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1. Derivation of the constitutive equation of the Maxwell 

form of the standard linear solid model 
 

In this section, we are going to introduce the derivation of the constitutive 
equation of the Maxwell form of the standard linear solid model (abbreviated as the 
standard linear solid model in the following text). 

The standard linear solid model is a three-element model consisting of a linear 
spring and a Maxwell model in parallel (Fig. S1). Please note that, the Maxwell model 
is the upper arm of the standard linear solid model, and it is a two-element model 
consisting of a linear spring and a linear dashpot in series. 
 

 
Figure S1  The Maxwell form of the standard linear solid model. 𝐸  , 𝐸   and 𝜂  are 
three parameters in the standard linear solid model relevant to the viscoelastic properties. 
 
 
 

If an external load is applied to the standard linear solid model, the model will 
experience both stress and strain. The strain of the entire model follows the relationship: 

𝜀 = 𝜀 = 𝜀 + 𝜀  (S.1) 
where 𝜀 is the strain of the entire model, 𝜀  is the strain of the spring 1, 𝜀  is the 
strain of the spring 2, and 𝜀  is the strain of the dashpot. 
For the spring 1, the Hooke’s law can be used to describe the relationship between 
the stress and strain of this spring: 
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𝜎 = 𝐸 𝜀 = 𝐸 𝜀 (S.2) 
where 𝜎  is the stress of the spring 1, and 𝐸  is the modulus of elasticity of the 
spring 1. The second equality in Equation (S.2) holds since the strain of the spring 1 
(𝜀 ) is equal to the strain of the entire model (𝜀), from Equation (S.1). 
Similarly, for the spring 2, the Hooke’s law can be used to describe the relationship 
between the stress and strain of this spring: 

𝜎 = 𝐸 𝜀  (S.3) 
where 𝜎  is the stress of the spring 2, and 𝐸  is the modulus of elasticity of the 
spring 2. 
For the dashpot, the constitutive equation of the linear dashpot can be used to 
describe the relationship between the stress and strain of this dashpot: 

𝜎 = 𝜂𝜀̇  (S.4) 
where 𝜎  is the stress of the dashpot, and 𝜂 is the viscosity of the dashpot. 
The stress of the entire model is the sum of the stresses in the lower and upper arms 
of the entire model: 

𝜎 = 𝜎 + 𝜎  (S.5) 
where 𝜎 is the stress of the entire model, 𝜎  is the stress of the spring 1 which is 
also the stress of the lower arm of the entire model, and 𝜎  is the stress of the spring 
2 which is also the stress of the upper arm of the entire model. 
Since the spring 2 and dashpot are connected in series, the stress of the spring 2 (𝜎 ) 
is equal to the stress of the dashpot (𝜎 ), therefore Equation (S.5) can be written as: 

𝜎 = 𝜎 + 𝜎  (S.6) 
Substituting Equations (S.2) and (S.3) into Equation (S.5): 

𝜎 = 𝐸 𝜀 + 𝐸 𝜀  (S.7) 
Replacing 𝜀  in Equation (S.7) by 𝜀 − 𝜀  from Equation (S.1): 

𝜎 = 𝐸 𝜀 + 𝐸 (𝜀 − 𝜀 ) = (𝐸 + 𝐸 )𝜀 − 𝐸 𝜀  (S.8) 
Differentiating Equation (S.8) with time: 

�̇� = (𝐸 + 𝐸 )𝜀̇ − 𝐸 𝜀̇  (S.9) 
Replacing 𝜀̇  in Equation (S.9) by 𝜎 /𝜂 from Equation (S.4), then replacing this 𝜎  by 
𝜎 − 𝜎  from Equation (S.6), and then replacing this 𝜎  by 𝐸 𝜀 from Equation (S.2): 

�̇� = (𝐸 + 𝐸 )𝜀̇ − 𝐸
𝜎 − 𝐸 𝜀

𝜂
 (S.10)

Equation (S.10) can be rearranged as: 
𝜎 + 𝜏 �̇� = 𝐸 (𝜀 + 𝜏 𝜀̇) (S.11) 

where 𝜏 = 𝜂/𝐸  is the relaxation time constant, and 𝜏 = 𝜂(𝐸 + 𝐸 )/𝐸 𝐸  is the 
creep time constant. 
Equation (S.11) is namely the constitutive equation of the standard linear solid model. 
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2. Derivation of the constitutive equation of the Maxwell model 
 

The constitutive equation of the Maxwell model (Fig. S2) will be used in the 
derivation of Equations (1) and (2) in the paper, which will be introduced later in 
this supplementary material. Therefore, in this section, we are going to introduce the 
derivation of the constitutive equation of the Maxwell model. 
 

