubber undergoes two aging processes under
UVA/UVB irradiation: the post curing process and the chain scission process. The post
curing process occurs after the first few hundred hours (<300 h) of irradiation. In this
process, the uncrosslinked cyclic oligomers, D4–D9, are crosslinked into the PDMS network.
The chain scission process only occurs after the long duration (>300 h) of UVB irradiation.
The principal feature of this aging process is the generation of only D4. This difference is
ascribed to the fact that the photon energy of UVB is higher than that of UVA. UVB photons
could break the C-H bond and trigger the backbiting decomposition of PDMS, while UVA
photons cannot. The finding that only D4 was generated after UVB irradiation can be used
to quantitatively evaluate silicone rubber’s UVB resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13132215/s1—Figure s1: Natural summer noon sunlight in the UV region compared
with emission spectra of UVA-340 and UVb-313 light sources of the Q-lab’s product, Figure s2: Weight
loss of silicone rubber as a function of extraction time, Figure S3: Photos of the silicone rubber before
and after UVA/UVB irradiation, Figure S4 The calculated concentration of linear LMW siloxanes
in virgin and UV exposed samples: UVA exposed (upper); UVB exposed (below), Figure S5: The
hydrophobic recovery curves of silicone rubber after different times of UVB irradiation, (a) contact
angle verse recovery time; (b) contact angle verse log(t).
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