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1 Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 809/76,
190 00 Praha, Czech Republic; zarybnicka@itam.cas.cz (L.Z.); machova@itam.cas.cz (D.M.)

2 Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 586 01 Jihlava, Czech Republic
3 Department of Civil Engineering, Faculty of Technology, Institute of Technology and Business,
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Abstract: Nowadays, additive manufacturing—also called 3D printing—represents a well-established
technology in the field of the processing of various types of materials manufacturing products used
in many industrial sectors. The most common type of 3D printing uses the fused filament fabrication
(FFF) method, in which materials based on thermoplastics or elastomers are processed into filaments.
Much effort was dedicated to improving the properties and processing of such printed filaments, and
various types of inorganic and organic additives have been found to play a beneficial role. One of
them, calcium carbonate (CaCO3), is standardly used as filler for the processing of polymeric materials.
However, it is well-known from its different applications that CaCO3 crystals may represent particles
of different morphologies and shapes that may have a crucial impact on the final properties of the
resulting products. For this reason, three different synthetic polymorphs of CaCO3 (aragonite, calcite,
and vaterite) and commercially available calcite powders were applied as fillers for the fabrication of
polymeric filaments. Analysis of obtained data from different testing techniques has shown significant
influence of filament properties depending on the type of applied CaCO3 polymorph. Aragonite particles
showed a beneficial impact on the mechanical properties of produced filaments. The obtained results
may help to fabricate products with enhanced properties using 3D printing FFF technology.

Keywords: 3D printing; FFF; filament; polypropylene; additives; CaCO3 polymorphs; mechanical properties

1. Introduction

The use of three-dimensional (3D) printing is nowadays frequently applied technol-
ogy in various industry sectors, including civil engineering, biotechnology, and automo-
tive [1–9]. Several additive technology techniques were developed and are widely used,
such as stereolithography (SLA), fused filament fabrication (FFF), poly-jet, selective laser
melting (SLM), selective laser sintering (SLS), direct metal laser sintering (DMLS), and
laminated object manufacturing (LOM). The selection of a particular technique is essen-
tial to design products of required parameters at the desired cost of materials—the most
frequently used additive technologies can be sorted according to their ascendant financial
requirements as follows LOM < FFF < SLA < SLS < DMLS/SLM [10].

FFF is one of the most often used additive technology due to its low energy consump-
tion and possibilities of printing products with complex shapes [11]. It belongs to so-called
bottom-up methods that are producing one layer at a time, and the final 3D structured
products are fabricated by gradual accumulations of these 2D layers [12]. Further descrip-
tion of FFF technology may be found e.g., in [13,14] and references therein. Polylactic acid
(PLA) [15–19], acrylonitrile butadiene styrene (ABS) [20–24], polyethylene terephthalate
(PET) [25], polyethylene terephthalate glycol (PET-G) [26–28], polypropylene (PP) [29,30],
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and viscoelastic thermoplastic elastomers like thermoplastic polyurethane (TPU) [31,32]
belong to the most common thermoplastics applied in FFF technology.

The properties of filaments may be modified by the usage of different additives based
on the character of the polymeric material. Among the most widely used additives affecting
the life of the polymeric material are light stabilizers (like UV absorbers, photooxidation
inhibitors), antioxidants, flame retardants, or thermal stabilizers. The second group is
additives affecting polymeric properties, such are antistatic, lubricants, fillers, pigments,
and blowing agents [33–39].

As another suitable additive, calcium carbonate (CaCO3) can be considered. CaCO3
may form three anhydrous crystalline polymorphs—thermodynamically most stable calcite,
and metastable vaterite and aragonite. It may be present also in hydrated crystal forms
(ikaite (CaCO3·6H2O), monohydrate (CaCO3·H2O), hemihydrate (CaCO3· 1

2 H2O), and as
an amorphous phase (amorphous calcium carbonate (ACC)) [40]. CaCO3 polymorph
exhibits particles with different morphology and properties like physical–mechanical
performance [41]. In general, it was shown in [42] that different particle‘s morphologies
affected tensile strength of powders. Furthermore, CaCO3 is frequently used as a filler [43]
because of its unique properties such as low toxicity, biological inertness, good dispersion
within the polymer matrix, and low moisture content [44,45].

