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Abstract: We reviewed the accelerators, the hydrolysis and condensation reaction mechanism of
bifunctional alkoxy silane, and the mechanism of zinc ion in natural rubber (NR) composites. NR
composites transform into thermoset composites after vulcanization reaction with help of sulfur
and accelerators. Bifunctional alkoxy silanes chemically bond between NR and inorganic silica. For
alkoxy silane coupling with silica surface, hydrolysis reaction takes first and then condensation
reaction with hydroxyl group in silica takes place. With help of zinc ion the reaction efficiency
increases significantly. Zinc ion, a smart material that increases accelerator synergy, mechanism for
improvements of interfacial adhesion between NR and silica was revisited.
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1. Introduction

Silica-silane filled natural rubber (NR) composites, as a tire tread material, are currently
used in various fields as a smart composite replacing the conventional carbon black (CB)
tire composites. Compared with CB filled NR tire, it shows excellent performance such
as improved fuel efficiency due to low rolling resistance, reduced braking distance due to
slip resistance due to high tan delta, and improved traction in snow and wet conditions
when driving a vehicle. Currently many vehicles use a green tire (silica filled tire) [1]. It
is called green tire because it has green strength during silica composite processing. The
green tire composite has differences in interfacial bonding compared to the CB compound.
And even now, various efforts are being made to increase the efficiency of interfacial
bonding. Compared with the CB filled NR composite system, in both systems the interfacial
interaction in the silica-silane filled NR composite has the same mechanism for chemical
bonding of rubber by sulfur, but the interfacial interaction between filler and NR is different.
That is, the CB filled system forms a bond by interaction between CB and NR by increasing
compatibility due to the π-π interaction between the double bonds of the two materials.
However, in the silica filled system, as bifunctional silane chemically bonds silica and NR,
the interfacial interaction between the two materials increases by chemical bonding.

Until now, there was no published article introducing the mechanism for the entire
process of the chemical reaction from the raw material to the silica-silane-NR composite to
increase the interfacial interaction. This paper briefly summarizes the whole process above.
We first reviewed the accelerators that affect the degree and rate of bonding between rubber
chains, and reviewed the hydrolysis mechanism of alkoxy silane and the condensation
reaction mechanism between hydrolyzed silane and hydroxyl group on silica surface. And
the chemical reaction mechanism between bifunctional silane and rubber was reviewed.
Zinc ion, a smart material that effectively increases accelerator synergy and increases the
effectiveness of vulcanization, was also reviewed.
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2. Materials and Methods
2.1. Accelerators

Various additives are added to rubber composite such as filler, plasticizer, compatibi-
lizer, anti-degradant, processing aid, curative, accelerator, etc. A typical curative used in
rubber is sulfur, which chemically promotes bonding between rubber chains to increase
interfacial adhesion between chains. Accelerators play a role in controlling the degree
and rate of chemical reaction between sulfur and rubber chains. Cure time or degree of
crosslinking is different depending on the type of accelerator thus the choice of accelerator
is different depending on the composite and processing purpose. First, we revisit the
history of accelerators.

Goodyear-Hancock first showed unaccelerated vulcanization of rubber [2,3]. Later,
organic accelerator, aniline, was first introduced in 1906 [4]. However, aniline was too toxic for
use in rubber vulcanization. Later, reaction product of aniline with carbon disulfide such as
thiocarbanilide was introduced in 1907 [5]. Subsequently carbon disulfide modification with
aliphatic amines (e.g., dithiocarbamates), which thiuram type accelerators were introduced in
1919 [6]. And then delayedaction accelerators such as 2-mercaptobenzothiazole (MBT) and
2-mercaptobenzothiazole disulfide (or 2,2′-dithiobisbenzothiazole) (MBTS) were introduced
in 1925 [7–9]. The first commercial benzothiazole sulfenamide (N-cyclohexylbenzothiazole
2-sulfenamide), a delayed-action accelerator, was introduced by Harman in 1937 [10]. More
delayed-action premature vulcanization inhibitor (PVI), N-(cyclohexylthio)phthalimide
(CTP), was introduced in 1968 [11]. Studies on accelerator effects on vulcanization were
focused mainly on CB filled systems. Various types of accelerators and their roles in
CB filled rubber compounds were summarized [6]. Thurn et al. [12] first discovered
the use of silica in combination with bis(3-triethoxysilylpropyl) tetrasulfane (TESPT) and
NR, and this was patented for practical ‘green tire’ application in 1992 [13]. Since then,
considerable efforts have been made on studies of silica-silane reinforcement in rubber
compounds [14], silica dispersion [15–19], silica-silane reaction [15,16,20–28], silane-rubber
reaction [29–31], zinc ion- [26,32–35], moisture- [36,37], temperature- [38], and accelerator
effects on vulcanization properties [39,40], effects of processing geometry [19], and effects
of polymer blends [27,28,41,42].

