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Abstract: The mechanical and dynamic mechanical properties, interface adhesion and microstruc-
tures of the amino silicone oil emulsion (ASO) modified short ramie fiber reinforced polypropylene
composites (RFPCs) with different fiber fractions were investigated. The RFPCs were made through
a combined process of extrusion and injection molding. Mechanical property tests of the RFPCs
revealed enhancements in tensile and flexural strengths with increase of the fiber fraction due to the
high stiffness of the fiber filler and a better interfacial bonding from ASO treatment. The dynamic
mechanical analysis (DMA) results indicated that fiber incorporation plays an important role in DMA
parameters (storage modulus, loss modulus, and damping ratio) at Tg by forming an improved
interfacial adhesion and providing more effective stress transfer rate and energy dissipation between
matrix and fiber. The phase behavior analysis suggests all the RFPCs are a kind of heterogeneity
system based on the Cole-Cole plot analysis.

Keywords: polymer-matrix composites; natural fiber; mechanical properties; dynamic mechanical
analysis; interface

1. Introduction

Natural fibers are considered as one of the eco-friendly materials, which have good
properties compared to synthetic fibers and achieve an increasing attention because of
their environmental friendliness, non-toxicity, sustainability, light weight, lower energy
requirements, cost-effectiveness, abundant availability, biodegradability, and so on [1,2].
Synthetic fiber reinforced composites (SFPCs) are replaced by natural fiber reinforced
composites (NFPCs) in fields like building construction, furnishings, automobile, and
aeronautics engineering, especially in automobile interior [3,4]. Renewable and sustainable
natural fiber as an alternative for petroleum-based materials prevents global warming by
reducing generating carbon dioxide, which would be a solution to decline of petroleum
supplies [5,6]. Thus, the use of NFPCs will satisfy a greener, more sustainable development
demand compared to SFPCs [7].

Since NFPCs first appeared, most researchers have focused on the static mechanical
properties of materials [8–11]. Many reports found that mechanical properties of NFPCs
are effected by compositions and physical properties like length diameter ration of natural
fiber, fiber content, and manufacturing techniques [12–16]. However, as the NFPCs went
through various types of dynamic stress during their lifespan, studying on their viscoelastic
properties reflects the performance under actual conditions of usage [17]. Damping is one
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of important parameters for viscoelastic composite materials. The vibration causes undesir-
able noise and material fatigue, which shortens the lifespan of integral structure. Therefore,
it is an appealing challenge to make use of damping behavior of NFPCs in vehicle interior,
sports equipment like skateboard, engine cover and so on. The damping behaviors of the
NFPCs are even more intricate compared with the SFPCs [18–20]. Because natural fibers
used as the reinforcements are different from conventional artificially synthesized fibers.
Natural fibers are made up of pectin, hemicellulose, lignin(amorphous) and cellulose [21].
This structure have the intrinsic ability to translate vibration to heat by dissipating energy
during mechanical process. Hence, the behavior of the natural fibers must be considered
as viscoelastic [22,23]. Additionally, the irregular surface and hydrophilicity of the nat-
ural fibers makes microstructure at the interface of the NFPC is more complicated than
the conventional SFPC [24]. Moreover, NFPCs exhibit more complex energy dissipation
mechanisms due to more intricate interface [25,26]. Therefore, the viscoelastic properties of
the NFPC are not only depending on the properties of fiber and matrix, but also influenced
by the quality of interface.

One of effective ways to evaluate viscoelastic properties and interfacial features of
the fiber reinforced polymer system is dynamic mechanical analysis (DMA). The storage
modulus (E′), loss modulus (E′′), and damping factor (tan δ) obtained from DMA are tem-
perature and frequency dependent, which provide information about interfacial bonding of
composites [27,28]. The storage modulus (E′) is associated with stiffness and rigidity of the
composite material, while the loss modulus (E′′) and loss factor (tan δ) represent the viscous
response of the materials and are associated with the loss of internal energy caused by
plastic deformation, internal friction, relative molecular motion, relaxation processes, phase
transitions, and morphological changes [27]. The dynamic mechanical properties provide
molecular-level information to understand the mechanical properties of materials [28].
They also provide information of transition temperature (Tg). T. Khuntia et al. [29] used
DMA to study viscoelastic properties of coir fibers reinforced polypropylene composites.
DMA results indicated an enhanced storage modulus value and lower damping properties
for the composites than the neat PP, which means a better interface bonding and higher
stiffness of the composites. M. Mittal et al. [30] studied the viscoelastic behavior of natural
fiber reinforced composites with varying fiber content. The results showed that E′, E′′, and
Tg of the composite increase with the incorporation of natural fiber. M. Asim et al. [31]
investigated the dynamic properties of hybridized natural fiber reinforced phenolic com-
posites through DMA and found that properties of interface affect the dynamic mechanical
properties of composites.