In the case of polymers in which CaCO3 is used, for example, as a filler in polyvinyl
chloride (PVC), these reach increased rigidity and flexibility. Due to its white color, it can be
used as a pigment, which is comparable to TiO2, but it is cheaper [46]. CaCO3 also provides
high brightness and gloss and can thus replace lead-based stabilizers with a calcium/zinc
system. In polypropylene, the application of CaCO3 (usually around 10 wt %) increases
stiffness and resistance to weathering [47]. It is also used as a filler in unsaturated polyesters
for the preparation of non-shrinkable structures [48,49]. Calcium carbonate belongs to
the class of isomeric filler—the usage of smaller particles results in better adhesion to the
matrix. Particles with a higher specific surface area have been identified to have a beneficial
effect on the modulus of elasticity [50].

This work aimed to investigate the effect of different crystalline anhydrous polymorphs
of CaCO3—namely, aragonite, calcite, and vaterite—exhibiting different properties, such as
morphology, on the fabrication of filaments composed of random polypropylene copolymer
using the FFF technique. The aim is to get the insight of their effect on physical-mechanical
properties of resulted filaments which may find application in 3D printing.

2. Experimental Part
2.1. Materials

Polypropylene random copolymer (PPR) product Lumicene MR60MC2 (Total Petro-
Chemicals & Refining S.A./N.V., Bruxelles, Belgium) in the shape of pellets was used as
received. Calcite and vaterite were synthesized pure (≥99 wt %) using the mixing of two
concentrated salt solutions, as further described in [51]. Aragonite was synthesized with a
minor amount of calcite (≤4.7 wt %) following the procedure described in [52]. The quanti-
tative phase analysis of X-ray diffraction patterns using Rietveld refinement confirming the
purity of synthetized CaCO3 polymorphs was reported in [41]. To compare the synthesized
product with commercially available one, also calcite available on the market (min. 95%,
Lach-Ner, Ltd., Neratovice, Czech Republic) was used for filament fabrication.

2.2. Filaments Preparation

The mixed granulates of PPR Lumicene MR60MC2 with 5 wt % of the CaCO3 poly-
morphs were carried out on an extruder (HAAKE PolyLab OS Rheo Drive 16, Thermo-
Scientific, Waltham, MA, USA) with a PTW 24/28 twin screw (cumulatively maintained
at 2.5 kg·h−1, 60 rpm extruder, temperature profile 180–160 ◦C). Then, granulates were
processed in a hydraulic press (ZHOT, Presshydraulika, Opava, Czech Republic) and divided
using 2 × 13 g extrudate, 160 ◦C, 15 min heating only, and 10 min heating and pressing at
50 bar and cooling to 60 ◦C. This process is referred in the next text as a first thermal treatment.
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Subsequently, a mini extruder (Wellzoom Desktop Extruder Line, Shenzhen, China)
was used for the preparation of filaments from granulates using constant speed 10 cm·min−1,
at two temperature zones 175 and 185 ◦C and air cooling. The average diameter of produced
filaments was (1.75 ± 0.05) mm-typical filament dimensions processed by FFF technology.
This process is referred in the next text as a second thermal treatment.

The used abbreviations of produced filaments are as follow: filament without additive–F_Ref,
filament composed of PPR and synthetic aragonite–F_Ara_s, filament composed of PPR
and synthetic calcite–F_Cal_s, filament composed of PPR and synthetic vaterite–F_Vat_s,
filament composed of PPR and commercially available calcite–F_Cal_c. In the case of
granulates, the abbreviations contain the letter G at the beginning instead of the letter F
used for filaments.

