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Abstract: Natural polymers have proven to be extremely interesting matrices for the immobiliza-
tion of microbial biomasses, via various mechanisms, in order to bring them into a form easier
to handle—the form of composites. This article aimed to study composites based on a residual
microbial biomass immobilized in sodium alginate via an encapsulation technique as materials
with adsorbent properties. Thus, this study focused on the residual biomass resulting from beer
production (Saccharomyces pastorianus yeast, separated after the biosynthesis process by centrifugation
and dried at 80 ◦C)—an important source of valuable compounds, used either as a raw material or
for transformation into final products with added value. Thus, the biosorptive potential of this type
of composite was tested—presenting in the form of spherical microcapsules 900 and 1500 µm in
diameter—in a biosorption process applied to aqueous solutions containing the reactive dye Brilliant
Red HE-3B (16.88–174.08 mg/L), studied in a batch system. The preparation and characterization of
the obtained polymeric composites (pHPZC, SEM, EDS and FTIR spectra) and an analysis of different
equilibrium isotherms (Langmuir, Freundlich and Dubinin-Radushkevich—D–R) were investigated
in order to estimate the quantitative characteristic parameters of the biosorption process, its thermal
effects, and its possible mechanisms of action. The modelling of the experimental data led to the
conclusion that the studied biosorption process took place after reaching the Langmuir isotherm (LI),
and that the main mechanism was possibly physical, being spontaneous and probably exothermic
according to the values obtained for the free energy of biosorption (E = 8.45–13.608 kJ/mol, from
the DR equation), as well as the negative values for the Gibbs free energy and the enthalpy of
biosorption (∆H0 = −87.795 kJ/mol). The results obtained lead to the conclusion that encapsulation
of this residual microbial biomass in sodium alginate leads to an easier-to-handle form of biomass,
thus being an efficient biosorbent for static or dynamic operating systems for effluents containing
moderate concentrations of reactive organic dyes.

Keywords: biosorption; polymeric composite; reactive dye; Saccharomyces pastorianus encapsulated;
sodium alginate
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1. Introduction

Current technologies for water purification (chemical precipitation, membrane separa-
tion, ion exchange, evaporation and electrolysis) have limitations that require the develop-
ment of new techniques. An important alternative is biosorption—a cost-effective, simple,
reversible, passive accumulation process by which inactive biosorbent binds (through ion
exchange, absorption, adsorption and surface complexation) certain ions or molecules
from aqueous solutions. The advantages of biosorption include: simplicity, no nutrient
requirements for the non-living biomass, low sludge generation, low operational costs and
high efficiency [1–6].

Microorganisms are, in biotechnology, important sources for a great variety of intra-
cellular and extracellular compounds such as: organic acids, amino acids, antibiotics [1]. In
these biosynthetic processes, the residual microbial biomass is an inevitable waste gener-
ated in the separation step. These by-product microorganisms (bacteria, yeast or fungi),
could be used as a potential alternative to existing technologies for the recovery of pollu-
tants from industrial waste streams, due their ability to retain, by different mechanisms,
pollutants from aqueous streams through biosorption.

Microbial cells have a high surface area-to-volume ratio and can thus provide a
large contact surface, but, most importantly, they contain in their cell walls and plasma
membranes several natural polymers with many functional groups (such as carboxyl,
hydroxyl, amine, imidazole, phosphate, sulfhydryl and sulphate groups), which can bind
the contaminant during the sorption process [7].

The use of microorganisms in environmental depollution technologies can be carried
out with them either in a free form or immobilized on polymeric supports [1]. For the
biosorbents obtained by microorganism immobilization (which offers several advantages
such as easy separation, enhanced operational stability, multiple uses, being incorporable
into fixed and fluidized bed columns and higher productivity), different natural or syn-
thetic polymers can be used for the production of inexpensive, non-toxic carriers with
reactive functional groups [3,4]. From these, natural polymers include chitosan, alginate,
agar, collagen and agarose, and synthetic polymers include poly-acrylamide, polyvinyl al-
cohol, polyethylene-glycol, polypropylene, polyethylene, polyvinylchloride, poly-urethane
and polyacrylonitrile [3,4]. Natural polymers are preferred in the separation processes due
to their biocompatibility and the possibility of their production from renewable sources,
but some limitations regarding their stable structure, which is source-dependent, are
known. Synthetic polymers have more stable and controllable structures and functionali-
ties, completed by high chemical and biological stabilities [8,9]. Different immobilisation
techniques can be applied to a microbial biomass: entrapment, cross-linking, covalent
bonding, adsorption and encapsulation. The main problem related to the use of microen-
capsulation for biosorbent production is the limitations imposed by the diffusion step in
the pollutant retention [4].

