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Abstract: The hexavalent chromium (Cr(VI)) ion adsorption properties were conferred to porous
silica beads by introducing alkylamine chains through functionalization with an aminosilane coupling
agent, [3-(2-aminoethylamino)propyl]triethoxysilane (AEAPTES), or with an epoxysilane coupling
agent, (3-glycidyloxypropyl)triethoxysilane (GOPTES), and polyfunctional amine compounds or poly-
ethylenimines (PEIs). The presence of amino groups on the silica beads was confirmed by XPS and
the amount of amino groups increased to 0.270 mmol/g by increasing the AEAPTES concentration
and/or reaction time. The adsorption capacity of the silica beads functionalized with AEAPTES
was the maximum at the initial pH value of 3.0 and the initial adsorption rate increased with an
increase in the temperature. The adsorption capacity increased with an increase in the amount of
amino groups at pH 3.0 and 30 ◦C. The adsorption behavior obeyed the pseudo-second order kinetic
model and was well expressed by the Langmuir isotherm. These results support that Cr(VI) ion
adsorption is accomplished through the electrostatic interaction between protonated amino groups
and HCrO4

− ions. In addition, the adsorption capacity further increased to 0.192–0.320 mmol/g
by treating the GOPTES-treated silica beads with triethylenetetramine, pentaethylenehexamine, or
PEI. These empirical, equilibria, and kinetic aspects obtained in this study support that the porous
silica-based adsorbents prepared in this study can be applied to the removal of Cr(VI) ions.

Keywords: porous silica beads; aminosilane coupling agent; polyethylenimine; XPS; hexavalent
chromium; adsorption; water purification

1. Introduction

Chromium (Cr) is the seventh most abundant element on earth and naturally occurs
in the environment in the Cr(III) and Cr(VI) oxidation states. The main anthropogenic
sources include metallurgical industries, refractory brick production, electroplating, com-
bustion of fuels, waste incineration, and the production of Cr-containing chemicals, mainly
chromates and dichromates, pigments, Cr trioxide, and Cr salts. Natural sources include
volcanic eruptions and the erosion of soils and rocks [1]. Cr(III) is generally regarded as
less toxic and argued to be potentially therapeutic. On the other hand, Cr(VI) is a powerful
oxidant and many of its compounds are very soluble in water. Cr (VI) is toxic and its
effects are carcinogenic, mutagenic, and teratogenic in humans and animals [2]. Other
sensitive noncancer effects of Cr(VI) compounds are, severe respiratory (nasal and lung
irritation), gastrointestinal (irritation, ulcer of the stomach and small intestine), and hema-
tological effects (microcytic, and hypochromic anemia), in addition, it can cause damage to
reproductive organs and malfunctions, such as a decrease in sperm counts in males [3].
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Conventional methods, such as chemical precipitation, ion exchange, reverse osmosis,
coagulation, and adsorption, have been reported for the removal of Cr(VI) ions from
aqueous media. Among these methods, adsorption is viewed as superior to other methods
because of its simplicity, ability for regeneration, cost-effectiveness, and enabling large-
scale applications. Moreover, the greatest advantage of the adsorption method is that
by-products, such as sludge, are not generated [4].

Many adsorbents prepared from different origins including synthetic polymers, ac-
tivated carbons, biomass, graphene oxide, nanoparticles, and biosorbents, have been
investigated for Cr(VI) ion removal [5,6]. Porous materials have been also used as a ma-
trix to generate new materials with improved functional groups (adsorption sites). Here,
adsorption is usually limited by dominant functional groups present on the surface and
within the pores of an adsorbent [7]. It is not a forgone conclusion that composite materials
produce superior performance. Therefore, many researchers have strived to find suitable
adsorbents for Cr(VI) ions with excellent adsorption capacity, selectivity, and/or fast bind-
ing kinetics while using the minimum dosage. This gives an indication that there is room
for new research in terms of adsorbent constructions.

The construction of new adsorbent materials is a current requirement of great necessity.
In recent years, mesoporous silica or glass beads have been used as an adsorbent matrix
because of their high surface areas, adjustable size of pores, evident surface properties,
good mechanical stability, and reduced toxicity [8–13]. Reactively active Si-OH bonds
present on the surfaces of the pore walls can be modified with functional moieties. Porous
silica beads are novel mesoporous materials with many intriguing properties, such as low
bulk density, continuous porosities, high specific surface area, and extremely low thermal
conductivity. Besides, they have the advantages of being robust against organic solvents,
thermal stability and they are not capable of swelling. Because of these unique features,
porous silica beads are a promising material as an adsorbent.