2.3. Methods

Particle size distribution of used additives was recorded using laser granulometer LD
1090 (Cilas, Orléans, France). The measurements were performed in isopropyl alcohol, and
each material was tested at least three times. BET specific surface area was measured using
the device ASAP 2020 (Micromeritics, Norcross, GA, USA). The skeletal densities of the
produced granulates and filaments were determined with a helium pycnometer AccuPyc
II 1340 (Micromeritics, Lincoln, UK) using maximum pressure of 19.5 Psi and 10 cycles.
The relative standard deviation of six replicates was calculated to be ≤0.05%. Viscoelastic
properties of both granulates and filaments were characterized by a melt flow index (MFI)
using extrusion plastometer M-201 (Chemoprojekt Praha, Czech Republic). The procedure,
described in the ČSN EN ISO 1133 [53], was followed using these parameters of measure-
ments: preheating load 240 s, test condition–t = 190 ◦C, load 2.16 kg, measuring length
10 mm, step length 0.25 mm, measurement starting time 300 s, die-diameter 2.095 mm, and
length 8.00 mm. Produced filaments were characterized in terms of surface quality and
surface roughness (Sa–arithmetical mean roughness value and Sz–mean roughness depth)
using a Keyence VHX-6000 optical microscope (Keyence, Itasca, IL, USA) according to the
standard ISO 25178 [54]. A caliper was used to measure filament diameters.

The tensile properties of the prepared filaments were determined using Instron
3345 (Instron, Norwood, MA, USA) with a maximum load of 5 kN and a constant load
speed of 5 mm·min−1 following the standard CSN EN ISO 527-1 [55]. At least five replicates
of each sample were tested.

Optical images of produced filaments were collected using an optical microscope
Olympus TH4-200 (Olympus, Šindžuku, Japan). The morphology of used CaCO3 poly-
morphs and structural arrangements of produced filament was observed under a field
emission scanning electron microscope (SEM) Quanta 450 FEG (FEI, Brno, Czech Republic)
using a secondary electron detector. Observations were conducted at the 20 kV accelerating
voltage. Powdered CaCO3 polymorphs were dispersed on carbon tape, as well as fragments
of filament samples. Then, samples placed on stubs were coated with a 5-nm-thick layer of
gold using a sputtering machine (Quorum Q150R ES, Quorum Technologies, Lewes, UK).

3. Results and Discussion
3.1. Characterization of Used CaCO3 Polymorphs

In Figure 1, morphologies of used CaCO3 polymorphs observed under SEM are de-
picted. Synthetic aragonite formed needle-like crystals usually connected as larger clusters
up to tens of µm (Figure 1a). Together with aragonite crystals, rhombohedral crystals of
calcite were identified in smaller quantities. Synthetized calcite crystals were found to be
present with typical euhedral to subhedral crystal habit. Larger calcite aggregates were
composed mainly with the crystal of the size in the range from 1–3 µm and sporadically
with crystal smaller than 0.5 µm (Figure 1b). Commercial calcite exhibited small and
irregularly shaped crystals as a consequence of the grounding of raw limestone. The sizes
of such particles varied from tens of nanometers to a few micrometers, usually with one
elongated crystal site. As visible in Figure 1c, particles are tempted to be present in large
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aggregates up to several microns. Spherulitic crystals with a radius from 0.5–3.5 µm of
synthetic vaterite built up from nanometric spherules (detail image reported in [56]) were
detected (Figure 1d). In agreement with other CaCO3 particles, also vaterite crystals were
observed to form larger (up to 10 µm) aggregates.

Figure 1. Collection of observed morphologies of synthesized CaCO3 polymorphs (aragonite (a),
calcite (b), commercially available calcite (c), and vaterite (d)) observed under SEM.