 
Figure S2  The Maxwell model. 𝐸  and 𝜂  are two parameters in the Maxwell 
model relevant to the viscoelastic properties. 
 
 
 

The Maxwell model is a two-element model consisting of a linear spring and a 
linear dashpot in series. Since both elements are connected in series, the stresses and 
strains of the spring, dashpot and entire model follow the relationship: 

𝜎 = 𝜎 = 𝜎  (S.12) 
𝜀 = 𝜀 + 𝜀  (S.13) 

where 𝜎 and 𝜀 are the stress and strain of the entire model respectively, 𝜎  and 
𝜀  are the stress and strain of the spring respectively, and 𝜎  and 𝜀  are the stress 
and strain of the dashpot respectively. 
For the spring, the Hooke’s law can be used to describe the relationship between the 
stress and strain of this spring: 

𝜎 = 𝐸𝜀 ⟹  𝜀 =
𝜎

𝐸
 (S.14) 

where 𝐸 is the modulus of elasticity of the spring. 
For the dashpot, the constitutive equation of the linear dashpot can be used to 
describe the relationship between the stress and strain of this dashpot: 

𝜎 = 𝜂𝜀̇ ⟹  𝜀̇ =
𝜎

𝜂
⟹  𝜀 =

𝜎

𝜂
𝑑𝑡 (S.15) 

where 𝜂 is the viscosity of the dashpot. 
Equation (S.12) has been used in Equations (S.14) and (S.15) for replacing 𝜎  and 
𝜎  by 𝜎. 
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Substituting Equations (S.14) and (S.15) into Equation (S.13): 

𝜀 = 𝜀 + 𝜀 ⟹  𝜀 =
𝜎

𝐸
+

𝜎

𝜂
𝑑𝑡 (S.16) 

Differentiating Equation (S.16) with time: 

 𝜀̇ =
�̇�

𝐸
+

𝜎

𝜂
 (S.17) 

Equation (S.17) can be rearranged as: 

𝜎 +
𝜂

𝐸
�̇� = 𝜂𝜀̇ (S.18) 

Equation (S.18) is namely the constitutive equation of the Maxwell model. 
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3. Derivation of Equations (1) and (2) in the paper 
 

In this section, we are going to introduce the derivation of Equations (1) and (2) 
in the paper. The method of Laplace transform is used in the following derivations. 
Please note that, since the initial stress and strain of a mechanical element (spring or 
dashpot) in the standard linear solid model are assumed to be zero, the Laplace 
transform of the first time derivative of a stress or strain function is the Laplace 
variable 𝑠  times the Laplace transform of that stress or strain function, such as 
ℒ{�̇�(𝑡)} = 𝑠ℒ{𝜎(𝑡)} = 𝑠𝜎 and ℒ{𝜀̇(𝑡)} = 𝑠ℒ{𝜀(𝑡)} = 𝑠𝜀.̅ 

In the standard linear solid model shown in Figure S1, the spring 1 in the lower 
arm and the Maxwell model in the upper arm experience the same strain since they 
are in parallel, and the strain they experience is equal to the strain of the entire model. 
For the spring 1, the Hooke’s law can be used to describe the relationship between 
the stress and strain of this spring: 

𝜎 = 𝐸 𝜀 = 𝐸 𝜀 (S.19)
where 𝜎  is the stress of the spring 1, 𝐸  is the modulus of elasticity of the spring 
1, and 𝜀  is the strain of the spring 1 which is equal to the strain of the entire 
model 𝜀. 
Taking the Laplace transform of Equation (S.19): 

𝜎 = 𝐸 𝜀 (S.20)
For the Maxwell model, the constitutive equation of the Maxwell model can be used 
to describe the relationship between the stress and strain of this Maxwell model: 

𝜎 +
𝜂

𝐸
�̇� = 𝜂𝜀̇ = 𝜂𝜀̇ (S.21) 

where 𝜎  is the stress of the Maxwell model, 𝜂 is the viscosity of the dashpot in the 
Maxwell model, 𝐸  is the modulus of elasticity of the spring in the Maxwell model, 
and 𝜀  is the strain of the Maxwell model which is equal to the strain of the entire 
model 𝜀. 
Taking the Laplace transform of Equation (S.21): 