Here, we considered that an adsorbent for Cr(VI) ions with outstanding adsorption prop-
erties, such as a high capacity, a high efficiency, and a high rate, can be constructed from porous
silica beads by utilizing their properties. Therefore, in this study, amino functional groups
were introduced into the porous silica beads through functionalization with different aminosi-
lane coupling agents, mainly [3-(2-aminoethyl-amino)propyl]trimethoxysilane (AEAPTES).
The Cr(VI) ion adsorption behavior of AEAPTES-modified silica beads (AEAPTES-silica
beads) was estimated as a function of the pH value, the temperature, and the amount of
amino groups, and then kinetically and thermodynamically analyzed. In addition, a further
increase in the adsorption capacity was attempted by the pretreatment of the silica beads
with an epoxysilane coupling followed by functionalization with polyfunctional amine
compounds or polyethylene-imines (PEIs).

2. Materials and Methods
2.1. Chemicals

The porous silica beads, Davisil Grade 636, (pore size: 60 Å, 35–60 mesh particle size,
specific surface area: 480 m2/g) were purchased from Sigma Aldrich (Tokyo, Japan). As
aminosilane coupling agents, AEAPTES (Tokyo Chemical Industry, Tokyo, Japan), N-(6-
aminohexyl)aminomethyl-triethoxysilane (AHAMTES, Gelest, Morrisville, NS, USA), and
3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEAEAPTMS, Acros Or-
ganics, Geel Belgium) were used. An epoxysilane coupling agent, GOPTES, was purchased
from Sigma Aldrich. Polyfunctional amine compounds, ethylenediamine (EDA), diethylen-
etriamine (DETA), triethylenetetramine (TETA), and pentaethylenehexamine (PEHA), were
purchased from FUJIFILM Wako Pure Chemical (Tokyo, Japan). The chemical structure of
the silane coupling agents used in this study was shown in Figure 1. PEI samples with a
molar mass of 600, 1800, and 10,000 (0.6KPEI, 1.8KPEI, and 10KPEI) were also purchased
from FUJIFILM Wako Pure Chemical(Tokyo, Japan).
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2.2. Functionalization of Silica Beads

Before the coupling reactions, about 20 g of silica beads were washed by stirring in
6 M HCl for 1 h. After the silica beads were activated by stirring in 2 M HCl at 60 ◦C
for 4 h, they were washed thoroughly with distilled water and then dried under reduced
pressure [14,15]. Toluene was dried with a molecular sieve 4A for 2 days before use. Then,
AEAPTES solutions were prepared at 0.25–0.5 M with dried toluene. Alkylamine chains
were introduced to the silica beads by stirring 5 g of activated silica beads in 25 cm3

AEAPTES solutions for the prescribed times at 30 ◦C. The silica beads were washed with
toluene, ethanol, and acetone several times, and then dried under reduced pressure [16].

In a similar manner, silica beads were functionalized with AHAMTES, AEAEAPTMS,
and GOPTES at 1.0 M and 30 ◦C for 1 h. The polyfunctional amine compound solutions in
1,4-dioxane at 1.0 M and the aqueous PEI solutions at 10 wt% were prepared. The GOPTES-
treated silica beads (GOPTES-silica beads) were mildly stirred in the polyfunctional amine
compound solutions for 6 h or PEI solutions for 24 and 72 h at 70 ◦C to introduce amino
groups on their surfaces [17,18].

2.3. Determination of Amount of Amino Groups

The silica beads functionalized with the aminosilane coupling agents (NH-silica beads)
and GOPTES-silica beads functionalized with the polyfunctional amine compounds or PEIs
were immersed in a 20 mM NaOH solution so as to neutralize the protonated amino groups
on the alkylamine chains and then washed with water several times. Then, 0.2–1.0 g of
the NH-silica beads were immersed in 20 mL of a 20.0 mM HCl solution and the solutions
were mildly stirred for at least 24 h under a nitrogen atmosphere. The HCl solutions were
titrated with a 20.0 mM NaOH solution with bromothymol blue as an indicator [3,19]. The
amount of effective amino groups, ANH, was calculated from the concentration difference
in the HCl solution using Equation (1):

ANH (mmol/g) =
(20.0−C) · 0.020

WNHSB
(1)

where WNHSB is the weight of the NH-silica beads immersed.
In addition, the amount of alkylamine chains introduced to the silica beads was

determined by dividing the ANH value by the molar mass of an alkylamine chain (129.25
for AEAPTES, 185.36 for AHAMTES, and 172.32 for AEAEPTMS).