Among various natural fibers, ramie fiber (RF) has relatively high specific strength.
and good thermal stability [32]. Thus, RF is a good substitute for synthetic fiber as the
reinforcement in composites. Polypropylene (PP) resin is most widely used in automobiles
due to its corrosion resistance, recyclable, thermal stability, waterproof, and low-cost [33].
Therefore, ramie fiber reinforced polypropylene composites (RFPCs) are environmentally
friendly and ideal substitutes for SFPCs. However, RF and PP have different chemical
polarity, which leads a poor compatibility and interfacial adhesion between RF and PP.
Therefore, an effective method is necessary to obtain a strong bonding between matrix/fiber
for an effective transfer of stress and desirable mechanical performances of RFPCs. Amino
silicone oil (ASO) is a widely used natural fiber surface treatment agent. It can not only
make natural fiber soft and smooth, but also reduce the hydrophilicity of natural fiber
surface [34]. Studies by our group have shown that the polar amino groups in the ASO
molecules can interact with the hydroxyl groups of the natural fiber and hydrophobic
amino silicone oil film are formed on the fiber surface, thereby making the significantly
improved various properties of the natural fiber [35]. R. Sepe et al. [36] have studied effects
of different chemical treatments on mechanical properties of NFPCs. Results indicated that
silane treated fiber composites had better mechanical properties than alkali treatment.

ASO is a kind of modification method for plant fiber. However, nothing has reported
dynamic mechanical properties of this new ASO modified RFPC. In present work, DMA
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was used to understand the mechanical properties of materials based on molecular-level
information. RFPCs were fabricated with ASO emulsion to change the surface features
of RFs. The influences of ASO modification and fiber addition on the mechanical and
dynamic mechanical properties of the RFPCs were studied by varying the fiber fractions
(5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.%). Effects of ASO modification
and fiber addition on the bonding quality at the interface were estimated by DMA results
and SEM. This work also made efforts to understand the phase behavior and structural
change of the RFPCs with Cole-Cole plot. It is expected to understand more about static
and dynamic mechanical properties of RFPCs will benefit their widely applications both in
vehicle and civil engineering.

2. Experimental
2.1. Raw Materials

RF was from the Institute of Fiber Crops, Chinese Academy of Agricultural Sciences.
Polypropylene (PP1100) is from Lanzhou Petrochemical Company, Lanzhou, China. Amino
silicone oil (chemical pure) was supplied by Zhuangjie Institute of Chemical Industry,
Guangzhou, China. The average molecular weight of Amino silicone oil was approximately
15,000 and the amino value was about 0.5–0.6. The specific material parameters of RF and
PP are shown in Tables 1 and 2, respectively.

Table 1. Properties of ramie fiber (RF).

Technical Specification Value

Fiber length/mm 3–5
Mean diameter/µm 20–80

Density/g·cm−3 1.55
Young’s modulus/GPa 61.4–128
Tensile strength/MPa 400–1000

Table 2. Properties of polypropylene (PP).

Technical Specification Value

Melt-flow index (MFI)/g·(10 min)−1 0.33
Melting point/◦C 170
Density/g·cm−3 0.904

Poisson ratio 0.42
Young’s modulus/MPa 1550

2.2. Surface Modification

RF with 3–5 mm length was ASO pre-treated before fabricating RFPCs in following
process through the modified method invented by He et al. [35]. First, the RFs were
ultrasonically dispersed and soaked in the ASO emulsion solution for 3 h at 50 ◦C. Then
wet fibers were put into the vacuum drying oven (Shanghai Binglin Elecctronic technology
Co. Ltd., Shanghai, China) for 12 h at 80 ◦C to remove the moisture.