Different microorganisms have been used successfully in environmental pollutant removal:

• Bacteria: Pseudomonas aeruginosa immobilised in sodium alginate have been used
for the retention of Reactive Green 6 from wastewaters with a maximum adsorption
capacity of 21.2 mg/g; Bacillus sp., immobilized in 1% sodium alginate, allows the
obtaining of a maximum adsorption capacity of 588.235 mg/g for Brilliant Red HE-3B;
Bacillus cereus immobilised in 3% sodium alginate yields a maximum retention of 83%
for Malachite Green [10–12].

• Fungi: Penicillium sp. immobilised in 2% sodium alginate has been used for the
removal of C.I. Reactive Red with a maximum adsorption capacity of 120.48 mg/g;
Penicillium crustosum immobilised in 2% agar retains Congo red with an efficiency of
81.86%; Rhizophus orizae immobilised in carboxymethyl cellulose has been used for
the biosorption of Reactive Blue with an efficiency of 97.44%. Saccharomyces cerevisiae
immobilized in sodium alginate and present in the form of gel beads has also been
used for the retention of Brilliant Red HE-3B dye, and leads to a sorption capacity of
104.67 mg/g [13–16].
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Biosorbents obtained through immobilization using non-toxic biopolymers may help
improve biomass biosorption capacity and facilitate its separation from wastewater so-
lutions [8]. Pires et al. obtained an increase in the biosorption abilities of Cupriavidus,
Sphingobacterium and Alcaligenes through immobilization in naturally occurring (alginate
and pectate) and synthetic polymers (synthetic cross-linked polymer) of up to 12-fold
when compared to the use of the polymers alone [7]. Khashei et al. investigated the
biosorption ability of heavy metals of immobilized Pseudomonas putida cells in various
matrices (alginate–PVA–CaCO3 and carboxymethyl cellulose). An increase in metal re-
moval efficiency in all matrices after bacterial immobilization was observed: 75.5% Pb(II)
compared to 60% and 75% Cd(II) to 20% without cells for alginate–PVA–CaCO3, and 32%
Pb(II) retention to 3% and 15% Cd(II) to 5% with cellulose support [17].

Saccharomyces pastorianus (Saccharomycetaceae family) is an unicellular yeast, charac-
terized by its ability to convert, enzymatically, sugar into carbon dioxide and alcohol,
and is a by-product in the brewing industry. This residual biomass could be used as a
potential alternative to existing technologies for the recovery of pollutants from industrial
waste streams. The cell walls of Saccharomyces pastorianus comprise of mannoproteins and
β-glucans, highly entangled in the cell wall matrix; N-linked type mannoproteins, being
the majority of yeast mannoproteins, are composed of 90% carbohydrate and 10% protein,
providing phosphate groups such as mannosylphosphate residues that contribute to the
ionic properties of the yeast cell surface and can act as biosorption functional groups [18].
Bastos et al. observed an increase in yeast flocculation and an increase in the negative
charge of the yeast surface after the brewing process, which could suggest that residual
S. pastorianus could be a better biosorbent than the initial strain [19].

The aim of this paper is to investigate the biosorptive properties of a newly proposed
polymeric composite based on a residual microbial biomass of Saccharomyces pastorianus
encapsulated in sodium alginate. For this, we approached a working protocol that aims
at three stages: (1) preparation and physical–chemical characterization of a prepared
polymeric composite based on a residual biomass of Saccharomyces pastorianus encapsulated
in sodium alginate; (2) an investigation of the influence of certain physical parameters on
the study of the biosorption process, such as the dose of the biosorbent, the size of the
composite granules, the pH of the solution, the initial concentration of the dye solution, and
the temperature; (3) processing of experimental data using different adsorption equilibrium
isotherms in order to estimate the characteristic parameters and thermal effects of the
studied bioprocess for the treatment of dye-containing watery effluents.