AalkylNH (mmol/g) =
ANH

Malkylamine
(2)

2.4. XPS Measurements

The XPS core level spectra of C1s, O1s, N1s, and Si2p were recorded under reduced
pressure lower than 5 × 10−5 Pa on a Shimadzu ESCA 3400 X-ray photoelectron spectrom-
eter (Kyoto, Japan) with the MgKα (1253.6 eV) source operating at 8 kV and 20 mA for the
untreated and functionalized silica beads. The electron energy calibration was performed
by taking the Au4f core level peak at 83.8 eV as the reference.
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2.5. Cr(VI) Ion Adsorption

The calibration curve of Cr(VI) ions was prepared at the isosbestic point of 338.2 nm
(r > 0.999, log ε = 3.454 dm3/mol·cm) [20,21]. The Cr(VI) ion adsorption was estimated by
the following procedure unless otherwise described. The pH value of an aqueous K2Cr2O7
solution at 0.20 mM was adjusted to 3.0 with HCl. First, 10 mg of NH-silica beads were
immersed in a pH 3.0 HCl solution for at least 12 h. Then, the NH-silica beads were placed
in a 0.20 mM K2Cr2O7 solution (50 cm3) at 30 ◦C to initiate the adsorption experiments.
The absorbance at 338.2 nm was measured at predetermined intervals to determine the
Cr(VI) ion concentration. The adsorbed amount was calculated from Equation (3):

Adsorbed amount (mmol/g) =
(C0 −Ct) · 0.050

WNHSB
(3)

where Ct and C0 are the Cr(VI) ion concentration at time t and the initial concentration,
respectively, and WNHSB is the weight of the NH-silica beads.

2.6. Cr(VI) Ion Desorption

Aqueous solutions of NaCl at 0.50 M, NH4Cl at 0.10 M, and NaOH at 0.50 mM were
prepared as an eluent for desorption of Cr(VI) ions [4,20]. The Cr(VI) ion-loaded AEAPTES-
silica beads were immersed in the above eluents at 30 ◦C. The absorbance at 338.2 nm was
measured at predetermined intervals and the desorbed amount was calculated from the
Cr(VI) ion concentration in the eluents.

3. Result and Discussions
3.1. Functionalization with AEAPTES

The silica beads were functionalized with AEAPTES by varying the concentration and
reaction time. In this study, AEAPTES was selected as a main aminosilane coupling agent
on the basis of the fact that a stable five-membered cyclic intermediate for intramolecular
catalysis can form through the coordination of a secondary amine group to a Si atom
for AEAPTES [22,23], indicating the hydrolytic stability of the AEAPTES-functionalized
surfaces. This is an important feature because they are used in an aqueous medium. The
amount of amino groups introduced was determined by the back titration with HCl. The
amount of HCl consumed by protonating amino groups on the alkylamine chains was di-
rectly proportional to the amount of NH-silica beads added to the HCl solution (Figure S1).
This indicates that the amount of introduced amino groups can be quantitatively deter-
mined by the back titration with HCl. Therefore, the amount of amino groups introduced
to the silica beads was determined from the slope of the straight line. Figure 2 shows the
changes in the amount of amino groups with the AEAPTES concentration at the reaction
time of 1 h and with the reaction time at the AEAPTES concentration of 1.0 M. The amount
of amino groups increased with an increase in the concentration and reaction time and/or
the AEAPTES concentration and reached to 0.270 mmol/g at 1.5 M and 2 h.

In many studies on the functionalization of silica beads and glass beads with aminosi-
lane coupling agents, the presence of introduced amino groups was confirmed by FTIR and
XPS analysis. However, little was reported on the determination of the amount of amino
groups [24,25]. Therefore, the determination of the amount of introduced amino groups is
of great importance to discuss the Cr(VI) ion adsorption behavior stoichiometrically.

3.2. XPS Analysis

The strong peaks at 1080 cm−1 and at 805 cm−1 assigned to the stretching vibrations
of the Si-O-Si bond were observed for AEAPTES-silica beads [20,21]. However, since no
additional peaks by functionalization with AEAPTES were observed, the XPS analysis
was also performed. Figure 3 shows the C1s, N1s, O1s, and Si2p core level spectra for
(a) untreated silica beads and (b) AEAPTES-silica beads. For the AEAPTES silica beads, in
addition to a main peak, which was composed of a peak at 284.3 eV assigned to C-Si and
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a peak at 285.0 eV assigned to -CH2-CH2-, a small peak assigned to -C-NH- and -C-NH2
at 286.5 eV was observed in the C1s spectrum [26,27]. A N1s peak assigned to -NHR- and
-NH2 emerged and the O1s and Si2p peaks decreased. These results confirmed that amino
groups were introduced on the surfaces of the silica beads according to the reaction scheme
shown in Scheme 1 [8,22,23].
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3.3. Cr(VI) Ion Adsorption

The time course of the adsorption of Cr(VI) ions on the AEAPTES-silica beads with
different amino group amounts at 30 ◦C and pH 3.0 is shown in Figure 4. There were fewer
adsorbed Cr(VI) ions on untreated silica beads. On the other hand, for the AEAPTES-silica
beads, the amount of adsorbed Cr(VI) ions increased against the immersion time and then
reached equilibrium. This emphasizes that the functionalization with AEAPTES confers
greater Cr(VI) ion adsorption performance to the silica beads by introducing amino groups
on their surfaces. The initial adsorption rate was calculated from the slope of the linear
region of the amount of adsorbed Cr(VI) ions against the immersion time and the half-
adsorption time, t1/2, which is defined as the time required for the adsorption to take up
half as much Cr(VI) ions as its equilibrium values, was also calculated [28].
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silica beads with the amount of amino groups of 0.030 (4), 0.080 (�), and 0.220 (3) mmol/g in a
0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C.