2.3. Fabrication of the RFPCs

A double twin-screw extruder TE-35 (Keya Chemical Equipment Company, Jiangsu,
China) is applied to mix the polypropylene (PP) with different amount of the modified
ramie fiber (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.%). The mixed tem-
perature was set in range of 170 ◦C–190 ◦C. The mixture was then chopped into pellets.
The pellets were then used to produce the standard specimens of the RFPCs with different
fiber contents by the HDX50 injection machine (Huada Plastic Machinery Co., Hangzhou,
China) under the pressure of 80 MPa at 190 ◦C. The RFPCs with the fiber incorporation of
5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, and 30 wt.% are labeled as 5RFPC, 10RFPC,
15RFPC, 20RFPC, 25RFPC, and 30RFPC, respectively.
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2.4. Characterization and Testing
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR) Characterization

The RFs before and after ASO treatment were characterized with FTIR. FTIR spectra
of RFs was obtained in Nicolet 5700 FTIR spectrophotometer (Thermoelectric, Madison,
WI, USA) with KBr pellet method method. The resolution is 4 cm−1 in the region of
500–4000 cm−1.

2.4.2. SEM and EDX Characterization

The scanning electron microscopy (SEM) images of RFs and fracture surfaces of RFPC
were scanned by the SEM equipment Hitachi S-4800 to study the differences before and
after ASO treatment. The samples were pre-treated in vacuum by sputtering gold before
scanning. The elemental detection of RFPCs before and after ASO modification via electron
dot-mapping was conducted by energy dispersive X-ray microanalysis (EDX).

2.4.3. Mechanical Testing

The tensile data of the unmodified and modified RFPCs was obtained according to
the test criteria ASTM D638-10, whereas the flexural data was obtained according to the
test criteria ASTM D790-10. The mechanical test equipment is Instron 5985. The flexural
test was using the three-point bending method. Impact test machine (CBL-11J) was used to
get the impact data of the unmodified and modified RFPCs according to the test criteria
ASTM: D256-10. All the results were obtained from the average value of five tests.

2.4.4. Dynamic Mechanical Testing

The RFPCs with different fiber content were analyzed through DMA to estimate the
effects of RFs on the dynamic mechanical properties of RFPCs. The dynamic mechanical
analysis meter (DMA 242 E Artemis, NETZSCH Scientific Instruments Trading (Shang-
hai)Ltd., Shanghai, China) was used to obtain storage modulus (E′), loss modulus (E′′), and
damping factor (tan δ). Cole-Cole plot was painted from obtained storage modulus (E′) and
loss modulus (E′′). The dimension of RFPC specimens in DMA test was 5 × 10 × 3 mm3.
Three-point bending was conducted under a fixed frequency of 1 Hz. The temperature
range was −60 ◦C to 150 ◦C with a heating rate of 5 ◦C/min.

3. Results and Discussion
3.1. Characterization of RFs

SEM images of the RF show a smooth and clean surface of RF before treatment in
Figure 1a. It is apparent that the surface of RF is rougher after ASO treatment in Figure 1b.
ASO treatment increase the surface roughness of RF, resulting in increment of the specific
surface area of RF. It indicates that ASO was coated on the surface of RFs, forming a rough
surface with micro nano structure to improve the interfacial compatibility and bonding
with resin.

FTIR spectra of RFs before and after ASO modification are shown in Figure 2. It is ob-
vious that after ASO treatment, the two absorption peaks appearing at round 791 cm−1 and
1225 cm−1 are attributed to flexural vibration of Si-C bonds and symmetrical deformation
of Si-CH3, respectively [36]. The absorption peaks around 3350 cm−1 and 2830 cm−1 are
the stretch vibration of O-H and the stretch vibration of C-H in both spectra of unmodified
and modified fibers, respectively [32]. The decrease in peaks of O-H stretch vibration
indicates that ASO coated the active hydroxyl groups on the RFs. According to the results,
it is concluded that RFs are successfully modified after ASO treatment and ASO coated the
hydroxyl groups on the fiber and increase hydrophobicity of fibers.
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3.2. Characterization of Unmodified and ASO Modified RFPCs

One of important parameters influencing the properties of the RFPCs is the bonding
quality at interface. To investigate the interaction at the fiber-matrix interface, fractured
surface of the RFPCs through impact tests in typical SEM images are shown in Figure 3.
Holes and evident gaps between matrix and the untreated fiber appear, which suggests
the fiber/matrix debonding at interface in the untreated RFPCs as shown in Figure 3a,c.
In contrast, no evident holes and gaps between matrix and treated fibers exists in ASO
treated RFPCs as shown in Figure 3b,d. Fiber breakages were seen also seen from Figure 3d.