There were many studies on accelerator effects on vulcanization properties of CB filled
rubber compounds [39,40,43–45]. For example, thiazole type accelerators on crosslink-
ing rate in the NR compound [43] and NR & synthetic poly-1,5-dienes [44] were stud-
ied. Sulfenamide type accelerators on rate of sulfenamide-sulfur reaction [45] and scorch
delay reaction in the NR & SBR compound [46] were studied. Vulcanization rate of sil-
ica/NR compounds and CB/NR compounds, which contain various accelerators were
directly compared [1,35,40]. These accelerators consist of different chemical structure, i.e.,
thiuram type, TMTD (tetramethylthiuram disulfide) and DPTT (dipentamethylenethiu-
ram tetrasulfide); thiazole type, MBT (2-mercaptobenzothiazole) and MBTS (2,2dithio-
bis(benzothiazole)); sulfenamide type, CBS (n-cyclohexylbenzothiazyl-2-sulfenamide) and
NOBS (n-oxydiethylenebenzothiazyl-2-sulfenamide)]; and zinc ion containing thiuram
type ZDBC (zinc di-n-butyldithiocarbamate)]. The order of accelerator reaction was thiu-
ram(TMTD,DPTT), thiazole(MBT,MBTS), and then sulfonamide(CBS,NOBS) types due to
their chemical structure [1].

2.2. Silica vs. CB

Comparing silica surface with CB, silica surface consists of Si-O bonds with hydroxyl
groups (-OH), while CB mainly consists of C-C and C=C bonds. Silica particles exhibit a
strong filler-filler interaction due to its polar (Si+δ-O−δ) character due to differences in elec-
tro negativity between Si(3.5) and O(1.9) thus easily agglomerate each other, while CB shows
a weak C=C interaction due to the presence of a π-π bond, thereby showing good compati-
bility with rubber chains, which contain a double bond. The π-π bonds and/or oxygen on
the CB surface interact with double bonds (π-π) in the rubber chain, which shows good
compatibility with the rubber chain. Therefore, the dispersion of CB is better than that of
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silica in the rubber matrix. On the other hand, modification of the silica surface with silanes,
particularly with bifunctional organosilanes, such as bis(triethoxysilyilpropyl)disulfide
(TESPT) and bis(triethoxysilyilpropyl)tetrasulfide (TESPD), assists in the dispersion of silica
agglomerates in the rubber chain [18,24]. The chemical reaction between silica and silane as
well as silane and rubber modifies the network of the rubber matrix [23]. It has been known
that hydroxyl group on silica surface chemically reacts with hydroxyl group in hydrolyzed
silane via condensation reaction, and then forms a 3-dimensional (3D) network structure
with a rubber chain [15,16,23]. Hence, the filler network constant (filler network interaction
parameter) of silane-modified silica is different from CB filled systems. This makes an
interpretation of the in-rubber structure of the modified silica system more difficult.

In silica/NR composites, the order of accelerator reaction was the same as shown in the
CB filled system, i.e., thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and then sulfonamide
(CBS, NOBS) types due to their chemical structure. However, silica/NR composites showed
a slower vulcanization rate (ts12, t10, t90) than the CB/NR ones for each accelerator. This is
due to two stage reaction in silica-silane/NR composite, which are hydrolysis of alkoxy
silane and condensation reaction between hydrolyzed silane and silica surface [1].