𝜎 +
𝜂

𝐸
𝑠𝜎 = 𝜂𝑠𝜀  ⟹  𝜎 + 𝜏 𝑠𝜎 = 𝜏 𝐸 𝑠𝜀  ⟹  𝜎 =

𝐸 𝑠

𝑠 +
1

𝜏

𝜀 (S.22) 

where 𝜏 = 𝜂/𝐸  is the relaxation time constant. 
The stress of the entire model is the sum of the stress of the spring 1 and the stress 
of the Maxwell model: 

𝜎 = 𝜎 + 𝜎  (S.23)
where 𝜎 is the stress of the entire model. 
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Taking the Laplace transform of Equation (S.23): 
𝜎 = 𝜎 + 𝜎  (S.24)

Substituting Equations (S.20) and (S.22) into Equation (S.24): 

𝜎 = 𝜎 + 𝜎 = 𝐸 𝜀 +
𝐸 𝑠

𝑠 +
1

𝜏

𝜀 = 𝐸 +
𝐸 𝑠

𝑠 +
1
𝜏

𝜀 (S.25)

In the stress relaxation test using a step function as the loading, 𝜀(𝑡) is equal to a 
constant strain value 𝜀  times the unit step function: 

𝜀(𝑡) = 𝜀 𝑢(𝑡), where 𝑢(𝑡) =  
0, 𝑡 < 0
1, 𝑡 ≥ 0

 (S.26)

Taking the Laplace transform of Equation (S.26): 

𝜀 =
𝜀

𝑠
 (S.27)

Substituting Equation (S.27) into Equation (S.25): 

𝜎 = 𝐸 +
𝐸 𝑠

𝑠 +
1

𝜏

𝜀 = 𝐸 +
𝐸 𝑠

𝑠 +
1
𝜏

𝜀

𝑠
=

𝐸

𝑠
+

𝐸

𝑠 +
1

𝜏

𝜀  (S.28)

Taking the inverse Laplace transform of Equation (S.28), the stress as a function of 
time in the stress relaxation test using a step function as the loading can be obtained: 

𝜎(𝑡) = ℒ (𝜎) = 𝐸 + 𝐸 𝑒 𝜀  (S.29)

Equation (S.29) is namely Equation (1) in the paper. 
On the other hand, in the creep test using a step function as the loading, 𝜎(𝑡) is 
equal to a constant stress value 𝜎  times the unit step function: 

𝜎(𝑡) = 𝜎 𝑢(𝑡), where 𝑢(𝑡) =  
0, 𝑡 < 0
1, 𝑡 ≥ 0

 (S.30)

Taking the Laplace transform of Equation (S.30): 

𝜎 =
𝜎

𝑠
 (S.31)

Substituting Equation (S.31) into Equation (S.25): 

𝜎 = 𝐸 +
𝐸 𝑠

𝑠 +
1

𝜏

𝜀  ⟹  
𝜎

𝑠
= 𝐸 +

𝐸 𝑠

𝑠 +
1
𝜏

𝜀  ⟹  𝜀 =
𝜎

𝐸 𝑠 +
𝐸 𝑠

𝑠 +
1
𝜏

 (S.32)

Taking the inverse Laplace transform of Equation (S.32), the strain as a function of 
time in the creep test using a step function as the loading can be obtained: 



  

8 
 

𝜀(𝑡) =
𝜎

𝐸
−

𝜎

𝐸
∙

𝐸

𝐸 + 𝐸
∙ 𝑒 ( ) =

𝜎

𝐸
1 −

𝐸

𝐸 + 𝐸
𝑒  (S.33)

where 𝜏 = 𝜏 (𝐸 + 𝐸 )/𝐸 = 𝜏 = 𝜂(𝐸 + 𝐸 )/𝐸 𝐸  is the creep time constant. 
Equation (S.33) is namely Equation (2) in the paper. 
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4. Derivation of Equations (3) and (4) in the paper 
 

In order to derive the equation form with finite loading rate for analyzing stress 
relaxation behavior based on the standard linear solid model, the solution for describing 
the stress-time relationship in the loading process as well as the solution for describing 
the stress-time relationship in the stress relaxation process in the stress relaxation test 
are needed. In this section, the derivations of these two solutions are introduced. 