The particle size distribution detected in isopropanol suspensions is shown in Figure 2.
As expected, the high difference in their shapes was recorded. Aragonite represents
PSD with the largest particles of trimodal distribution with local maxima at 4, 20, and
85 µm. Bimodal distributions were found for the synthetic and commercial calcite with
the local maxima at 1 and 10 µm and at 0.3 and 3 µm, respectively. In the case of synthetic
vaterite, bimodal distribution with local maxima at 0.3 and 9 µm were recorded. It was
illustrated by numerous investigations that morphology and particle size of CaCO3 have
very high variability depending on the used reaction conditions and involvement of other
chemicals [57]. Additionally, as mentioned in the Introduction, CaCO3 polymorphs show
systems with tremendously different properties—e.g., hardness and reduced modulus. For
example, reduced modulus of synthetized products (using the same reaction conditions as
in this paper) was detected to be 5(4), 16(7), and 31(8) GPa calculated for aragonite, calcite,
and vaterite, respectively [41]. The crystal morphologies of applied CaCO3 polymorphs, of
course, also impacted the values of specific surfaces of their powders. The synthetic CaCO3
displayed values of 5.58 ± 0.02, 1.96 ± 0.01, and 2.34 ± 0.02 m2·g−1 for aragonite, calcite,
and vaterite, respectively [41]. In the case of commercial calcite, the highest specific surface
area of 6.73 ± 0.02 m2·g−1 was measured. The usage of additives with higher specific
surface area values may result in their increased agglomeration within the polymer matrix.
In the case of PP, the critical value of additives in polypropylene composite was identified
to be 7 m2·g−1 [58], and it was shown that increased aggregations caused a significant
decrease of strength and impact resistance.
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Figure 2. Comparison of recorded particle size distributions of CaCO3 polymorphs used as additives
for filament production.

3.2. Characterization of Prepared Granulates

The progress of torque force (M [Nm]) and head pressure (p [bar]) during the extruda-
tion of granulates is depicted in Figure 3. Constant values of torque over time (between
40–45 Nm) were recorded together with a slight decrease of the head pressure that oscil-
lated between 7–10 bar after 10 min was reached. The G_Cal_c sample showed higher
pressure values at the beginning of the processing in comparison with other samples. Such
phenomena could be ascribed to the high specific surface area of applied commercial calcite
particles, which may have had an increased tendency to partial agglomeration, nonethe-
less, after 11 min, pressure values started to be identical with the other samples. Thus,
it can be assumed that suitable production conditions were achieved, and the Lumicene
MR60MC2 PPR doped with the produced CaCO3 particles was successfully processed
during extrusion.

Figure 3. Dependence of torque M (full line) and head pressure p (dotted line) over time during
granulate extrusion.
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The melt flow index (MFI) [59], reported in Table 1, represents a simple method for the
characterization of rheological properties that play a crucial role in respect to the correct
settings of the processing processes [60]. The lowest value was recorded for G_Ara_s, and
others granulate showed comparable MFI values. Due to the fact that thermal degradation
of CaCO3 occurs above ~600 ◦C [61], CaCO3 particles can retain the MFI value of PP and
may improve the plasticity and processability of the polymers [62,63]. These properties
are connected with the density of produced granulates. It can be seen in Table 1 that the
addition of the CaCO3 particles resulted in the increase of density of around 4%, compared
to the reference state.

Table 1. Overview of determined physical properties of produced granulates (calculated standard
deviations are reported in the brackets).

Sample MFI
(g·10 min−1)

Density
(g·cm−3)

G_Ref 27.0(1) 0.8962(3)
G_Ara_s 24.0(2) 0.9330(4)
G_Cal_s 25.7(6) 0.9362(6)
G_Cal_c 26.0(6) 0.9368(4)
G_Vat_s 26.1(2) 0.9312(5)

3.3. Characterization of Prepared Filaments

The quality of the prepared filaments is very important for processing filaments using
FFF technologies for 3D printing and has a major influence on trouble-free 3D printing,
minimizing filament jams during winding, etc. Figure 4 shows the optical images of
all prepared filaments. The F_Ref sample was produced as a transparent filament with
a smooth surface without unevenness (Figure 4a). The additions of CaCO3 powders
resulted in a whitish appearance (Figure 4b–e). The application of commercial calcite
and synthetic vaterite resulted in products with comparable structures (Figure 4d,e). Only
minor inequalities have been detected within the structure of filaments containing aragonite.
The worst product quality was achieved in the case of the application of synthetic calcite.
Such filaments showed an uneven thickness, which could have a negative effect during
processing, and filament jams might be occurred during 3D printing in the extruder. Such
behavior could be ascribed to physical incompatibility of Cal_s with some compounds
presented in used PP random copolymer (Lumicene MR60MC as reported in Experimental
Section). The diameter of REF sample was measured to be 1.60 ± 0.05 mm. The diameters
of filaments containing additives were detected to be higher: 1.75 ± 0.05 mm for F_Ara_s,
F_Cal_c, and F_Vat_s samples and 1.70 ± 0.10 mm in case of sample F_Cal_s.