2. Materials and Methods
2.1. Materials

Biomass. Saccharomyces pastorianus are members of the family Saccharomycetaceae.
The residual biomass S. pastorianus (an interspecies hybrid of Saccharomyces cerevisiae and
Saccharomyces eubayanus [18]) was provided by a local brewing company (Albrau, Onesti,
Romania). The residual biomass was separated by centrifugation (8000 rpm), dried at 80 ◦C
and then microencapsulated in sodium alginate (Figure 1a).

Biosorbent. The prepared polymeric composites based on residual biomass granules
(Saccharomyces pastorianus) used in the biosorption experiments were obtained by microen-
capsulation using a BUCHI B390 microencapsulator. The suspension necessary for obtain-
ing the granules was prepared from 1.5% low-viscosity grade sodium alginate (Figure 1a)
purchased from Buchi Labortechnik AG (Flawil, Switzerland) (prepared in distilled water
at 70 ◦C) and 5% residual biomass. The nozzles diameters used were 450 and 750 µm, with
the following conditions: air pressure 100 mbar, T = 45 ◦C, 500 V and 800 Hz (for 750 µm)
and 200 Hz (for 450 µm), allowing the production of beads with 900 and 1500 µm diameters.
The suspension was dripped into a 100 mM calcium chloride solution (prepared in dis-
tilled water at 5 ◦C), to obtain spherical beads with Φ1 = 900 µm/Φ2 = 1500 µm diameters.
The schematic representation of all the steps involved in the preparation of the biosorbent
with Saccharomyces pastorianus is shown in Figure 1b. All granules of the polymeric con-
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sortium residual biomass–sodium alginate had a uniform size (Figure 1c) and were stable,
without adhesion phenomena manifesting between them during storage in an aqueous
solution of calcium chloride 10 mM at a temperature of 5 ◦C.
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Figure 1. (a) Chemical structure of the polymeric matrices for encapsulation; (b) Schematic represen-
tation of the microencapsulation process; (c) Encapsulated biomass granules.

Adsorbate. A reactive dye, Brilliant Red HE-3B (BRed-C.I. 25810; MW = 1430 g/mol,
λmax = 530 nm, Bezema Colour Solutions, Montlingen, Switzerland) with the chemical
structure shown in Figure 2a, was selected as the chemical pollutant (the reference model of
a reactive dye) of the aqueous system for this study. A stock solution (with a concentration
of 500 mg dye/L) was prepared using a commercial salty form of the dye of analytical
reagent purity grade, and distilled water. For experiments, solutions were prepared from
the stock solution by appropriate dilution with distilled water.
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Other chemicals used in experiments were of analytical purity, were used without
further purification and were purchased from Chemical Company, Iasi, Romania

2.2. Methods
2.2.1. Batch Biosorption Methodology

The batch biosorption studies were performed using 50 mL Erlenmeyer flasks, in
which there were introduced different amount of encapsulated biomass with 5% dry
matter (dw), pre-washed with distilled water to remove traces of calcium chloride solution
that would cause dye precipitation, as well as 25 mL of dye solution at different initial
concentrations (in the range of 16.88–174.08 mg/L). The pH values were adjusted with a
1 N HCl solution, and the constant desired temperatures (5◦, 30◦, 45 ◦C) were ensured using
a thermostatic bath with a contact time of solid–aqueous phases of about 24 h (Figure 2b).
After reaching equilibrium, the dye content in the supernatant was spectrophotometrically
determined using a Shimadzu UV-1280 UV-VIS Spectrophotometer (Shimadzu Corporation,
Kyoto, Japan) at the maximum dye wavelength of 530 nm.

The biosorption capacity of the prepared biosorbent (q, mg of dye/g of biosorbent)
was calculated using Equation (1):

q =
C0 −C

G
·V (1)

where C0 and C are the dye’s initial and equilibrium (residual) concentrations in solution
(mg/L), G is the amount of biosorbent (dry matter (d.w.) from alginate granules; g) and V
is the volume of solution (L).