3.3.1. pH and Temperature Dependence

The effects of the pH value and temperature on the Cr(VI) ion adsorption were
estimated for the AEAPTES-silica beads with the amount of amino groups of 0.220 mmol/g.
Figure 5 shows the changes in the adsorption capacity, initial adsorption rate, and t1/2
value with the initial pH value. The adsorption capacity and initial adsorption rate had the
maximum values at pH 3. The t1/2 value was at most 12.4 min at pH 3.0, indicating that
the adsorption behavior is relatively fast.
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Next, the adsorption behavior will be explained in terms of chromium species present
in water [4,29–31]. In the range of pH 1.0–3.0, the equilibrium pH value was almost the
same as the initial pH value within ±0.02. At pH 3.0, most of the Cr(VI) ions are present in
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the form of hydrochromate (HCrO4
−) ions. When the pH value moves away from 3, the

fraction of HCrO4
− ions decreases and the fraction of H2CrO4 increases. In addition, the

concentration of Cl ions added to adjust the pH value increases. Meanwhile, the pH value at
the adsorption equilibrium increased to 4.20 at pH 4.0 and to 5.28 at pH 5.0, respectively. In
the pH range higher than 3, as the pH value increases, the fraction of CrO4

2− ions increases.
In addition, an increase in the pH value results in an increase in the deprotonation of
-NH2

+- or NH3
+ groups, because the dissociation constant (pKa) values of AEAPTES are

6.8 and 9.3 [32]. The above-described behavior is considered to result in a decrease in the
adsorption capacity.

Based on the above results, the temperature dependence was investigated at pH
3.0. Figure 6 shows the changes in the adsorption capacity, initial adsorption rate, and
t1/2 value with the temperature. When the temperature increased, the initial adsorption
rate increased and the t1/2 value decreased. On the other hand, the adsorption capacity
remained unchanged against the temperature. These results suggest that the Cr(VI) ion
adsorption more successfully proceeded at higher temperatures. There are some systems in
which the adsorption capacity is dependent on the temperature [31] and other ones where
the adsorption capacity is independent of the temperature [3,4]. The effect of temperature
on the adsorption behavior could vary depending on the experimental conditions, such as
the type of adsorbent, amount and position of adsorption site, Cr(VI) ion concentration,
adsorbent shape and so on. In addition, the activation energy will be calculated using the
k2 values from the pseudo-second order equation in the following section to discuss the
temperature dependence of the Cr(VI) ion adsorption in more detail.
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3.3.2. Amount of Amino Groups

At pH 3.0 and 30 ◦C, 10 mg of AEAPTES-silica beads with different amino groups
were immersed in a 0.20 mM K2Cr2O7 solution and the adsorbed amount was measured
against the immersion time. Figure 7a shows the changes in the adsorption capacity, initial
adsorption rate, and t1/2 value with the amount of amino groups. The adsorption capacity
and initial adsorption rate increased with the amount of amino groups and then leveled
off higher than 0.12 mmol/g. In addition, the adsorption ratio was calculated by dividing
the adsorption capacity by the amount of amino groups introduced on the AEAPTES-silica
beads [3,4]. As shown in Figure 7b, the adsorption ratio gradually decreased with an
increase in the amount of amino groups. It is found in Figure 4 that the adsorption reached
equilibrium at relatively short immersion times; therefore, many of the alkylamine chains
should be present on the surfaces of the silica beads. However, the initial adsorption and
t1/2 value remained almost unchanged at higher amounts of amino groups.
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In addition, to further increase the adsorption capacity, the functionalization of silica
beads was also performed with other aminosilane coupling agents with two or three
amino groups, AHAMTES and AEAEAPTMS. The adsorption capacity of AHAMTES-
functionalized silica beads (AHAMTES-silica beads) and AEAEAPTMS-functionalized
silica beads (AEAEAPTMS-silica beads) was summarized in Table 1. Although the amount
of introduced amino groups for the AHAMTES-silica beads was the same as that for the
AEAPTES silica beads, the adsorption capacity of the AHAMTES-silica beads was much
lower than that of the AEAPTES silica beads. A low adsorption capacity for AHAMTES-
silica beads would be due to the hydrophobicity of a hexylene chain between two amino
groups in an alkylamino chain. On the other hand, the AEAEAPTMS-silica beads had a
higher adsorption capacity than the AEAPTES-silica beads, since the alkyl chain length
between amino groups is short (two ethylene chains) for the AEAEAPTMS-silica beads. The
adsorption ratio based on an alkylamino chain was almost the same for the AEAPTES-silica
beads and AEAEAPTMS-silica beads. These results support that the introduction of amino
groups with AEAPTES was much more effective for the Cr(VI) ion adsorption.

