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Abstract: In this work, hierarchical MoS2/C quasi-hollow microspheres are prepared by a one-pot
hydrothermal process with the addition of glucose. The glucose is not only inclined to form the
roundish sphere in the completion of the synthesis of MoS2, but at the same time the microspheres
formed by the glucose can act as the nuclei on which the MoS2 grows. Glucose, acting as a nucleating
agent, has the advantages of being low-cost and environmentally friendly, which can simplify the
fabrication process. The interiors of the MoS2/C samples are multi-hole and quasi-hollow, which
is beneficial for the insertion and extraction of lithium ions. For the first time, we demonstrate that
hierarchical-structured MoS2/C quasi-hollow microspheres exhibit an excellent cycling stability
and rate capability in lithium ion batteries (LIBs) and are significantly superior to the bulk MoS2.
The method presented in this article may provide a simple, clean. and economical strategy for the
preparation of MoS2/C microspheres as a feasible and promising anode material for LIBs.

Keywords: MoS2; hydrothermal synthesis; hollow microsphere; lithium ion battery (LIB)

1. Introduction

New energy technology is considered to be one of the five major technical areas in the
development of the 21st century world economy, which receives great attention around
the world. Rechargeable lithium ion batteries (LIBs) are currently key components of
portable, entertainment, computing, and telecommunication equipment due to their light
weight, high specific capacity, low self-discharge rate, good cycling performance, having
no memory effect, and being eco-friendly [1,2]. Due to the limited lithium storage capacity
of the commercial graphite anode (372 mAh g−1) in LIBs, they can no longer suit the fast
growth of the modern society. Therefore, the need to explore alternative anode materials
with a smaller size, lighter weight, and higher reversible capacity is more demanding
than eVer [3,4].

As a typical type of layered transition metal dichalcogenide (TMD), MoS2 has a sand-
wich structure, stacked by S–Mo–S tri-layers through Van Der Waals interaction [5,6]. This
unique structure endows MoS2 with numerous applications in the fields of lubricants [7],
catalytic hydrodesulfuration [8], hydrogen storage [9], eVolution reactions [10,11], and
anode materials for Li+/Na+/Mg2+ batteries [12–18]. Following the first patent of MoS2
as the anode material in LIBs, a large number of MoS2 with different morphologies (such
as nanoflake, nanoflower, hierarchical microsphere) were fabricated for LIBs [5,19–21]. As
an anode material, MoS2 has a specific capacity of up to 1000 mAh g-1 [22], but its cycling
stability is unsatisfactory due to the great volume expansion-induced mechanical strain
upon the cycling, which subsequently causes electrode pulverization and the loss of active
material/current collector integrity [6,23,24]. On the other hand, the relatively low electric
conductivity of bulk MoS2 also poses a negative effect on its rate capability in LIBs.
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To address the above issues, two approaches have been proposed [25]. One is to
devise special nanostructures of MoS2 (such as nanotubes [26], nanoflakes [27], and meso-
porous [28] and hierarchical micro-nanostructures [29,30]) so that they can release the me-
chanical strain of the volume change and lessen the barrier for the Li+ transport. However,
the aggregation of nano-structured MoS2 may still happen during the charge/discharge
process and it will still suffer from a low electric conductivity. The other approach is to fab-
ricate the MoS2 composites with some electrically conductive carbons or polymers, which
obviously is beneficial in terms of improving the electrical conductivity of the electrode
material [31–38]. Therefore, the combination of these two strategies—i.e., the preparation
of a MoS2/electrically conductive carbon composite, in which MoS2 presents a special
morphology—may offer a perfect solution to the problems of bulk MoS2, as mentioned
above. Recently, hierarchical hollow nanoparticles have aroused great interest because they
not only effectively increase the electrolyte/electrode contact area and shorten the pathway
of ion diffusion, but also buffer the volume expansion of electrodes, thus stabilizing the
electrode structure under the charge–discharge process. Although MoS2/C hollow micro-
spheres have been reported once [25,29], the involvement of mono dispersed polystyrene
microspheres as templates makes the synthetic process expensive and sophisticated.