Table 3 shows the surface elemental analysis of RF illustrated in Figure 3c,d through
EDX. Carbon is dominant of all the detective elements. The content of carbon in point 1
in untreated RFPC is lower than that in point 2 of ASO treated RFPC due to the adhesion
of PP matrix which can be seen in Figure 3d, because the carbon content of PP is higher
than that of fibers. Another difference obtained is the presence of silicon in point 2 and
point 3 of ASO treated RFPC caused by ASO treatment procedure. The O/C ratio of
modified RFPC is lower than unmodified RFPC, which means the lower polarity and better
hydrophobicity of RF in the modified RFPC. It is also obtained that PP matrix adhesion on
RF is higher in modified RFPC than unmodified RFPC, which is consistent with the images
from SEM. Based on the results from SEM and EDX, the ASO modification helps to form a
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better interface bonding at interface. RFs are distributed in the matrix, when the composite
receives external forces, the stress of the matrix transfers to the fiber. RF carries most of
the stress in the composite, so a good interface bonding means an effective stress transfer
between fiber and matrix.
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Table 3. Surface elemental analysis of RFs from unmodified and modified RFPCs from EDX.

Sample C (wt.%) O (wt.%) Si (wt.%) O/C

unmodified RFPC (point 1) 57.5 46.5 - 0.81
modified RFPC (point 2) 76.5 17.9 5.6 0.23
Modified RFPC (point 3) 48.3 32.8 18.9 0.68

3.3. Mechanical Properties of RFPCs
3.3.1. Physical Properties of RFPCs

Table 1 presents the physical properties of neat PP and modified RFPCs. Experimental
densities of neat PP and modified RFPCs were calculated according to ASTM 2734-70 using
the electronic densometer with resolution of 0.001. Theoretical densities of modified RFPCs
were calculated according to the simple rule of mixture:

ρc = ρ f Vf + ρm

(
1−Vf

)
(1)
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where ρc, ρ f and ρm are densities of the composite, fiber and matrix, respectively. Vf is the
volume fraction of the fiber.

The porosity of the composite was calculated by Equation (2):

P = 100%·(ρc − ρe)/ρc (2)

where ρc and ρe are densities of the theoretical and experimental values of the composite,
respectively. P is the porosity of the composite.

Values of the average particle distance were calculated according to the following
Equation (3) [37]:

d =

(
3

√
(4π)/

(
3Vf

)
− 2

)
r (3)

where d is the average distance between particles. r is the average radius of fibers.
The values of interface surface area for the composites were calculated according to

the Equation (4) found by Nelson and Hu [37]:

Si =
(

3Vf

)
/r (4)

where Si is the interface surface area of the composite.
It can be seen in Table 4, as fiber content increased, the porosity and interfacial area of

the composite increased. The highest porosity content of 4.969% and the highest interfacial
area of 14.998 nm−1 were observed in the 30RFPC.

Table 4. Physical properties of neat PP and modified RFPCs.

Parameter PP 5RFPC 10RFPC 15RFPC 20RFPC 25RFPC 30RFPC

Theoretical density, g/cm3 0.904 0.919 0.938 0.959 0.980 1.003 1.026
Experimental density, g/cm3 0.904 0.911 0.928 0.945 0.957 0.963 0.975

Porosity, % 0 0.845 1.102 1.438 2.364 3.944 4.969
Fiber volume fraction Vf, vol% 0 2.978 6.086 9.332 12.725 16.277 19.997
Average particle distance, µm - 128.020 83.926 62.157 48.194 38.096 30.264
Interface surface area, nm−1 0 2.234 4.564 6.999 9.544 12.207 14.998