2.3. Interfacial Interaction

For, interfacial interaction, Wolff and his coworkers introduced the in-rubber filler
structure (αF) for quantitative measurements of the filler structure [47–51]. Wolff et al. [50]
reported that the αF was constant over the entire range of carbon black filled in NR
and NBR systems. Their research focused mainly on the filler-filler interaction in rubber
compounds. On the other hand, in the case of a silica filled system, αF increased with
increasing filler concentration. Kim reviewed his research on the in-rubber structure of CB
and silane-treated silica [52].

2.4. Hydrolysis Mechanism

The hydrolysis mechanisms as well as the hydrolysis measurement technique and its
practical applications in manufacturing fields are revised by Kim [53,54]. This section re-
views the theoretical aspects of acid-catalyzed and base-catalyzed hydrolysis mechanisms.

2.4.1. Acid Catalyzed Hydrolysis

Hydrolysis means that moisture is applied to molecular chains, causing the chains of
molecules affected by moisture to break down. Moisture present in the composite affects
hydrolysis. When in contact with high-purity moisture in a neutral, low ionic state in a
non-glass container, silane maintains a stable state for several weeks or months. However,
when in contact with tap water, the hydrolysis of alkoxysilane proceeds considerably within
a few hours [55]. The catalyst applied to the hydrolysis of alkoxysilane is also applied to the
progress of the condensation reaction, and the waterborne silane improves adhesion to the
glass surface than the control silane [55]. This means that the catalyst present in moisture
significantly increases the silane bond on the silica surface. The primary reaction increases
the silanization reaction in the presence of moisture, and the secondary reaction increases
with higher moisture content [56–58]. Moisture on the silica surface favors the reaction
between the silica and the coupling agent (e.g., TESPD, TESPT), this also reducing the
interaction between silica particles [57]. The hydrolysis reaction mechanism also applies for
plastics (e.g., polyamide) [59]. Figure 1a,b shows the hydrolysis mechanism by catalysis of
base- and acid- of alkoxysilane. The reaction coordinate has a structure of polar parameter
values (ρ*) and steric parameter values (s) from the reactant to the transition state. As the
reaction proceeds, it qualitatively shows changes and charge distribution [60]. Figure 1a
shows the mechanism of acid-catalyzed hydrolysis. Five substituents exist around the
silicon atom in the form of SN2-Si. It forms a pentacoordinate intermediate state. The
approaching nucleophile and the outgoing leaving group hybridize with the silicon atom,
resulting in sp3d hybridization between the nucleophile and the remaining group. The
meaning of small values of ρ* and s is shown in Figure 1a. The reaction mechanism is
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that after rapid equilibrium protonation in the equilibrium state of the substrate, the water
molecule becomes a leaving group and a bimolecular molecule, resulting in SN2-type
displacement [61,62].

Figure 1. Hydrolysis mechanism for (a) acid catalyzed (adopted from [61,62]), (b) base catalyzed
(adopted from [61]) systems.

2.4.2. Base Catalyzed Hydrolysis

The base-catalyzed hydrolysis mechanism is illustrated in Figure 1(b). Bi-molecular
nucleophilic substitution reaction (SN2**-Si or SN2*-Si) with the coordinate intermediate;
SN2**-Si refers to the rate determination of the pentacoordinate intermediate formation
(k1 < k2), and SN2*-Si refers to the rate determination of the break-down (k1 > k2) [61]. A
large value of ρ* means that the transition state (T.S.) is more stable than the reactants by
electron withdrawing groups attached to silicon atoms. In the proposed mechanism, the
negative charge at the silicon atom in the transition state (T.S.1 or T.S.2) is quite high. A
large steric parameter (s) means that the transition state is sterically more crowded than the
reactant [62,63]. The sp3 hybridized silicon forms bonds with the introduced hydroxide
anions during rehybridization, forming the same transition state as sp3d. It forms a strongly
coupled transition state between the negative charge density and the nucleophilic oxygen
on the silicon surface [64]. Figure 2 shows the hydrolysis mechanism according to the
pH of alkoxysilane [65]. As stated by Allen model [66] and Kay & Assink model [67],
bas-catalyzed hydrolysis reaction is a condensation reaction when an alkoxy group (-(OR)3)
is replaced with a -(OSi)3 group (bottom left); When an alkoxy group (-(OR)3) is substituted
with a hydroxy group (-(OH)3) (bottom right), this is called hydrolysis. Acid hydrolysis is
significantly greater than base hydrolysis and is minimally affected by other carbon-bonded
substituents. The results of Osterholtz & Pohl [68], illustrated by Moore [69], show that
when the pH is neutral, hydrolysis occurs last, and it changes 10 times for every 1 pH
change. The condensation reaction is also affected by pH, and the minimum reaction pH is
4. The hydrolysis reaction of alcohol is reversible and stabilizes the solution for a long time.
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Figure 2. Schematic presentation of hydrolysis and condensation reaction of a trialkoxy silane;
redraw from [70].