Table 1. The Cr(VI) ion adsorption on silica beads functionalized with different aminosilane coupling
agents in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C.

Sample ANH AalkylNH Q Adsorption Ratio
(mmol/g) (mmol/g) (mmol/g) amino group (1) alkylamino chain (2)

AEAPTES-silica beads 0.220 0.110 0.074 0.365 0.673
AHAMTES-silica beads 0.220 0.110 0.004 0.018 0.036

AEAEAPTMS-silica beads 0.521 0.171 0.116 0.223 0.678
(1) This represents the adsorption ratio in amino groups introduced on silica beads. (2) This represents the
adsorption ratio in alkylamino chains introduced on silica beads.

3.3.3. Kinetic Analysis

The adsorption data of the AEAPTES-silica beads with the amount of amino groups
of 0.220 mmol/g were analyzed with the pseudo-first and pseudo-second order models.
The pseudo-first order rate equation is generally expressed by:

ln (Qeq −Qt) = ln Qeq − k1t (4)

where Qt and Qeq denote the adsorbed amount at time t and at equilibrium, respectively,
and k1 is the pseudo-first order rate constant.
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On the other hand, the pseudo-second order equation is expressed as:

t
Qt

=
t

k2 ·Q2
eq

+
1

Qeq
t (5)

where k2 is the pseudo-second order rate constant [9,33,34].
The kinetic parameters calculated by these two kinetic models were summarized in

Tables 2 and 3, respectively. The pseudo-first order equation fits only for the initial 12–20
min of the adsorption process. On the other hand, the pseudo-second order equation
showed good linearity between the immersion time and the t/Qt value with higher re-
gression coefficients for much longer times (Figure S2). These results indicate that the
experimental adsorption data fit better into the pseudo-second order model than the
pseudo-first order model. The good fit of the pseudo-second order model implies that
this adsorption is of a chemical nature and the overall rate of the adsorption process is
controlled by the rate-limiting step [35]. The k2 values were also calculated from the ad-
sorption data at 20–50 ◦C discussed in the above section. Since the k2 values increased with
an increase in temperature, the activation energy was calculated by plotting ln k2 against
the temperature reciprocal.

ln k2 = ln A− Ea

RT
(6)

where A is the frequency factor, Ea is the activation energy, and R is the gas constant
(8.314 J/K·mol). The activation energy was calculated to be 19.6 kJ/mol from the slope of
the linear relationship of the ln k2 value with the reciprocal temperature (Figure S3). The ac-
tivation energy for physical adsorption is usually not more than 4.2 kJ/mol. Therefore, this
value suggests that the adsorption in this study occurs through a chemical reaction [36–38].

Table 2. The kinetic parameters calculated by the pseudo-first order model for adsorption of Cr(VI)
ions on AEAPTES-silica beads with different amino groups in a 0.20 mM K2Cr2O7 solution at pH 3.0
and 30 ◦C.

ANH
(mmol/g)

Qexp
eq

(mmol/g)
Qcal

eq
(mmol/g)

k1
(1/h) r2 Time Range

(min)

0.030 0.0281 0.0284 5.35 0.9868 16
0.080 0.0579 0.0563 5.67 0.9919 16
0.160 0.0755 0.0756 3.12 0.9987 20
0.220 0.0738 0.0723 3.52 0.9837 12
0.270 0.0771 0.0751 2.35 0.9828 20

Table 3. The kinetic parameters calculated by the pseudo-second order model for adsorption of
Cr(VI) ions on AEAPTES-silica beads with different amino groups in a 0.20 mM K2Cr2O7 solution at
pH 3.0 and 30 ◦C.

ANH
(mmol/g)

Qexp
eq

(mmol/g)
Qcal

eq
(mmol/g)

k2
(mg/mmol·h) r2 Time Range

(min)

0.030 0.0281 0.0284 0.074 0.9992 180
0.080 0.0579 0.0576 1.15 0.9993 300
0.160 0.0755 0.0775 0.145 0.9992 300
0.220 0.0738 0.0778 0.161 0.9989 240
0.270 0.0771 0.0809 0.120 0.9942 180

3.3.4. Intraparticle Diffusion Model

Since the pseudo-second order model cannot identify the diffusion mechanism, the
kinetic data were analyzed by the Weber and Morris intraparticle diffusion model to
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elucidate the rate-limiting step involved in Cr(VI) ion adsorption. The Weber and Morris
intraparticle diffusion model [39,40] is expressed as:

Qt = kid ·
√

t + C (7)

where kid is the rate constant of intra-particle diffusion, t is the immersion time, and C is a
constant that gives an idea of the thickness of the boundary layer.