Firstly, let’s derive the solution for describing the stress-time relationship in the 
loading process in the stress relaxation test. Let 𝑡 = 0  be the time point at the 
beginning of the loading process. Let the strain rate in the loading process be 𝑟, then 
the strain at any time in the loading process is 𝜀 = 𝑟𝑡. Substituting 𝜀 = 𝑟𝑡 and 𝜀̇ =

𝑑𝜀 𝑑𝑡⁄ = 𝑟 into the constitutive equation of the standard linear solid model: 
𝜎 + 𝜏 �̇� = 𝐸 (𝜀 + 𝜏 𝜀̇)  ⟹  𝜎 + 𝜏 �̇� = 𝐸 𝑟𝑡 + 𝐸 𝜏 𝑟 (S.34) 

Equation (S.34) is a linear, constant-coefficient, non-homogeneous ordinary 
differential equation. The initial condition of Equation (S.34) is 𝜎(0) = 0, since the 
stress is assumed to be zero at 𝑡 = 0. The general solution of Equation (S.34) is the 
sum of the homogeneous solution and particular solution. 
Consider the homogenous equation of Equation (S.34): 

𝜎 + 𝜏 �̇� = 0 (S.35) 
Let the homogeneous solution be 𝜎 (𝑡) = 𝐴𝑒  and substitute it into Equation (S.35), 
where 𝐴 and 𝑎 are constants: 

𝐴𝑒 + 𝜏 𝐴𝑎𝑒 = 0 ⟹  1 + 𝜏 𝑎 = 0 ⟹  𝑎 =
−1

𝜏
 (S.36) 

Therefore, the homogeneous solution of Equation (S.34) is 𝜎 (𝑡) = 𝐴𝑒 . 

Consider the entire equation of Equation (S.34) and let the stress 𝜎  be the particular 

solution 𝜎 : 

𝜎 + 𝜏 �̇� = 𝐸 𝑟𝑡 + 𝐸 𝜏 𝑟 (S.37) 

Let the particular solution be 𝜎 (𝑡) = 𝐵𝑡 + 𝐶 and substitute it into Equation (S.37), 

where 𝐵 and 𝐶 are constants: 
𝐵𝑡 + 𝐶 + 𝜏 𝐵 = 𝐸 𝑟𝑡 + 𝐸 𝜏 𝑟 ⟹  𝐵 = 𝐸 𝑟  and  𝐶 = 𝐸 𝑟(𝜏 − 𝜏 ) (S.38) 

Therefore, the particular solution of Equation (S.34) is 𝜎 (𝑡) = 𝐸 𝑟𝑡 + 𝐸 𝑟(𝜏 − 𝜏 ). 

The general solution of Equation (S.34) is the sum of the homogeneous solution and 
particular solution: 
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𝜎(𝑡) = 𝜎 (𝑡) + 𝜎 (𝑡) =  𝐴𝑒 + 𝐸 𝑟𝑡 + 𝐸 𝑟(𝜏 − 𝜏 ) (S.39) 

Substituting the initial condition 𝜎(0) = 0 into Equation (S.39): 
𝜎(0) = 𝐴 + 𝐸 𝑟(𝜏 − 𝜏 ) = 0 ⟹  𝐴 = −𝐸 𝑟(𝜏 − 𝜏 ) (S.40) 

Substituting Equation (S.40) into Equation (S.39): 

𝜎 (𝑡) = 𝐸 𝑟𝑡 + 𝐸 𝑟(𝜏 − 𝜏 ) 1 − 𝑒  (S.41) 

Equation (S.41) is namely the solution for describing the stress-time relationship in 
the loading process in the stress relaxation test. 

Next, let’s derive the solution for describing the stress-time relationship in the 
stress relaxation process in the stress relaxation test. Let 𝑡 = 0 be the time point at 
the beginning of the stress relaxation process. Let the constant strain in the stress 
relaxation process be 𝜀 . Substituting 𝜀 = 𝜀  into the constitutive equation of the 
standard linear solid model: 

𝜎 + 𝜏 �̇� = 𝐸 (𝜀 + 𝜏 𝜀̇)  ⟹  𝜎 + 𝜏 �̇� = 𝐸 𝜀  (S.42) 
Equation (S.42) is a linear, constant-coefficient, non-homogeneous ordinary 
differential equation. The initial condition of Equation (S.42) is 𝜎(0) = 𝜎 , where 𝜎  
is the stress at the beginning of the stress relaxation process. The general solution of 
Equation (S.42) is the sum of the homogeneous solution and particular solution. 
Consider the homogenous equation of Equation (S.42): 