3.3.2. Mechanical Properties of RFPCs

The effects of RF incorporation and ASO treatment on the mechanical properties of
the RFPC were estimated. Figure 4 exhibits the tensile strengths (Figure 4a) and tensile
modulus (Figure 4b) of the PP and RFPCs with varying ramie fiber fractions. It is observed
that ASO modification and RF incorporation increase the tensile strength and tensile mod-
ulus of RFPCs. The tensile strengths of the modified 5RFPC, 10RFPC, 15RFPC, 20RFPC,
25RFPC and 30RFPC have increased by 3.4%, 6.6%, 7.3%, 9.0%, 11.1%, and 18.2%, respec-
tively, compared to that of the unmodified 5RFPC, 10RFPC, 15RFPC, 20RFPC, 25RFPC
and 30RFPC. The tensile strengths of the modified 5RFPC, 10RFPC, 15RFPC, 20RFPC,
25RFPC and 30RFPC increase by 10.9%, 18.8%, 23.0%, 27.2%, 37.2%, and 50.3% respectively,
compared to that of PP. Because a good fiber/matrix bonding is generated from the ASO
treatment making effective stress transfer from resin to fiber as the SEM results.
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The flexural strength and flexural modulus of the neat PP and RFPCs are shown in
Figure 4c,d. It is seen that ASO treatment and incorporation of the ramie fiber increases the
flexural strength and flexural modulus of RFPCs. The flexural strengths of modified 5RFPC,
10RFPC, 15RFPC, 20RFPC, 25RFPC and 30RFPC are about 0.8%, 4.0%, 4.9%, 7.3%, 10.3%,
and 11.9% higher compared to that of the unmodified 5RFPC, 10RFPC, 15RFPC, 20RFPC,
25RFPC and 30RFPC, respectively. The flexural strengths of the modified 5RFPC, 10RFPC,
15RFPC, 20RFPC, 25RFPC and 30RFPC increase by 1.9%, 8.8%, 12.6%, 17.2%, 22.9%, and
29.0% compared to that of PP, respectively. Flexural strengths of RFPCs improve with
increment of RF addition caused by reinforcement effect and stiffer of fibers [38].

Figure 4e presents the elongation at break of the neat PP and RFPCs with different fiber
fractions in tensile tests. The results show that the elongation at break drops dramatically
with the addition of RF. The higher fiber addition, the lower improvement of the elongation
at break. This is because the process of tensile deformation is essentially the process
of consuming the flexibility of polymer chain [39]. Elongation at break of the RFPC is
mostly determined by the flexibility of PP molecular chain and addition of RF hinders the
flexibility of PP molecular chain [40]. It was also found that ASO treatment increases the
elongation at break of RFPCs. Especially when fiber content is 5 wt.%, the elongation at
break of modified 5RFPC is about 84.8% higher compared to that of the unmodified 5RFPC.
The modification improved the fiber/matrix bonding at interface, which leaded to the
effectively stress transfer from matrix to fiber and prevented the cracks propagation [41].
Therefore, the modified composites had a higher elongation.
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The impact strengths of the neat PP and RFPCs with different fiber contents are
presented in Figure 4f. Impact strength of RFPCs is lower compared to that of the neat PP
due to lower impact strength of RF than PP, while the impact strength of the ASO modified
RFPCs are higher than that of the unmodified RFPCs at the same fiber content. The impact
strengths of modified 5RFPC, 10RFPC, 15RFPC, 20RFPC, 25RFPC and 30RFPC are about
10.9%, 13.6%, 16.4%, 23.7%, 26.2% and 32.7% higher compared to that of the unmodified
5RFPC, 10RFPC, 15RFPC, 20RFPC, 25RFPC and 30RFPC, respectively. Because modified
RFPCs prevented crack expansion under the impact force due to better interlocking between
the fiber and the matrix through ASO treatment [42].

An increase in RF fraction in RFPCs provides more opportunity for the interaction
and stress transferring between fiber and matrix, which finally leads to the improvements
of the tensile and flexural strengths in RFPCs. FTIR and SEM results also confirmed that
the mechanical properties of ASO modified RFPCs are higher than those of unmodified
RFPCs. Because ASO modification improves compatibility between fiber and matrix, which
results in a better bonding quality at interface. Therefore, modification of RFs with the
ASO emulsion strengthens the interfacial adhesion between treated RF and PP resin as
discussed above, which further contributes to an efficient stress transferring in the RFPCs
and results in higher mechanical properties.