Figure 8 shows a plot of the amount of adsorbed Cr(VI) ions against the square root
of t for the AEAPTES-silica beads with the amounts of amino groups being 0.030, 0.080,
and 0.220 mmol/g in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C. The adsorption
process was divided into three straight lines (kid1, kid2, and kid3) with regression coefficients
higher than 0.99. The kid values obtained were summarized in Table 4. The constant, C,
corresponding to the y-intercept that provides the measure of the thickness of the boundary
layer was not obtained, although it took 1 or 2 min for the adsorption behavior to reach the
steady state. The first steeper region was observed for 20–30 min, indicating that this region
is controlled by rapid external surface adsorption. The second linear region shows the
gradual adsorption stage where the intraparticle diffusion is rate-limiting. The kid values
in this region were much lower than those in the first region (kid1 > kid2). The final third
region is the equilibrium stage (kid3 = 0) [41].
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Figure 8. A plot of the adsorbed amount against the square root of t for the AEAPTES-silica beads
with the amount of amino groups of 0.030 (4), 0.080 (�), and 0.220 (3) mmol/g in a 0.20 mM
K2Cr2O7 solution at pH 3.0 and 30 ◦C.

Table 4. The intraparticle diffusion constants for adsorption of Cr(VI) ions on AEAPTES-silica beads
with different amino groups in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C.

ANH
(mmol/g)

kid1
(mg/g·min1/2)

Time Range
(min)

kid2
(mg/g·min1/2)

Time Range
(min)

kid3
(mg/g·min1/2)

Time Range
(min)

0.030 0.0060 1–20 0.0027 20–60 0 60–180
0.080 0.0121 1–20 0.0051 20–50 0 50–180
0.160 0.0142 1–20 0.0058 20–50 0 50–180
0.220 0.0141 1–20 0.0048 20–60 0 60–180
0.270 0.0140 1–30 0.0048 30–60 0 60–180

3.3.5. Isotherm Analysis

The adsorption capacity was determined in the range of the initial Cr(VI) ion con-
centrations of 0.05–0.30 mM at pH 3.0 and 30 ◦C for the AEAPTES-silica beads with the
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amount of amino groups of 0.220 mmol/g and applied to the Langmuir and Freundlich
isotherm models, represented by Equations (8) and (9), respectively [35,41–44].

Ceq

Qeq
=

1
KL ·Qmax

+
Ceq

Qmax
(8)

where Ceq is the Cr(VI) ion concentration at equilibrium, Qmax is the maximum adsorption
capacity, and KL is the Langmuir adsorption constant related to the affinity of binding sites.

log Qeq = log KF +
1
n

log Ceq (9)

where KF is the Freundlich constant related to adsorption capacity and 1/n is the empiri-
cal parameter corresponding to adsorption intensity, depending on the heterogeneity of
the adsorbents.

The obtained parameters by both isotherms were summarized in Table 5 (Figure S4).
The Langmuir isotherm model fits better with a higher regression coefficient than the
Freundlich isotherm model. The good agreement with the Langmuir isotherm model was
also confirmed by the fact that the calculated Q value is much close to the experimental
one. These results suggest that the adsorption of Cr(VI) ion on the AEAPTES-silica beads
depends on the concentration of the adsorbate. It can be discussed from the Cr(VI) ion
species, that the adsorption process occurs mainly through the electrostatic interactions
between a HCrO4

− ion and a protonated amino group as shown in Figure 13 in ref [4].

Table 5. The Langmuir and Freundlich parameters for adsorption of Cr(VI) ions on the AEAPTES-
silica beads with 0.220 mmol/g in K2Cr2O7 solutions at pH 3.0 and 30 ◦C.

Langmuir Isotherm Freundlich Isotherm

Qmax (mmol/g) 0.160 n 1.47
KL (1/min) 4.63 KF (dm3/mmol)1/n 0.226

r2 0.9994 r2 0.9893

3.4. Desorption

The desorption of Cr(VI) ions was of great importance for the regeneration or reuse
of adsorbents. Here, the desorption of Cr(VI) ions from AEAPTES-silica beads with
the amount of amino groups of 0.220 mmol/g was measured in 0.50 M NaCl, 0.10 M
NH4Cl, and 0.50 mM NaOH. These eluents were used for the desorption of Cr(VI) ions
in our previous papers [4,19,45]. The desorption behavior was summarized in Table 6.
Most or many Cr(VI) ions were released from the AEAPTES-silica beads. The desorption
occurs mainly through the ion exchange of HCrO4

− ions with Cl− ions on protonated
dimethylamino groups, -NH+(CH3)2, in NaCl and NH4Cl and through the deprotonation
from -NH+(CH3)2 to -N(CH3)2 in NaOH as shown in ref. [4] Figure 13, and [19,45]. Of
them, the use of 0.10 M NH4Cl and 0.50 mM NaOH was effective for the desorption of
Cr(VI) ions because high desorption % values were obtained, and the desorption was faster.