Glucose, a widely accessible biochemical, is a source of carbon, which is also consid-
ered a method that adds value to biorefinery. In this paper, we present a fast, simple, and
low-cost method to prepare MoS2/C quasi-hollow microspheres using a one-pot hydrother-
mal method with the assistance of glucose. Compared with other hydrothermal methods
to prepare molybdenum disulfide/carbon composites [34,35], we selected ammonium
molybdate and thiourea as the raw materials to synthesize MoS2 at the molecular level,
which can make the glucose molecules first aggregate into nuclei and then cause ammo-
nium molybdate and thiourea to grow in situ on the surface. First, the MoS2 layer grows
through heterogeneous nucleation on the surface of the spherical core formed by glucose
aggregation. Second, the glucose is pyrolyzed into porous carbon in the interior to form
the MoS2/C microspheres with a quasi-hollow structure after heat treatment. As expected,
the MoS2/C quasi-hollow microspheres can not only improve the cycling stability of MoS2,
but also enhance the electric conductivity of the electrode material, resulting in an excellent
rate performance in LIBs.

2. Experimental Section
2.1. Synthesis of Hierarchical MoS2/C Quasi-Hollow Microspheres

Ammonium molybdate tetrahydrate ((NH4)6MoVI
7O24·4H2O, 99%) and thiourea

(C(NH2)2S, 99%) were purchased from Shanghai Aladdin Co., Ltd. Glucose was purchased
from Kelong Chemical Co., Ltd. (Chengdu, China). All the reagents were analytical grade
and directly used as received without further purification.

In a typical procedure, 8.6 mmol/L of ammonium molybdate, 140 mmol/L of thiourea,
and 148 mmol/L of glucose were dissolved in 30 mL of distilled water. After being stirred
for 30 min, the solution was then transferred into a Teflon-lined stainless steel autoclave.
The autoclave was sealed and maintained at 240 ◦C for 48 h. The black precipitates were
collected by filtering, washing with distilled water, and freeze-drying for 24 h. Subsequently,
the as-prepared black powder was fabricated into MoS2/C composites by annealing in
an Ar atmosphere under 800 ◦C for 2 h. The content of glucose varied between 148 and
296 mmol/L (MoS2/C composites obtained with the addition of 148, 222, and 296 mmol/L
of glucose) and such obtained composites are denoted as MoS2/C-1, MoS2/C-2, and
MoS2/C-3, respectively, according to the approximate mass ratio of glucose and the total
weight of the ammonium molybdate and thiourea. The bulk MoS2 was prepared through
the same procedure without the addition of glucose for comparison.

2.2. Characterizations

Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku (Smart lab III)
of Hitachi Company (Tokyo, Japan) using Cu Kα radiation within 2θ = 10◦–80◦ with a
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scanning rate of 10◦/min. Product morphologies were observed by field emission scan-
ning electron microscopy (FESEM) and high-resolution transmission electron microscopy
(TEM) (Philips-FEI company Hillsboro, OR, USA). X-ray photoelectron spectra (XPS) were
collected on an Escalab 250Xi X-ray photoelectron spectrometer (Thermo Fisher Scientific
Co., Ltd., Waltham, Ma, USA).

2.3. Electrochemical Measurements

The anodes were fabricated by mixing active materials (MoS2, MoS2/C composites)
with acetylene black carbon and polyvinylidene fluoride (PVDF), at a weight ratio of 8:1:1
in the solvent of N-methyl-2-pyrrolidone (NMP). The obtained slurry was cast onto a Cu
foil with a wet film thickness of about 150 µm and dried at 120 ◦C in a vacuum for 12 h. The
electrodes were punched to ϕ=13 mm discs before use. Subsequently, CR 2032 coin-type
cells were assembled in an argon-filled glove box using MoS2, or MoS2/C composites as
the working electrode, Li foil as the counter electrode, a glass fiber membrane (Whatman
1825-025) as a separator, and 1M of LiPF6 dissolved in a 1:1 mixture of ethylene carbonate
and diethyl carbonate as the electrolyte. The cells were measured using an automatic
battery tester system of Wuhan Landian Electronics Co., Ltd. (Land CT2001A, Wuhan,
China) and galvanostatic charged and discharged at various current densities in the voltage
range of 0.01–3.0 V. The cyclic voltammetry (CV) was carried out in the potential range of
0.01–3.0 V (vs. Li/Li+) with a scan rate of 0.2 mV/s, and the electrochemical impedance
spectroscopy (EIS) was measured by applying an AC voltage of 10 mV in the frequency
range of 100 kHz to 0.01 Hz using the Biologic VMP3 electrochemical workstation.