𝜎 + 𝜏 �̇� = 0 (S.43) 
Let the homogeneous solution be 𝜎 (𝑡) = 𝐴𝑒  and substitute it into Equation (S.43), 
where 𝐴 and 𝑎 are constants: 

𝐴𝑒 + 𝜏 𝐴𝑎𝑒 = 0 ⟹  1 + 𝜏 𝑎 = 0 ⟹  𝑎 =
−1

𝜏
 (S.44) 

Therefore, the homogeneous solution of Equation (S.42) is 𝜎 (𝑡) = 𝐴𝑒 . 

Consider the entire equation of Equation (S.42) and let the stress 𝜎 be the particular 

solution 𝜎 : 

𝜎 + 𝜏 �̇� = 𝐸 𝜀  (S.45) 

Let the particular solution be 𝜎 (𝑡) = 𝐵 and substitute it into Equation (S.45), where 

𝐵 is a constant: 
𝐵 = 𝐸 𝜀  (S.46) 

Therefore, the particular solution of Equation (S.42) is 𝜎 (𝑡) = 𝐸 𝜀 . 

The general solution of Equation (S.42) is the sum of the homogeneous solution and 
particular solution: 
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𝜎(𝑡) = 𝜎 (𝑡) + 𝜎 (𝑡) =  𝐴𝑒 + 𝐸 𝜀  (S.47) 

Substituting the initial condition 𝜎(0) = 𝜎  into Equation (S.47): 
𝜎(0) = 𝐴 + 𝐸 𝜀 = 𝜎  ⟹  𝐴 = 𝜎 −𝐸 𝜀  (S.48) 

Substituting Equation (S.48) into Equation (S.47): 

𝜎 (𝑡) = (𝜎 −𝐸 𝜀 )𝑒 + 𝐸 𝜀  (S.49) 

Equation (S.49) is namely the solution for describing the stress-time relationship in 
the stress relaxation process in the stress relaxation test. 
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5. Derivation of Equations (8) and (9) in the paper 
 

In order to derive the equation form with finite loading rate for analyzing creep 
behavior based on the standard linear solid model, the solution for describing the 
strain-time relationship in the loading process as well as the solution for describing 
the strain-time relationship in the creep process in the creep test are needed. In this 
section, the derivations of these two solutions are introduced. 

Firstly, let’s derive the solution for describing the strain-time relationship in the 
loading process in the creep test. Let 𝑡 = 0 be the time point at the beginning of the 
loading process. Let the stress rate in the loading process be 𝑟, then the stress at any 
time in the loading process is 𝜎 = 𝑟𝑡. Substituting 𝜎 = 𝑟𝑡 and �̇� = 𝑑𝜎 𝑑𝑡⁄ = 𝑟 into 
the constitutive equation of the standard linear solid model: 

𝜎 + 𝜏 �̇� = 𝐸 (𝜀 + 𝜏 𝜀̇)  ⟹  𝜀 + 𝜏 𝜀̇ =
𝑟

𝐸
𝑡 +

𝑟𝜏

𝐸
 (S.50) 

Equation (S.50) is a linear, constant-coefficient, non-homogeneous ordinary 
differential equation. The initial condition of Equation (S.50) is 𝜀(0) = 0, since the 
strain is assumed to be zero at 𝑡 = 0. The general solution of Equation (S.50) is the 
sum of the homogeneous solution and particular solution. 
Consider the homogenous equation of Equation (S.50): 

𝜀 + 𝜏 𝜀̇ = 0 (S.51) 
Let the homogeneous solution be 𝜀 (𝑡) = 𝐴𝑒  and substitute it into Equation (S.51), 
where 𝐴 and 𝑎 are constants: 

𝐴𝑒 + 𝜏 𝐴𝑎𝑒 = 0 ⟹  1 + 𝜏 𝑎 = 0 ⟹  𝑎 =
−1

𝜏
 (S.52) 

Therefore, the homogeneous solution of Equation (S.50) is 𝜀 (𝑡) = 𝐴𝑒 . 