3.4. Dynamic Mechanical Analysis (DMA)
3.4.1. Storage Modulus (E′)

Storage modulus (E′) is typical of elastic response of materials and indicates the
ability of the materials to maintain the energy [7]. It provides information about stiffness,
rigidity and fiber/matrix adhesion of the composite material [43]. There are three regions
in E′ while increasing the temperature. They are glassy region, glass transition region,
and rubbery region. In the glassy region, E′ is high and composite is rigid due to the
close-packed PP molecular chains. During the glass transition region, E′ is decreased
dramatically around Tg because of the PP polymeric chain movement. In rubbery region,
E′ changes a little due to even more PP molecules movements at higher temperature [27].
Movement in PP molecular chain affects the viscoelastic properties of composites and
adhesion between fiber and matrix.

Figure 5a represents E′ vs. temperature for the neat PP and ASO modified RFPCs
at a fixed frequency of 1 Hz. E′ is rising with the increase of the RF loading revealing
prominent reinforcement effects of RF. This is associated with the stiffness of RF. E′ goes
up with the rise of fiber incorporation due to the mobility of the PP chains hindered by
fiber fillers [30,43]. A decreasing trend is also observed in E′ of the fabricated RFPCs with
the increase in temperature. According to properties of polymer, molecules become more
active and the forces between them become weaker when temperature rises, which causes
the decrease of fiber/matrix bonding as well as E′.

Mathematical prediction models of E’ of composite materials (rule of mixture, Einstein
model, Guth model [44] and Kerner model [37]) are described by following Equations (5)–(8),
respectively:

E′ = E′m
(

1 + Vf

)
(5)

E′ = E′m
(

1 + 2.5Vf

)
(6)

E′ = E′m
(

1 + 1.25Vf + 14.1V2
f

)
(7)

E′ = E′m
(

1 + Vf /
(

1−Vf

))
(15(1− γm)/(8− 10γm)) (8)

Figure 6 displays E′ values of modified RFPCs using the equations mentioned above
and compared to the value obtained from the dynamic mechanical analysis. It can be
seen that experimental values are between the results obtained by Guth’s and Kerner’s
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models. Experimental data noticeably exceeded the values predicted by the rule of mixture,
pointing to the interfacial adhesion enhanced by modification.
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Using the storage modulus values, we can calculate different parameters like effective-
ness coefficient C, degree of entanglement φ and reinforcing efficiency r. [45] Effectiveness
coefficient C evaluates the effectiveness of fiber reinforcement. The higher value of C means
the lower effectiveness of fiber dispersion in matrix. C can be calculated by Equation (9) [46]:

C =

(
E′G/E′R

)
composite(

E′G/E′R
)

resin
(9)

where E′G and E′R are E′ in the glassy region and rubbery region, respectively. The tem-
perature chosen for glassy region is −60 ◦C. Table 4 displays the C of modified RFPCs
with different fiber content at different rubbery temperatures. The value of C presents a
decrease trend with the increase of the temperature. This indicates that fibers impose an
inferior dispersion effectiveness at a lower temperature. On the other hand, the value of
C decreases with the rise of the fiber addition. The lowest C is obtained by the 30RFPC
indicating a highest efficiency of fiber reinforcement. When the fiber addition is lower, the
constraints of fiber throughout the matrix-rich regions are less efficient and result in higher
C values.

The entangled fiber network can immobilize the polymer chains so that giving rise
to high degree of reinforcement. So, degree of entanglement φ of ramie fiber over the
thermoplastic matrix is important to understand the fine dispersion of fibers in the matrix.
The degree of entanglement φ can be calculated by Equation (10) [45]:

ϕ = E′G/6RT (10)

where E′G is the E’ in the rubbery region (100 ◦C), R is universal gas constant and T is
temperature at Kelvin scale.