Table 6. Desorption of Cr(VI) ions from AEAPTES-silica beads with the amount of amino groups of
0.220 mmol/g in three different eluents at 30 ◦C.

Eluent Desorption % Desorption Rate t1/2
(mg/min) (min)

0.50 mM NaCl 89.7 0.178 1.80
0.10 M NH4Cl 100 0.146 2.28

0.50 mM NaOH 97.4 0.060 5.37
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3.5. Functionalization with Polyfunctional Amine Compounds and PEIs

To further increase the Cr(VI) ion adsorption capacity, amino groups were introduced
to the silica beads through the pretreatment with GOPTES and the subsequent functional-
ization of epoxy groups with polyfunctional amine compounds or PEIs. When the silica
beads were treated with GOPTES, an overlapped small peak assigned to the -C-O- bond
in an epoxy ring was observed at 287 eV as shown in Figure 3c. This indicates that gly-
cidyloxypropyl chains were introduced on the surfaces of the silica beads. In addition, the
GOPTES-silica beads were functionalized with four kinds of polyfunctional amine com-
pounds and PEIs with three different molecular weights. As shown in Figure 3d,e, for the
silica beads functionalized with EDA (EDA-silica beads) and with 0.6KPEI (0.6KPEI-silica
beads) an N1s peak appeared at 399 eV, indicating the introduction of alkylamino chains or
PEI chains on the silica surfaces.

The C1s peak at 287 eV and a N1s peak was also observed for the functionalization
with the other polyfunctional amine compounds and PEIs. Therefore, the amount of amino
groups for these NH-silica beads was determined by the back titration, and then their
adsorption capacity was measured at 30 ◦C and pH 3.0. As shown in Tables 7 and 8,
adsorption capacities higher than those of the AEAPTES-silica beads were obtained for the
silica beads functionalized with the polyfunctional amine compounds and PEIs. In addition,
the adsorption capacity increased to 0.201 mmol/g for the PEHA-functionalized silica beads
(PEHA-silica beads) and to 0.320 mmol/g for the 0.6KPEI-silica beads. In particular, the
adsorption capacity of the 0.6KPEI-silica beads was about 5.4 times higher than that of the
AEAPTES-silica beads. These results support that the introduction of PEI chains or longer
alkylamine chains to the silica beads is effective in producing a high-capacity adsorbent for
Cr(VI) ions.

Table 7. The Cr(VI) ion adsorption on silica beads functionalized with GOPTES and subsequently
polyfunctional amine compounds in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C.

Sample ANH AalkylNH Qeq Adsorption Ratio
(mmol/g) (mmol/g) (mmol/g) amino group (1) alkylamino chain (2)

EDA-silica beads 0.276 0.138 0.101 0.365 0.731
DETA-silica beads 0.479 0.160 0.151 0.315 0.946
TETA-silica beads 0.674 0.169 0.192 0.285 1.42
PEHA-silica beads 0.867 0.144 0.201 0.232 1.39

(1) This represents the adsorption ratio in amino groups introduced on silica beads. (2) This represents the
adsorption ratio in alkylamino chains introduced on silica beads.

Table 8. The Cr(VI) ion adsorption on silica beads functionalized with GOPTES and subsequently
PEIs in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C.

Sample Reaction Time ANH APEI Qeq Adsorption Ratio
(h) (mmol/g) (mmol/g) (mmol/g) amino group (1) PEI chain (2)

0.6KPEI-silica beads 24 0.483 0.0347 0.320 0.663 9.22
1.8KPEI-silica beads 24 0.250 0.00598 0.080 0.320 13.4
10KPEI-silica beads 24 0.271 0.00117 0.067 0.248 57.3

72 0.420 0.00181 0.115 0.273 63.5
(1) This represents the adsorption ratio in amino groups introduced on silica beads. (2) This represents the
adsorption ratio in PEI chains introduced on silica beads.

In addition, the Cr(VI) ion adsorption capacity of the NH-silica beads obtained in
this study was compared with those of various particles functionalized by silane coupling
reactions in Table 9 [8,11–13,46–51]. First, we should bear in mind that the experimental
conditions, such as the initial pH value, temperature, dose of the adsorbent sample, and
initial concentration and volume of the aqueous K2Cr2O7 solution, vary from article to
article. However, it can be safely said that the adsorption capacity obtained in this study
was comparable to, or higher than some of the other adsorbents, despite the Cr(VI) ion
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concentration being considerably lower than in the other articles cited. Our next goal
is to prepare the adsorbent for Cr(VI) ions with better adsorption behavior through the
functionalization with an epoxysilane coupling agent and polyfunctional amine compounds
or PEIs.