3. Results and Discussion
3.1. Characterization of Structure and Morphology

Figure 1 is the schematic illustration of the formation of hierarchical MoS2/C quasi-
hollow microspheres. First, glucose spontaneously aggregates, acting as a spherical nuclei
onto which MoS2, synthesized by the reaction of (NH4)6MoVI

7O24·4H2O (Mo source) and
C(NH2)2S (S source), grows through heterogeneous nucleation. In the process of hydrother-
mal reaction, glucose molecules undergo dehydration and cross-linking reaction, carbonize
to form carbon-carbon bonds, and gradually form carbon microspheres. Subsequently,
after the high-temperature annealing treatment, its aromaticity is further increased, which
is beneficial to the improvement of conductivity [38,39]. Then, MoS2/C quasi-hollow
microspheres with hierarchical structures are obtained.

Figure 1. Schematic illustration of the formation mechanism of the hierarchical MoS2/C quasi-hollow microspheres.

Figure 2 shows the XRD pattern of pristine MoS2 and MoS2/C composites prepared
with different amounts of glucose. The XRD pattern of the annealed bulk MoS2 can be
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indexed as the hexagonal crystalized structure of MoS2 (JCPDS no. 37-1492), and the strong
(002) peak centered at 2θ = 14.2◦ indicates a well-stacked layered structure. However, in
the MoS2/C composites with a different carbon content, the (002) plane peak disappears,
indicating that the stacking layered structure of MoS2 is inhibited in the MoS2/C composites
38. The other two peaks at 2θ = 33.0◦ and 58.9◦ are in good agreement with those of pristine
MoS2. The XRD results clearly reveal that the structure of MoS2 is mono or has few layers,
which is further confirmed by the results of the high-resolution TEM (Figure 3). Besides
these, another three weak peaks which do not belong to the MoS2 can also be found in
the MoS2/C composites. The weak peak at 2θ = 25◦ should be attributed to the (002)
plane of amorphous carbon, as the annealing temperature of 800 ◦C is much lower than
the graphitization temperature of 3000 ◦C. In addition, another two weak peaks, marked
with * and #, do not belong to the MoS2 or the carbon. According to the Bragg equation,
the d-spacing of peak * is 0.97∼1.18 nm and that of peak # is 0.49∼0.58 nm, which do
not agree with the d-spacing of MoS2 (0.62 nm) or carbon (0.34 nm). Referring to the
MoS2/amorphous carbon composites synthesized by a hydrothermal route [17,38,40,41],
it is known that the d-spacing of peak * is very close to the distance of adjacent MoS2
nanosheets in amorphous carbon, suggesting that some amorphous carbon is inserted into
the layer of MoS2. The d-spacing of # (0.49∼0.58 nm) can be indexed to the distance between
the MoS2 layer and the carbon layer. Besides these peaks, no other peaks are formed in the
MoS2/C composites, indicating that impurity does not exist in the MoS2/C composites.

Figure 2. X-ray diffraction (XRD) patterns of the synthesized pristine MoS2 and MoS2/C composites
prepared with different amounts of glucose (a.u. is arbitrary unit).

The morphology of the as-prepared pristine MoS2 and MoS2/C composites were
first observed by Scanning electron microscopy (SEM). As shown in Figure 3a, MoS2
tend to form a flower-like agglomeration assembled by the MoS2 nanosheets. With the
introduction of carbon, the MoS2/C composite shows a hierarchical structure, as shown in
Figure 3c–h, which is composed of MoS2 growing on the surface of the C microspheres.
This hierarchical structure enlarges the contact area of the anode of the MoS2/C and the
electrolyte. Additionally, it can shorten the Li+ diffusion channel in the charge–discharge
process. Compared with the pristine MoS2, there was no agglomeration of the MoS2
nanosheets in the MoS2/C hierarchical structure, suggesting that the amorphous carbon
plays a vital role in stabilizing the MoS2 nanosheets. At the same time, it can be observed
that the MoS2/C quasi-hollow microspheres become bigger and more roundish rather than
flocking together by increasing the content of amorphous carbon by varying the amount
of glucose in the hydrothermal process. By increasing the amount of glucose, it is easier
for glucose to aggregate to individually bigger spherical nuclei through the interaction of
oxygen-containing functional groups, as do the resulting MoS2/C microspheres formed by
means of heterogeneous nucleation on glucose.
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Figure 3. Scanning electron microscopy (SEM) image of (a,b) pristine MoS2, (c,d) MoS2/C-1, (e,f) MoS2/C-2, and (g,h)
MoS2/C-3 composites.