Reinforcing efficiency is to evaluate the reinforcing ability of fibers on the composite,
which can be obtained using Einstein equation [47]:

r = (E′c/E′m − 1)/Vf (11)

where E′c and E′m are values of E’ of the composite and matrix in rubbery region (100 ◦C),
respectively. The degree of entanglement φ and reinforcing efficiency r with different fiber
loadings are shown in Table 5. The degree of entanglement becomes more effective with
increase in the fiber loading indicating an effective dispersion in matrix with fiber loading.
The reinforcing efficiency r reaches a maximum value of 15.295 at 10 wt.% of fiber content
followed by a decrease at 15 wt% of fiber loading because of fiber agglomeration.

Table 5. Effectiveness coefficient (C), degree of entanglement φ and reinforcing efficiency r for different modified RFPCs.

Paramerters 5RFPC 10RFPC 15RFPC 20RFPC 25RFPC 30RFPC

C (100 ◦C) 0.806 0.619 0.527 0.499 0.462 0.427
C (110 ◦C) 0.802 0.817 0.741 0.456 0.425 0.386
C (120 ◦C) 0.734 0.55 0.441 0.4 0.374 0.337
C (130 ◦C) 0.597 0.467 0.365 0.34 0.316 0.284

degree of entanglement φ 0.032 0.045 0.056 0.063 0.072 0.080
reinforcing efficiency r 13.099 15.295 15.029 13.485 12.969 12.162

3.4.2. Loss Modulus (E′′)

E′′ is an indication of the energy dissipation which is regarded as the viscous response
of materials [46]. Figure 5b displays the E′′ vs. temperature for the neat PP and RFPCs. The
E′′ increases with the rise of fiber fraction, because the presence of short ramie fibers creates
fiber/matrix interfacial areas where energy is dissipated. A relaxation peak around 5 ◦C
is observed for each loss modulus curves of the RFPCs. The higher Tg and loss modulus
with higher content of RF shows the modified RF improve the thermal properties and
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loss modulus of RFPCs in Table 6. The highest loss modulus and Tg was observed for
30RFPC. The comparison study of PP with RFPCs in Table 6 indicates that incorporation
of RFs exhibits an increase in loss modulus in the relaxation region. This is probably due
to more energy dissipation at interfaces with an increase in internal friction through fiber
incorporation [44].

Table 6. Dynamic mechanical properties of neat PP and modified RFPCs.

Composite
Tg Obtained

from E′′

Curves (◦C)

E′′ at Tg
(MPa)

Tg Obtained
from tan δ

Curves (◦C)
tan δ at Tg

Adhesion
Factor

Constrained
Chain

Volume, %

PP −4 227.7 10 0.103 - -
5RFPC 2.7 314.5 13.2 0.101 0.011 1.474

10RFPC 4.8 321.6 14.1 0.098 0.013 3.712
15RFPC 5.5 333.4 15.3 0.093 −0.004 7.514
20RFPC 6.1 344.5 17.8 0.087 −0.032 12.2
25RFPC 7.9 351.4 18.9 0.085 −0.014 13.793
30RFPC 8.9 378.0 21.1 0.081 −0.017 17.027

3.4.3. Damping Factor (tan δ)

The tan δ is the ratio of the loss modulus to the storage modulus during a dynamic
loading cycle, which is a decisive parameter that presents the viscoelasticity and damping
capacity [48]. The dependent variable tan δ vs. temperature for all composites is displayed
in Figure 5c. In general, PP has three relaxation peaks (γ-relaxation peak, β-relaxation peak,
and α-relaxation peak) in the curve of tan δ as temperature rises [48]. It is observed that
pure PP and RFPCs show β-relaxation peaks (Tg) and α-relaxation peak at about 15 ◦C
and 80 ◦C, respectively. The Tg around 15 ◦C relates to motions of PP chain segments in
the amorphous phase. The α-relaxation peak around 80 ◦C relates to the transition of the
PP crystalline parts. For the PP and all the composites in the β-relaxation (glassy-rubbery
transition region), the value of tan δ increases as the temperature increases until it reaches
critical values and then decrease.

As seen in Figure 5c, incorporation of ramie fiber reduces the values of tan δ around
Tg compared to the neat PP. Since RFs treated with the ASO, the compatibility between
fiber and PP has been improved. The fibers limit the movement of the PP molecules and
further result in the increase of Tg and a reduction of the value of tan δ. It can be concluded
that a better interfacial bonding in composites indicates a lower value of damping factor.