Table 9. The comparison with Cr(VI) ion adsorption capacities of adsorbents functionalized with
various aminosilane coupling agents.

Adsorbents pH Temp. Dose of Adsorbent Init. Conc. Q Ref.
(◦C) (g/dm3) (mg/dm3) (mg/g)

AEAPTES-silica beads 3 30 0.20 10.4 3.85 this study
15.6 4.72

PEHA-silica beads 3 30 0.20 10.4 10.5
0.6KPEI-silica beads 3 30 0.20 10.4 16.6

APTES-SBA-15 2.0 25 0.5 100 71.5 [8]
DAEAPTS-grafted SBA-15 3 30 1.0 100 81.22 [11]

DPC-functionalized SBA-15 3 25 4.0 100 15.1 [12]
APTES-nanoporous silicon 2 25 unknown 50 40.8 [13]

APTES-Fe3O4@SiO2 3 25 0.5 10 17.4 [46]
APTES-zeolite 3 25 2.0 50 11.4 [47]

APTES-mesoporous silica magnetite 2 25 14 30 19.7 [48]
APTES-Fe3O4-graphene oxide 3 25 1.5 20 6.74 [49]

APTES-Fe3O4-biochar 3 30 1.0 10 4.89 [50]
100 33.10

MCM-41-AEAPTES 3 25 1.0 50 49.5 [51]

4. Conclusions

In this study, the NH-silica beads were prepared through functionalization with
different aminosilane coupling agents and through the pretreatment with an epoxysilane
coupling agent; followed by the functionalization with polyfunctional amine compounds
or PEIs. The kinetic, isotherm, and equilibrium characteristics of the Cr(VI) ion adsorption
were investigated as a function of the experimental parameters, such as the pH value,
the temperature, and the amount of amino groups in detail; desorption behavior was
also discussed.

For the AEAPTES-silica beads, the adsorption capacity and initial adsorption rate had
the maximum values at pH 3.0. On the other hand, the initial adsorption rate increased
with an increase in the temperature, although the adsorption rate remained almost constant
against the temperature. At 30 ◦C and pH 3.0, the adsorption capacity increased and the
adsorption ratio decreased with an increase in the amount of amino groups. The kinetics of
Cr(VI) ion adsorption obeyed the pseudo-second order model and the equilibrium data
were well described by the Langmuir isotherm model. These results support that the
Cr(VI) ion adsorption will occur through the electrostatic interaction between a HCrO4

−

ion and a protonated amino group. Cr(VI) ions were successfully released in 0.50 M
NaCl, 0.10 M NH4Cl, and 0.50 mM NaOH after a relatively short immersion time. In
addition, the adsorption capacity was further increased by the pretreatment with GOPTES
and the subsequent functionalization with PEHA to 0.201 mmol/g and with 0.6KPEI to
0.320 mmol/g, supporting that the introduction of PEI chains or longer alkylamine chains
to the silica beads is effective in producing a high-capacity adsorbent for Cr(VI) ions.

The results obtained emphasize that the introduction of amino groups to the silica
beads above-mentioned is an effective procedure to confer the Cr(VI) ion adsorption
properties on the silica beads. The NH-silica beads exhibit significant potential as an
adsorbent in the removal of Cr(VI) ions from aqueous media and wastewater. Therefore,
we will aim for better adsorption behavior and higher adsorption capacity of Cr(VI) ions in
the porous silica beads.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14102104/s1, Figure S1: Changes in the net amount of
amino groups with the dose of silica beads for AEAPTES-silica beads with the amount of amino
groups of 0.030 (4), 0.080 (�), and 0.220 (3) mmol/g; Figure S2: Determination of (a) the pseudo-
first order constant, k1, and (b) pseudo-second order constant, k2, for adsorption of Cr(VI) ions on
AEAPTES-silica beads with the amount of amino groups of 0.220 mmol/g in a 0.20 mM K2Cr2O7
solution at pH 3.0 and 30 ◦C; Figure S3: The linear relationship between the k2 value and the reciprocal
temperature in Arrhenius plot for adsorption of Cr(VI) ions on AEAPTES-silica beads with the amount
of amino groups of 0.220 mmol/g in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30 ◦C; Figure S4: The
linear relationship between (a) the Ceq and Ceq/Qeq values in the Langmuir adsorption isotherm
and (b) between log Ceq and log Qeq in Freundlich adsorption isotherm for adsorption of Cr(VI) ions
on AEAPTES-silica beads with the amount of amino groups of 0.220 mmol/g in K2Cr2O7 solutions at
pH 3.0 and 30 ◦C.
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