Consider the entire equation of Equation (S.50) and let the strain 𝜀 be the particular 

solution 𝜀 : 

𝜀 + 𝜏 𝜀̇ =
𝑟

𝐸
𝑡 +

𝑟𝜏

𝐸
 (S.53) 

Let the particular solution be 𝜀 (𝑡) = 𝐵𝑡 + 𝐶 and substitute it into Equation (S.53), 

where 𝐵 and 𝐶 are constants: 

𝐵𝑡 + 𝐶 + 𝜏 𝐵 =
𝑟

𝐸
𝑡 +

𝑟𝜏

𝐸
 ⟹  𝐵 =

𝑟

𝐸
  and  𝐶 =

𝑟

𝐸
(𝜏 − 𝜏 ) (S.54) 

Therefore, the particular solution of Equation (S.50) is 𝜀 (𝑡) = 𝑡 + (𝜏 − 𝜏 ). 
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The general solution of Equation (S.50) is the sum of the homogeneous solution and 
particular solution: 

𝜀(𝑡) = 𝜀 (𝑡) + 𝜀 (𝑡) =  𝐴𝑒 +
𝑟

𝐸
𝑡 +

𝑟

𝐸
(𝜏 − 𝜏 ) (S.55) 

Substituting the initial condition 𝜀(0) = 0 into Equation (S.55): 

𝜀(0) = 𝐴 +
𝑟

𝐸
(𝜏 − 𝜏 ) = 0 ⟹  𝐴 = −

𝑟

𝐸
(𝜏 − 𝜏 ) (S.56) 

Substituting Equation (S.56) into Equation (S.55): 

𝜀 (𝑡) =
𝑟

𝐸
𝑡 +

𝑟

𝐸
(𝜏 − 𝜏 ) 1 − 𝑒  (S.57) 

Equation (S.57) is namely the solution for describing the strain-time relationship in 
the loading process in the creep test. 

Next, let’s derive the solution for describing the strain-time relationship in the 
creep process in the creep test. Let 𝑡 = 0 be the time point at the beginning of the 
creep process. Let the constant stress in the creep process be 𝜎 . Substituting 𝜎 = 𝜎  
into the constitutive equation of the standard linear solid model: 

𝜎 + 𝜏 �̇� = 𝐸 (𝜀 + 𝜏 𝜀̇)  ⟹  𝜀 + 𝜏 𝜀̇ =
𝜎

𝐸
 (S.58) 

Equation (S.58) is a linear, constant-coefficient, non-homogeneous ordinary 
differential equation. The initial condition of Equation (S.58) is 𝜀(0) = 𝜀 , where 𝜀  
is the strain at the beginning of the creep process. The general solution of Equation 
(S.58) is the sum of the homogeneous solution and particular solution. 
Consider the homogenous equation of Equation (S.58): 

𝜀 + 𝜏 𝜀̇ = 0 (S.59) 
Let the homogeneous solution be 𝜀 (𝑡) = 𝐴𝑒  and substitute it into Equation (S.59), 
where 𝐴 and 𝑎 are constants: 

𝐴𝑒 + 𝜏 𝐴𝑎𝑒 = 0 ⟹  1 + 𝜏 𝑎 = 0 ⟹  𝑎 =
−1

𝜏
 (S.60) 

Therefore, the homogeneous solution of Equation (S.58) is 𝜀 (𝑡) = 𝐴𝑒 . 

Consider the entire equation of Equation (S.58) and let the strain 𝜀 be the particular 

solution 𝜀 : 

𝜀 + 𝜏 𝜀̇ =
𝜎

𝐸
 (S.61) 

Let the particular solution be 𝜀 (𝑡) = 𝐵 and substitute it into Equation (S.61), where 

𝐵 is a constant: 

𝐵 =
𝜎

𝐸
 (S.62) 
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Therefore, the particular solution of Equation (S.58) is 𝜀 (𝑡) = . 

The general solution of Equation (S.58) is the sum of the homogeneous solution and 
particular solution: 

𝜀(𝑡) = 𝜀 (𝑡) + 𝜀 (𝑡) =  𝐴𝑒 +
𝜎

𝐸
 (S.63) 

Substituting the initial condition 𝜀(0) = 𝜀  into Equation (S.63): 

𝜀(0) = 𝐴 +
𝜎

𝐸
= 𝜀  ⟹  𝐴 = 𝜀 −

𝜎

𝐸
 (S.64) 

Substituting Equation (S.64) into Equation (S.63): 

𝜀 (𝑡) = 𝜀 −
𝜎

𝐸
𝑒 +

𝜎

𝐸
 (S.65) 

Equation (S.65) is namely the solution for describing the strain-time relationship in 
the creep process in the creep test. 