2.2.2. Physicochemical Characterization of Composite Biosorbent

The characterization of the prepared polymeric composite, in order to highlight
the internal structure and the functional groups responsible for the biosorbtive prop-
erties, was made using physico-chemical methods (SEM, FTIR) before and after the
biosorption process.

Lyophilization. Prior to the SEM investigation, the composite granules were lyophilized
using an equipment Labconco lyophilizer (Labconco, Kansas City, MO, USA). SEM images
were recorded with a HITACHI SU 1510 (Hitachi SU-1510, Hitachi Company, Tokyo, Japan)
Scanning Electron Microscope, MNPs were fixed on Aluminum stubs and coated with a
7 nm-thick gold layer using a Cressington 108 (Cressington Scientific Instruments Ltd.,
Watford, UK) device before observation.

Scanning Electron Microscopy (SEM) was carried out to evaluate the surface micro-
morphology of the composite polymeric materials based on Saccharomyces pastorianus
encapsulated in sodium alginate before and after the biosorption process. A scanning
electron microscope VegaTescan LMH II (Tescan Orsay Holding, Brno – Kohoutovice,
Czech Republic), detector SE: WD 15.5 mm, 30 kV, HV; VegaTC software with an EDS
detector XFlash 6/10 Bruker (Bruker, Karlsruhe, Germany), automatic mode and mapping
distribution of elements; and Esprit 2.2 software (Bruker, Karlsruhe, Germany) were used.

Fourier transform infrared (FT-IR) was applied in order to identify the functional
groups existing in the initial biosorbent, as well as those involved in the biosorption process,
respectively, in the binding of dye molecules. For this, FTIR spectra were registered using a
Bruker Vertex 70 FT-IT spectrophotometer (Bruker, Karlsruhe, Germany) in total attenuated
reflectance mode in the wavenumber range 4000–400 cm−1, with a resolution of 2 cm−1

and 32 acquisitions at room temperature.

2.2.3. Modelling the Biosorption Experimental Data

For experimental data modelling, three of the most-known biosorption equilibrium
models: Freundlich (F), Langmuir (L) and Dubinin–Radushkevich (D–R), briefly explained
below, were applied [20].
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The Freundlich model (F) takes into consideration the surface heterogeneity and
exponential distribution of the active sites of the biosorbent. The nonlinear/linear forms of
the equation are:

q = KF ·C1/n/ log q = log KF +
1
n

log C (2)

where KF and 1/n are constants associated with the biosorption capacity and intensity
(efficiency), respectively; a favorable biosorption corresponds to a value of 1 < n < 10.

The Langmuir model (L) considers a monolayer distribution of the solute molecules
on the biosorbent surface, which contains a finite number of energetically equivalent sites.
The linearized form of Equation (3) can be described by the following two forms: L1 (4)
and L2 (5):

q =
KL ·C · q0
1 + KL ·C

(3)

L1 :
1
q
=

1
q0

+
1

KL · q0
· 1

C
(4)

L2 :
C
q

=
1

q0 ·KL
+

C
q0

(5)

where q0 is the maximum amount of sorbed solute (mg/g) and KL is the constant related
to the binding energy of solute (L/mg).

The Dubinin–Radushkevich model (D–R), through the parameter that is determined—the
E-energy of the biosorption process—allows the characterization of a process’s nature (physical
or chemical). A value for E higher than 8 KJ/mol suggests a physical biosorption mechanism
and values between 8 and 16 KJ/mol indicate an ion-exchange mechanism. The nonlinear/linear
forms of the characteristic equation are:

q = q0 exp
(
−B · ε2

)
/ ln q = ln q0 − Bε2 (6)

ε = RT ln
(

1 +
1
C

)
/E =

1√
2B

where qD is the maximum biosorption capacity (mg/g); B is the activity coefficient related
to the mean biosorption energy; ε is the Polanyi potential and E is the mean free energy of
biosorption (kJ/mol)

2.3. Thermodynamic Parameters of the Biosorption Process

Based on the value of the Langmuir constant, KL, and temperature, three thermody-
namic parameters were determined using the following equations [21,22]:

∆G = −RT ln KL (7)

ln KL = −∆H0

RT
+

∆S0

R
(8)

where ∆G is the free energy (kJ/mol), ∆H is the enthalpy (kJ/mol) and ∆S is the biosorption
entropy change (kJ/mol K); R is the universal gas constant (8.314 J/mol K), T is the absolute
temperature of the solution (K) and KL is the value of the Langmuir constant (L/mol).