To further investigate the hierarchical structures of the MoS2/C microspheres, TEM
characterization was performed on one of the composites of MoS2/C-2. As shown in
Figure 4a–d, it is obvious that MoS2/C microspheres exhibit a quasi-hollow structure, the
center of which is different from its margin: the interior is mainly composed of porous
residual amorphous carbon due to the incomplete decomposition of glucose under Ar,
while the bulk shell indicates the existence of the MoS2. The high-resolution TEM images
of the MoS2/C microspheres (Figure 4c) reveals that the shells are indeed composed of
1–3 layers of MoS2 and the interlayered spacing is about 0.65 nm which is very close to
the value calculated from the XRD patterns by using the Bragg equation. A selected area
electron diffraction (SAED) pattern of the quasi-hollow MoS2/C composite displays two
bright diffraction rings belonging to the (100) and (110) reflections of the hexagonal-phase
MoS2, which is consistent with the XRD results.

Figure 4. Transmission electron microscope (TEM) images of (a–c) MoS2/C-2 microspheres at
different magnifications; (d) electron diffraction pattern of MoS2/C-2.
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X-ray photoelectron spectroscopy (XPS) was conducted to determine the chemical com-
position of the MoS2/C composites. The atomic ratio of the Mo and S elements calculated
from the XPS spectra is 2.02, approaching the stoichiometric value of MoS2 [42]. The Mo 3d
XPS spectrum of the MoS2/C-2 sample shows two broad peaks at 229.3 eV and 232.4 eV, which
can be assigned to the doublet Mo 3d5/2 and Mo 3d3/2, respectively (Figure 5a) [42–44]. The
S 2p spectrum can be deconvoluted into two peaks centered at 162.3 eV and 163.5 eV, which
correspond to S 2p3/2 and S 2p1/2, respectively (Figure 5b) [42–44]. Furthermore, the Mo 3d
XPS spectrum and S 2p XPS spectrum suggest that Mo4+ and S2- are the dominant states in
the MoS2/C samples [34].

Figure 5. (a) Mo 3d spectra and (b) S 2p X-ray photoelectron spectroscopy (XPS) spectra of the MoS2/C-2 composite.

3.2. Electrochemical Performance Characterization

Pristine MoS2 and MoS2/C composites were assembled as a half battery in order to
compare their electrochemical properties. Figure 6a–d show the cyclic voltammograms
(CV) of pristine MoS2 and MoS2/C composites at a scan rate of 0.2 mV/s. The CV curves of
pristine MoS2 show two reductive peaks at 0.8 and 0.3 V and two corresponding oxidation
peaks at 1.7 V and 2.2 V in the first cycle. The two reductive peaks at 0.8 V and 0.3 V are
due to the reactions (1) and (2) as follows, respectively:

MoS2 + xLi+ + xe− → LixMoS2 (1)

LixMoS2 + (4− x)Li+ + (4− x)e− → Mo + 2Li2S (2)

The pronounced oxidation peaks at 1.7 V and 2.2 V could be attributed to the delithi-
ation of Li2S [43,44]. In the second and third cathodic sweeps, a new reductive peak at
∼1.8 V appears, which could be attributed to the following reaction (3):

2Li+ + S + 2e− → Li2S (3)

In contrast, MoS2/C composites present a similar but slightly different CV behavior
compared to the pristine MoS2. During the first anodic scan, there are two peaks located
at 0.8 V and 0.6 V in the MoS2/C-1 composite, which could be attributed to the reactions
(1) and (2) [41,45]. Compared with MoS2/C-1, the reductive peak of the MoS2/C-2 and
MoS2/C-3 at 0.8 V becomes inconspicuous for the existence of carbon interlayers between
the neighboring MoS2 layers preventing the phase transformation of MoS2 from trigonal
prismatic to octahedral [41]. During the subsequent cathodic scan of the MoS2/C-1 elec-
trode, two oxidative peaks at 1.2 V and 2.2 V are observed, which can be attributed to the
oxidation of Li2S into S [6,25,46]. After the first cycle, the electrode is mainly composed of
Mo and S instead of the initial MoS2 [6]. In the subsequent scans, the two peaks observed in
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the first anodic scan disappears. Instead, a new prominent reductive peak at 2.0 V presents,
which could be also attributed to the reaction (3) [6,25]. In contrast, in the second scan the
anodic peaks at 1.4 V and 2.2 V overlap with those in the first scan, suggesting excellent
electrochemical reversibility and stability. The 2.0/2.2 V redox pair constitutes a reversible
redox couple, resembling those of sulfur electrodes closely [25].