Figure 4. Photographic images of the prepared filaments: (a)—F_Ref, (b)—F_Ara_s, (c)—F_Cal_s,
(d)—F_Cal_c, (e)—F_Vat_s.
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The collection of SEM images of the internal fragments of produced filaments of
CaCO3 is shown in Figure 5. CaCO3 particles were found to be well dispersed within
the PP matrix, especially in the case of filament contained with aragonite (Figure 5e), the
needle-like particles are equally distributed in the same orientation, and it can be noted that
during filament processing, the large clusters were disintegrated into much smaller objects.
Unlike the others, filaments contained with synthetic calcite showed a rougher internal
structure with the presence of larger structural disintegration areas up to a few hundred
microns. Such observation may partially explain the worst quality of produced F_Cal_s
filaments. Images collected at higher magnifications (Figure 5d,f,h,j), on the one hand,
confirmed the disintegration of larger clusters of CaCO3 particles. On the other hand, the
crystal’s habit of applied CaCO3 polymorphs (see Figure 1) during the filaments fabrication
stayed preserved, even if it is visible (Figure 5d) that some of the aragonite’s needle-like
crystals showed deformations. This behavior is the line with previous results [41] in
which aragonite’s crystals were identified to be the most affected by thermal as well as
pressure treatments. From the point of view of processing using FFF technology, the surface
roughness of the prepared filaments is an important parameter. If high roughness values
are reached, the filament becomes poorly processed, with a negative impact on winding.
Thus, final products of inappropriate quality may be produced. As expected, different
morphologies of applied CaCO3 polymorphs influenced the roughness values. The highest
roughnesses, both Ra and Rz, were detected in the case of filaments containing aragonite.
Interestingly, filaments F_Cal_s, F_Cal_c, and F_Vat_s showed a lower roughness of Ra
and Rz compared to the reference (Table 2). After the second thermal treatment during
filament preparation, the MFI values—reported in Table 2—were found to be lower in
comparison with the first thermal treatment used during the production of granulates
(see Table 1), probably as a consequence of the further development of PP cross-linked
structure [64]. Filaments containing CaCO3 particles with the highest specific surface area,
commercial calcite, and synthetic aragonite showed almost similar MFI properties, and
in comparison with the reference, MFI values were found to be lower for ca. 16%. It was
observed [65] that the addition of lower content of CaCO3 with a smaller particle size
tends to decrease the composite viscosity, which is related to the results of the MFI. The
density of produced filaments containing CaCO3 particles was found to be slightly lower
in comparison with values detected for granulates as a consequence of the development of
structural cross-linking [64].

Table 2. Overview of determined physical properties of produced granulates (calculated standard
deviations are reported in the brackets).

Sample MFI (g·10 min−1) Ra (µm) Rz (µm) Density (g·cm−3)

F_Ref 22.7(2) 7.8(5) 42(1) 0.8979(8)
F_Ara_s 19.0(1) 11.0(1) 55(1) 0.9291(7)
F_Cal_s 23.9(1) 5.7(5) 28(1) 0.9290(1)
F_Cal_c 20.0(1) 4.8(4) 28(1) 0.9320(6)
F_Vat_s 25.1(4) 5.7(8) 38(1) 0.9285(4)