3. Results and Discussion
3.1. Analysis of the Biosorbent Based on Residual Biomass Using SEM, EDAX and FT-IR Spectra

Scanning electron microscopy was used to study the morphology of composite gran-
ules obtained from the residual biomass of Saccharomyces pastorianus encapsulated in
sodium alginate and, also, information about pore distribution and locations. Images
obtained at 25, 500 and 1000×magnifications are shown in Figure 3.
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Energy-dispersive X-ray spectroscopy (EDS, EDAX, EDX, EDXS or XEDS) techniques
were used for the elemental analysis and chemical characterization of the samples, repre-
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senting the polymeric composites tested in this study, as biosorbents—before and after the
biosorption process of Brilliant Red dye HE-3B.

The SEM images presented in Figure 3a easily show the mesoporous appearance of the
analysed material. Figure 3b shows the SEM images of the composites after the biosorption
process of the Brilliant Red HE-3B dye, showing a slight change in the appearance of the
granules’ surface, which became more uniform. Porosity and a large surface area are very
important elements in the case of materials used as adsorbents for chemical pollutants.

The EDAX spectrum obtained for the analyzed samples showed, on the surfaces,
the presence of various elements that come from the structure of polymeric composites
based on microbial biomass and sodium alginate (Figure 3a) and also of the retained
dye, respectively the increase of carbon and appearance of nitrogen and sulfur atoms
(Figure 3b). These modifications suggest the retention of the dye on the surface of the
polymeric composite material. The difference observed in the amounts of calcium before
and after biosorption could be due to the process of granule washing with distilled water
carried out before the biosorption process.

The FTIR spectra obtained for the biosorbent before and after the dye biosorption
process, as well as the spectrum of the studied dye Brilliant Red HE-3B, are presented
in Figure 4.
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A study of the FTIR spectra from Figure 4 highlights the following aspects:
(1) Peaks that are present in both types of samples—before and after the biosorption

process—are characteristic of the polymer–biomass composite, and come from either the
structure of the sodium alginate or from that of the biomass. Characteristic in this regard
are the peaks recorded at 3400–3290 cm−1, which are specific for the O–H group, while the
sharp peaks at 2950 and 2850 cm−1 can be assigned to C–H stretching; 1050–1125 cm−1 can
be assigned to C–O stretching vibrations characteristic of the alcohol structures; 1014 cm−1

can be assigned to CO stretches in the polysaccharides; 1600 cm−1 can be assigned to
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aromatic ring stretching; and 1400 cm−1 can be assigned to OH bending, which has
reduced intensity in samples of biosorbent after biosorption.

(2) Peaks that appear in the biosorbent sample after dye retention in the area of
600–1800 cm−1 provide a valuable clue that suggests the dye’s retention. The most obvious
in this sense is the peak at 1325 cm−1, characteristic of sulfonic acid sodium salts, which
are also found in the dye spectrum. Other peaks found in the dye spectrum and in the
biosorbent after biosorption are: 1727 and 1540 cm−1 assigned to C=O; 1625 cm−1 assigned
to aromatic ring stretching; 1485 cm−1 assigned to C=O; and 1210 cm−1 assigned to COC.

3.2. Evaluation of the Value of the Point of Zero Charge (pHPZC) for Biosorbent

A parameter that allows the appreciation of the electric charge of the biosorbent
surface, and therefore its behaviour during interactions with different chemical species—
anionic and/cationic—is the point of zero charge (pHPZC). The value of pHPZC (pH of
zero charge) for biosorbent based on residual biomass immobilized in sodium alginate
was determined using the method proposed by Nouri and Haghseresht, following the
graphical representation in Figure 5 [23].
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Figure 5. The value of the point of zero charge (pHPZC) for biosorbent based on residual biomass of
Saccharomyces pastorianus encapsulated in sodium alginate.