Figure 6. Cyclic voltammograms (CV) of (a) pristine MoS2, (b) MoS2/C-1, (c) MoS2/C-2, and (d)
MoS2/C-3 composite electrodes; galvanostatic charge/discharge profiles of (e) pristine MoS2, (f)
MoS2/C-1, (g) MoS2/C-2, and (h) MoS2/C-3 electrodes.

The galvanostatic discharge/charge profiles of pristine MoS2 and MoS2/C composites
are presented in Figure 6e–h, respectively. As shown in Figure 6e, pristine MoS2 presents
two potential plateaus at ∼0.3 V and 0.8 V in the first discharge process due to the Li+

intercalation reaction followed by a series of conversion reactions. In contrast, there are
two inconspicuous potential plateaus at 0.8 V and 0.6 V on the discharge curves of the
MoS2/C-1 composites, which is caused by the conversion reaction of the Li+ intercalation
of the MoS2. Nevertheless, only one potential plateau at ∼0.6 V presents at the first
discharge curve and the plateau corresponding to the Li+ intercalation disappears. During
the subsequent charge process of the pristine MoS2 and MoS2/C composites, a series of
potential plateaus are all attributed to the oxidation of Li2S into S. The information reflected
by these charge/discharge curves are in agreement with the results of the CV curves. The
initial discharge capacities of pristine MoS2, MoS2/C-1, MoS2/C-2, and MoS2/C-3 are
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983.6, 867, 924.6, and 771.3 mAh/g, respectively. After 150 continuous charge–discharge
cycles, the reversible discharge capacities of pristine MoS2, MoS2/C-1, MoS2/C-2, and
MoS2/C-3 retain about 134.8, 467.8, 549.7, and 387.9 mAh/g, respectively, suggesting that
the electrochemistry performance of the MoS2/C composites is superior to that of pristine
MoS2 and the structural stability of MoS2/C-2 is superior among the MoS2/C composites.

The cycling performances of MoS2/C quasi-hollow microspheres are compared in
Figure 7. As shown in Figure 7a, the pristine MoS2 exhibits an initial discharge capacity
of 979.2 mAh g-1, which decays quickly within five cycles to 792.2 mAh g−1, then after
a short plateau of up to 25 cycles continuously drops, and it only can maintain about
100 mAh g-1 beyond 75 cycles. However, in contrast, the MoS2/C composite electrodes
exhibit a significantly improved cycling stability. The initial discharge capacity of the
MoS2/C electrodes are 867-, 924.6- and 771.3 mAh g-1 respectively and after a slight cycle
loss in the first five cycles, these electrodes remain with reversible capacities of 456.9, 560.5,
and 338.8 mAh g-1, respectively, eVen after 200 cycles. One has to note that the calculated
capacity of the composites in which about 62.55%~72.7% of the carbon has no capacity
contribution. To make a further comparison, we summarized the electrochemical properties
of some of the MoS2/C electrodes as shown in Table 1. It can be seen that the reversible
specific capacity obtained from the MoS2/C-2 is comparable to those of the other kinds of
MoS2/C electrodes.

Figure 7. (a) Cycling performance of the bulk MoS2 and MoS2/C electrodes measured in the voltage range of 0.01–3.0 V
at a current density of 100 mA g−1; (b) rate capability of the bulk MoS2 and MoS2/C electrodes between 0.01 and 3 V at
different current densities.

Table 1. Summary of electrochemistry properties of MoS2/C flexible electrodes.