It is also noticed that the higher the addition fraction of ramie fiber, the lower value
of tan δ at Tg listed in Table 6. The increase of the fiber content in the modified RFPCs
provides more opportunity for the interaction and stress transfer in interface. Furthermore,
modified fibers also give more restriction on the movement of the PP matrix molecules.
This suggests that the ASO treatment on the fibers can create a stronger bonding at interface
and promote interactions between the fiber and matrix, which is confirmed by the results
of SEM in Figure 3. Therefore, fiber addition leads to a better fiber/matrix bonding, a lower
damping factor around Tg and a higher damping factor around α-transition temperature.
On the other hand, RFPC’s viscoelastic characteristics increase internal friction and the
additional viscoelastic energy dissipation, which may result in widen of transition region.

The tan δ peak in glassy transition region in Figure 5c results from the viscous move-
ment of PP chains. The reduction of the tan δ peak and the broadening of peaks indicates
a decrease of active PP chains and an improved interface bonding, hence can be used to
estimate constrained chains. The volume fraction of constrained region Cv can be obtained
by Equation (12) [44]:

Cv = 1− (1− C0)
W
W0

(12)

where Cv and W are the volume fraction of the restricted mobility of polymer chains and
the energy fraction loss in the composite, respectively. C0 and W0 are the volume fraction
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of the constrained region and the energy fraction loss and for pure PP, respectively. The
energy loss fraction W can be calculated by Equation (13):

W = πtanδ/(πtanδ + 1) (13)

The values of constrained chain volume are increasing with fiber corporation in
Table 6. Such an effect is caused by the hinder of fibers to restrict the polymer matrix.
As shown in Figure 7, a fiber content and higher interface surface area leads to a higher
Cv. Because the ASO modification makes surfaces of the fiber rougher. The interlocking
between matrix and fiber caused by rougher surfaces strengthened the interfacial adhesion.
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The adhesion efficiency can be calculated by the adhesion factor A, which is shown in
the following equation [37]:

A =
1

1−Vf

tanδc

tanδp
− 1 (14)

where tan δc and tan δp are the relative damping ratio of the composite and the polymer
obtained from the tan δ curves at the given temperature, respectively.

The lower value of A indicates a better interaction at the matrix-fiber interface. The
negative value of A is due to anisotropy of fiber and improvement of interface region of
composite. Table 6 shows the value of A decreases with the increase of the fiber loading.
The 30RFPC has the lowest adhesion factor A, which means it has the better interaction at
the matrix-fiber interface, which also contributes to a better stiffness and a higher storage
modulus.

3.4.4. Cole-Cole Plot

Cole-Cole plot was plotted to understand the structural changes of composites after
adding fibers, which revealed system homogeneity of composites [49,50]. Semi circles of the
composites demonstrated a poor interfacial bonding between fiber/matrix, while imperfect
semi circles display a heterogeneous system [51]. The nature of the composite system is
represented by plotting E′′ against E′ on the Cole-Cole plot in Figure 5d. Figure 5d shows
the Cole-Cole plot of RFPCs with different ramie fiber loading. The curve of neat PP is
closed to semi-circle. The higher fiber content, the curve is far away from semi-circle due to
presence of fibers and interface. It indicates that RFPCs are heterogeneity systems and have
more complicated viscoelastic characters with the incorporation of RFs. The incorporation
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of modified RFs into the composites significantly influences the shape of the Cole–Cole
plot and improved the dynamic properties of RFPCs.

4. Conclusions

The impacts of modification and fiber addition on interface interaction, interface mi-
crostructure, mechanical properties, and viscoelastic properties of the RFPCs were studied
in detail. The results demonstrated that ASO emulsion could decrease the amount of active
hydroxyl groups and increase the roughness of ramie fiber and thus strengthening the
interfacial adhesion on interface. The results showed a good interface bonding after fiber
treatment with ASO, which contributed to an efficient stress transferring between matrix
and fiber in the RFPCs and result in better mechanical properties. The ASO treatments
and fiber addition increase the internal friction and generate additional energy dissipation,
which enhanced the mechanical and dynamic mechanical properties compared to unmodi-
fied RFPCs. This kind of composite materials is expected to be used in vehicle industry to
meet the demand of lightweight and sufficient performance at the same time.
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