The pHPZC value was found to be 5.4 (Figure 5). At values of pH < pHPZC, the
composite surface was positively charged due to the increased H+ ion concentration
(the characteristic groups were positively charged) and susceptible to react with anionic
species via electrostatic interactions and hydrogen bonding. At pH > pHPZC values, the
composite surface was negatively charged due to the dissociation of some characteristic
functional groups and was capable of ion-exchanges and/or electrostatic interactions with
cationic species.

3.3. Modelling the Biosorption Equilibrium Process

Our previous study had concluded that the biosorption process of Brilliant Red HE-3B
dye onto residual biomass of Saccharomyces pastorianus encapsulated in sodium alginate
proceeded with adequate results under the following conditions: pH = 3, contact time of
24 h, temperature of 25 ◦C and the concentration of biosorbent in the range of 0.06 to 0.08 g
(with 5% d.w.), depending on the diameter of the biomass-based granules [24].

Thus, this study focuses on the analysis of the biosorption balance of the Brilliant Red
HE-3B reactive dye on residual biomass-based biosorbent prepared by the encapsulation
of Saccharomyces pastorianus (residual yeast biomass) in sodium alginate. This involves de-
termining the quantitative characteristic parameters that describe the process, determining
thermodynamic parameters, and evaluating the biosorption mechanism. The proposed
equilibrium isotherms, presented in Figure 6, were processed using three of the most well-
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known isotherm models in the scientific literature (Equations (2)–(8)) in order to determine
their characteristic quantitative parameters.
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Figure 6. Biosorption isotherms of Brilliant Red HE-3B reactive dye on composite material based
on residual Saccharomyces pastorianus biomass encapsulated in sodium alginate, in the form of two-
dimensional granule: Φ1 = 1500 µm (a) and Φ2 = 900 µm (b). Conditions: pH = 3, contact time = 24 h,
dry substance content in biosorbent = 0.16/0.14 g/L.

The isotherms presented in Figure 6 show that retention on smaller granules (Φ2,
Figure 6b) was better compared to that obtained when larger granules were used (Figure 6a),
at all temperatures at which the biosorption process was studied for the considered reactive
dye. The alignment of the curves indicates a type of “L” isotherm, subgroup 2, according
to Giles classifications [25]. This is the classic Langmuir-type isotherm which is based
on the surface biosorption of vertically oriented molecules through particularly strong
intermolecular bonds. The experimental data were modeled by applying the linearized
forms of each proposed biosorption model (Freundlich, Langmuir I and II and Dubinin–
Radushkevich, Equations (2)–(8)). The obtained graphs are presented in Figure 7 and the
results, calculated according to the intercepts and slopes of the corresponding linear plots,
are listed in Table 1.
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Figure 7. Linearized forms of Freundlich (a,b), Langmuir I (c,d), Langmuir II (e,f) and DR (g,h) plots for the Brilliant Red
HE-3B reactive dye on composite material based on residual Saccharomyces pastorianus residual biomass encapsulated in
sodium alginate. Conditions: pH = 3, contact time = 24 h, dry substance content in biosorbent = 0.16/0.14 g/L; diameter of
granules: Φ1 = 1500 µm (a,c,e,g) and Φ2 = 900 µm (b,d,f,h) at three temperatures: 5◦, 30◦ and 45 ◦C.
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Table 1. Characteristic parameters for the biosorption of Brilliant Red HE-3B reactive dye onto composite material
based on residual biomass of Saccharomyces pastorianus encapsulated in sodium alginate.