Materials Current Density
mA g−1

Cyclic
Number

Specific Capacity
mAh g−1 References

C@MoS2
microsphere 100 100 652 [25]

Bowl-like C@
MoS2

100 100 798 [31]

Flower-like
MoS2/C 100 50 834 [35]

MoS2-MWCNT 100 30 938 [36]

MoS2/C
nanoflowers 100 50 888.1 [43]

MoS2/C-2 100 200 598 This work
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Moreover, the MoS2/C-2 electrode demonstrates a better rate performance in all the
electrodes as shown in Figure 7b. The capacity of MoS2/C-2 delivered 586, 506, 410, 350,
and 300 mAh g-1 at 0.1, 0.2, 0.5, 1, and 2 A g-1, respectively. When the current density
recovers to 100 mA g-1 after cycling under the high current densities, MoS2/C-2 sample
can still regain a reversible capacity of 550 mA g-1. However, the capacity of the bulk MoS2
fades continually under the current density of 1 A g-1 and drops to ~ 100 mAh g-1 at 2 A g−1.
When the current density recovers to 100 mA g-1, the capacity of the bulk MoS2 still drops
continually, to far below its initial capacity. The superior electrochemical performance
of the MoS2/C electrode can be attributed to the following reasons. Firstly, the MoS2/C
quasi-hollow microspheres with a larger specific area can provide a contact area between
the electrode material and the electrolyte, which may facilitate the Li+ insertion/distraction
in the charge/discharge process. Secondly, the interstices between the ultrathin MoS2
nanosheets and quasi-hollow interior of the MoS2 microspheres play the role of buffering
the mechanical stresses induced by the volumetric expansion/shrinkage of the MoS2 [25].
Thirdly, the porous carbon cores may serve as adsorbents to restrain the discharge products
of the sulfur (lithium polysulfide) from dissolving into electrolytes [25,47]. Lastly, the
excessive carbon is not beneficial for the capacity of the MoS2/C microspheres but favorable
to the cycling stability because the carbon in the MoS2/C microspheres is amorphous and
it will lower the capacity of the MoS2/C microspheres.

To gain an in-depth understanding of the good electrochemical performance of the
MoS2/C sample, the electrochemical impedance spectra (EIS) of the bulk MoS2 and the
MoS2/C electrodes before cycling and after cycling 50 cycles are measured and presented
in Figure 8, respectively. Two overlapped depressed semi-circles at high frequency along
with an inclined spike at low frequency are observed for all the spectra. The two semi-
circles could be attributed to the charge–transfer resistance (Rct) between the active mate-
rial and the electrolyte, and correspond to the lithium diffusion process within the elec-
trodes [38,48,49]. The charge–transfer resistance of the bulk MoS2, MoS2/C-1, MoS2/C-2,
and MoS2/C-3 is approximately 110, 98, 95, and 60 Ω before cycling, and the corresponding
values are about 120, 80, 37, and 50 Ω after the 50th cycle of the charge–discharge process,
respectively. It can be seen that the MoS2/C-2 composite has a much lower charge–transfer
resistance among all the electrodes, which is beneficial for the transmission of Li+ and
electrons during the charge–discharge process. Furthermore, the much lower impedance
of the MoS2/C composites demonstrates that the existence of porous carbon can greatly
enhance the conductivity of the MoS2/C electrode.

Figure 8. Electrochemical impedance spectra of the bulk MoS2 and MoS2/C electrodes before cycling
(a) and after cycling 50 cycles (b) at a current density of 100 mA/g.

4. Conclusions

In summary, hierarchical quasi-hollow MoS2/C microspheres were successfully pre-
pared by a facile one-pot approach with the assistance of glucose. The as-prepared MoS2/C
microspheres are significant due to their hierarchical structures integrated with the MoS2
nanostructure, in which the aggregation of MoS2 is effectively prevented for the porous
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carbon microspheres. These unique hierarchical quasi-hollow MoS2/C microspheres exhib-
ited a greatly improved Li-ion storage performance. In particular, the MoS2/C composites
exhibited outstanding cycling stability and better rate performance than the bulk MoS2.
Among all the electrodes, the MoS2/C-2 electrode exhibited a higher capacity and better
rate performance than the other electrodes. The amorphous carbon in the interior of the
MoS2/C microspheres can prevent the aggregation of MoS2 in the discharge/charge pro-
cess and promote the conductivity of the MoS2/C microspheres simultaneously. However,
the excessive amorphous carbon will result in a decrease in the capacity. It can be believed
that the facile and low-cost synthesis of quasi-hollow MoS2/C microspheres with a better
performance has promising applications in the energy storage and conversion system.
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