The results of the mechanical performance of produced filaments are summarized
in Table 3. Obtained values of tensile stresses differs according to the presence of specific
CaCO3 particles. It was shown in [66] that different morphologies of CaCO3 affected
tensile strengths of tested powders. It can be noted that filaments produced with CaCO3
particles showed, in most cases, a reduction of mechanical properties. The only exception
is filament fabricated with aragonite. In this case, the mechanical properties were found to
be improved—e.g., tensile stress was approx. 12% higher. The explanation may be found in
the crystal habit of aragonite particles. Aragonite’s needle-like particles that were observed
to be homogenously and unidirectionally orientated within the PP matrix (Figure 5c,d)
may act as reinforced material that positively affected mechanical performance. Reinforced
materials are commonly used to enhance mechanical properties of, e.g., concretes [67,68].
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From the rest of the three applied types of CaCO3 particles, the filaments F_Cal_c and
F_Vat_s showed comparable properties, and with respect to F_Ref, the only small decrease
was recorded. However, in the case of F_Cal_s, a huge drop in mechanical performance was
recorded (more than 50% in the comparison of tensile stress and Young modulus of F_Ref).
It is not unexpected due to the bad quality of produced filament F_Cal_c (see Figure 4c)
with tapering segments that have a strong impact on tensile stress. Comparison with the
literature is difficult due to the lack of data focus on the products needed for 3D printing. In
different systems, CaCO3 particles have been used for the PP surface modifications [69,70],
and the role of CaCO3 on the crystallization of PP was investigated [71]. The usage of
nanocalcite with a particle size of 70 nm showed an improving effect on Young’s modulus,
tensile yield stress, and impact strength [72,73]. Aragonite was recognized to have a more
beneficial effect than calcite as filler in polyvinyl chloride or polypropylene [74].

Figure 5. Collection of SEM images of prepared filaments collected at lower (left) and higher
magnifications (right): (a,b)—F_Ref; (c,d)—F_Ara_s; (e,f)—F_Cal_s; (g,h)—F_Cal_c; (i,j)—F_Vat_s.
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Table 3. Summarization of determined mechanical properties of prepared filaments.

Sample Max. Load (N) Tensile Stress
(MPa)

Young Modulus
(MPa)

Tensile
Deformation

(%)

F_Ref 34.6 ± 4.4 24.5 ± 1.7 1187.1 ± 73.2 4.5 ± 0.7
F_Ara_s 38.3 ± 3.7 27.4 ± 2.0 1074.1 ± 70.8 4.8 ± 0.5
F_Cal_s 19.0 ± 2.7 11.3 ± 3.5 459.6 ± 73.3 3.5 ± 0.7
F_Cal_c 32.5 ± 3.9 20.9 ± 1.8 765.2 ± 67.0 5.4 ± 0.4
F_Vat_s 29.8 ± 3.4 21.5 ± 1.1 811.8 ± 118.8 5.1 ± 0.8

4. Conclusions

The presented study has shown the possibilities of the application of CaCO3 particles
for the fabrication of polypropylene filaments employed for 3D printing. Moreover, the
effect of the usage of different anhydrous crystalline CaCO3 polymorphs on the physical-
mechanical properties of produced granulates and filaments containing additives has been
investigated employing the combination techniques. Microscopic observations showed
tremendously different crystal habits of applied CaCO3 particles that resulted in specific
particle size distributions and specific surface areas. PP granulates with additions of CaCO3
have been processed without significant differences and produced granulates showed
approximately 4% higher densities compared to the reference sample. Next, heat treatment,
production of filaments caused a decrease of MFI and density values as a consequence of
more connected cross-linked structures. In the case of filaments produced with the addition
of synthetic calcite, the resulting filaments showed crooked structure in contrast with other
samples. Microscopic observations showed a homogenous distribution of CaCO3 particles,
especially in the case of aragonite crystals. Different physical properties of produced
filaments have been reflected in their mechanical performance.

In comparison with the reference sample, a decrease of tensile stress values has been
measured, with one exception—filaments with synthetic aragonite. In this case, tensile
stress was found to be higher for 12%. This behavior is explained by homogenous and
unidirectional dispersion of aragonite’s particles within the PP matrix and the ability of
needle-like aragonite crystals to act as reinforced material, commonly used in the cement
industry to improve mechanical performance. The produced CaCO3 filaments may find
their applications in 3D printing, and our next study will be focused on the characterization
of printed products employing produced novel CaCO3 filaments.
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