Isotherm
Φ1 = 1500 µm Φ2 = 900 µm

278 K 303 318 278 K 303 318

Freundlich

KF
((mg/g) (L/mg)1/n) 2.5275 4.6709 43.944 0.222 11.416 30.4369

n 1.2711 1.1737 2.4845 0.7402 14.431 1.9558
R2 0.9242 0.9525 0.9025 0.971 0.9838 0.9321

Langmuir I (1/q = f (1/C))

q0 (mg/g) 2500 555.55 312.5 454.545 344.827
KL (L/g) 0.000504 0.00712 0.0667 0.01453 0.0571

R2 0.9799 0.9761 0.9987 0.9881 0.9985 0.9969

Langmuir II (C/q = f (C))

q0 (mg/g) 200 555.55 312.5 476.19 416.667
KL (L/g) 0.00859 0.00656 0.06639 0.01345 0.03162

R2 0.8363 0.7778 0.9994 0.4894 0.9838 0.9991

Dubinin-Radushkevich (DR)

q0 (mg/g) 3013.02 8814.576 1572.725 42,327.8 5348.6 2923.39
β (mol2/KJ2) 0.007 0.0063 0.0027 0.0121 0.0051 0.0034
E (KJ/mol) 8.4515 8.909 13.608 6.428 9.901 12.127

R2 0.9426 0.9724 0.9317 0.9827 0.9917 0.954

Assessment of the best isotherm model to describe the biosorption process of the
reactive Brilliant Red HE-3B dye on the biosorbent based on encapsulated residual biomass
of Saccharomyces pastorianus in sodium alginate took into account mainly the values of the
correlation coefficients: R2.

The processing of the equations of the lines in Figure 7 led to the parameters charac-
teristic of the biosorption process, systematized in Table 1.

The analysis of the data obtained by processing the experimental results (Table 1) based
on the three models considered, allowed the evaluation of some quantitative parameters
necessary for:

- Assessment of the efficiency of polymeric composites based on residual biomass as
bioadsorbent material (q),

- Subsequent analyses to evaluate the effect of temperature on the development of the
biosorption process and its feasibility from a thermodynamic point of view (q, KL).

- Additionally, a series of preliminary conclusions can be drawn regarding the mech-
anism of the biosorption process, both from the information provided by the value
of the biosorption energy (E) determined from the DR model, and from the subse-
quent data obtained by the thermodynamic study based on the Langmuir model:
biosorption capacity, q and Langmuir constant, KL.

Comparatively analysing the values of the correlation factors, R2, from Table 1, it is
observed that the model that best confirms the experimental data is Langmuir, with the
L1 data representation form.

Studying the values of the calculated parameters, an important influence of tempera-
ture was observed. The best results for biosorption capacity, q, and the Langmuir constant,
KL, were obtained at a temperature of 30 ◦C. Above this temperature, the values obtained
were slightly lower—one explanation being the instability of the microbial biomass, which
leads to its denaturation at higher temperatures.

The free biosorption energy (E), calculated by the D–R model, provides some pre-
liminary information on the nature of the biosorption process (physical or chemical).
The values obtained were around 8–9 KJ/mol—values that characterize adsorption pro-
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cesses based on physical bonds (van der Waals, hydrogen, dipole–dipole interactions and
electrostatic attraction between the positively charged surface of the biosorbent and the
anionic functional groups in the dye molecules, respectively) between the dye and the
polymeric composite based on the Saccharomyces pastorianus residual biomass encapsulated
on sodium alginate as biosorbent.

The value obtained for the biosorption capacity under ambient temperature condi-
tions (30 ◦C), according to the Langmuir I model, was comparable with other values of
biosorption capacity published in the literature for different types of microbial biomass
in free or immobilized/encapsulated forms on various polymeric matrices in order to
remove organic dyes from aqueous media. For the removal of Reactive Red 198 and
Reactive Yellow 2 dyes, a microbial cell-immobilized Platanus orientalis leaf tissue was
used and biosorption capacities of 51.12 and 37.59 mg/g were recorded [26]. Immobi-
lized Mucor plumbeus on a sepiolite support was used for Methyl Violet biosorption, with
187.76 mg/g biosorption capacity [27]. Penicillium sp. immobilized in 2% sodium alginate
was used for the removal of C. I. Reactive Red dye, obtaining a maximum sorption capacity
of 120.48 mg/g [13]. Lentinus concinnus biomass, immobilized to carboxymethyl cellulose
(CMC) in the presence of FeCl3, achieved the removal of Disperse Red 60 dye with a
maximum q value of 92.6 mg/g [28]. The same strain (Lentinus concinnus) immobilized
in polyvinyl alcohol/polyethylene oxide hydrogels was employed for the retention of
Reactive Yellow 86 dye, with a biosorption capacity of 87.6 mg/g [29]. Bacillus subtillis sp.
immobilized in sodium alginate was used for Brilliant Red HE-3B reactive dye biosorption,
obtaining a 588.235 mg/g maximum sorption capacity [30]. Lactobacillus sp. immobilized
in sodium alginate successfully removed Orange 16 dye from aqueous solutions, with a
q = 123. 459 mg/g value [31].

3.4. Analysis of the Proposed Thermodynamic Parameters

Three thermodynamic parameters were calculated (Table 2), using Equations (2)
and (3) [32,33]. In these equations, the values of the Langmuir constant (Ll) KL (L/g) were
taken into account in the case of Φ1 = 1500 µm granules, for which the best regression
coefficients and higher values for the biosorption capacity were achieved.

Table 2. Thermodynamic parameters for the biosorption process of reactive Brilliant Red HE-
3B dye onto composite based on residual biomass of Saccharomyces pastorianus encapsulated in
sodium alginate.

T (K) KL (L/g) ∆G0 (KJ/mol) ∆H0 (KJ/mol) ∆S0 (J/mol K)

278 0.0000504 −0.704
−87.795 312.232303 0.00712 −5.903

318 0.0667 −12.111

According to the data from Table 2 of Gibbs free energy, ∆G0 shows negative values
(except at a temperature of 5 ◦C), which suggests that overall, the biosorption of the
reactive dye Red Brilliant HE-3B on the polymeric composite tested as biosorbent (based
on Saccharomyces pastorianus residual bacterial biomass encapsulated in sodium alginate)
could be considered a spontaneous process. Additionally, ∆G0 values between −20 and
0 KJ/mol indicate a biosorption process based on a physical adsorption mechanism. This
finding overlaps with the preliminary data provided by the values of the average free
adsorption energy (E), calculated using the equation of the DR model.

The negative value resulting from the calculations for the biosorption enthalpy (∆H0)
(slope of the linear dependence of ln KL vs. 1/T), confirms both the exothermic nature of
the biosorption of the reactive dye Brilliant Red HE-3B on the studied biosorbent, and the
more physical nature of the mechanism of the biosorption process [29].

The positive value of the adsorption entropy (∆S0) characterizes the increased random-
ness at the solid–solution interface during the dye biosorption process and some structural
changes of the biosorbent and adsorbant.
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3.5. Recovery of Biosorbent Loaded with Dye

Due to its “fragile” nature, the biosorbent cannot be regenerated by recovering the
dye and reusing it in new adsorption–desorption cycles. The recovery can be performed in
the direction of use as a bioamendment for the soil, in order to improve the quality of the
soil [34] in composting or anaerobic digestion processes [35].

4. Conclusions

The results here confirm that residual microbial biomasses encapsulated in a polymeric
matrix—sodium alginate in this study—can be considered biomaterials with biosorbent
properties, effective in retaining organic dyes present in aqueous solutions in moderate
concentrations. The biosorption process of the reactive dye Brilliant Red HE-3b on poly-
meric composites of different granulations, obtained by encapsulating the residual biomass
of Saccharomyces pastorianus in the sodium alginate matrix, was studied. For this purpose,
the modelling of the experimental data was performed using a series of known isothermal
models: Langmuir, Freundlich and Dubinin–Radushkevich, and it was proved that the
Langmuir model is the one that fits best in this regard.

The study showed that this biosorption process, in which a biosorbent based on
Saccharomyces pastorianus encapsulated on sodium alginate for the removal of the reactive
dye Brilliant Red HE-3B is used, is of a physical nature, according to the calculated value
of the free adsorption energy (E = 8.45–13.608 kJ/mol, from the DR model equation) and
the value of the biosorption enthalpy (∆H0 = −87.795 kJ/mol). Additionally, the negative
values of its free energy (∆G0 = −5903 and −12,111 kJ/mol) and the negative enthalpy
of biosorption (∆H0 = −87,795 kJ/mol) suggested that the process could be considered
spontaneous, and probably of an exothermic nature.
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