2.5. Alkoxysilane Silanization Reaction Mechanism

Bifunctional alkoxysilanes are either direct or go through two reaction steps. Figure 2
shows the first step. After hydrolysis of the alkoxysilane by water molecules, the hy-
drolyzed silane causes a condensation reaction with the hydroxy group on the silica surface
and chemically bonds to the silica surface [70]. In the second step, the sulfur at the other
end of the silane chemically reacts with the double bond of the rubber chain. In this step,
the sulfur (S8) ring is opened and vulcanized together with the double bond of the rubber
chain. Then, a three-dimensional network is formed between silica and rubber [22,37,38,71].
This shows that the higher the degree of hydrolysis, the higher the % of the condensation
reaction.

The compatibilizer controls the phase structure by increasing the interfacial adhesion
property of the two materials by minimizing the difference in the value of the Flory-
Huggins interaction parameter of the two materials when mixing different polymers, and
thus, the applied material is reliable. In order to increase the efficiency of interfacial bonding
between the resin and the filler, an interfacial adhesive (coupling agent) is treated on the
surface of the filler to enhance the interfacial adhesion with the resin to induce chemical
bonding at the interface. The roles of the compatibilizer are reinforces the strengths of the
two materials (polymer-polymer, or polymer-filler), compensates for the weaknesses, and
serves to uniformly disperse the materials [72]. Compatibilizers are mostly classified into
non-reactive compatibilizers and reactive compatibilizers. Bifunctional silane is a reactive
compatibilizer, which reacts with the double bond between the surface of silica and the
rubber chain to chemically bond. Table 1 summarizes the structure, vulcanization form,
and application fields of silanes [73].
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Table 1. Types of silane structure, curing system and application.

Silane Structure Curing System Application

TESPT (C2H5O)3Si−(CH2)3−S4−(CH2)3−Si(OC2H5) Sulfur Tire treads, shoe soles, industrial
rubber goods

TESPD (C2H5O)3Si−(CH2)3−S2−(CH2)3−Si(OC2H5) Sulfur Tire treads,
industrial rubber goods

TCPTEO (C2H5O)3Si−(CH2)3−SCN Sulfur Shoe soles,
industrial rubber goods

MTMO (CH3O)3Si−(CH2)3−SH Sulfur Shoe soles,
industrial rubber goods

VTEO (C2H5O)3Si−CH=CH2 Peroxide Industrial rubber goods
VTEO (CH3−O−C2H4O)Si−CH=CH2 Peroxide Industrial rubber goods

CPTEO (CH3O)3Si−(CH2)3−Cl Metal oxide Chloroprene rubber
MEMO (CH3O)3Si−(CH2)3−O−C(O)C(CH3)=CH2 Peroxide Textile adhesion
AMEO (C2H5O)3Si−(CH2)3−NH2 Sulfur Special polymers, metal adhesion
OCTEO (CH3−CH2−O)3Si−(CH2)7−CH3 Sulfur, peroxide Processing aid

Figure 3 shows the condensation reaction intermediate between the hydroxyl on the
silica surface of a filler (e.g., silica, soft clay) and the hydroxyl of an alkoxy group substituted
after hydrolysis of a bifunctional silane (e.g., TESPT) [24,30]. Figure 3 shows that after
the condensation reaction, moisture is produced as a by-product. In the production site,
the generation of alcohol and moisture during green composite production is regarded as
indirect evidence that the material is chemically reacting properly.

Figure 3. Condensation reaction intermediate of silica and hydrolyzed TESPT; redraw from [24,30].

3. Hydrolysis Quantitative Analysis

Figure 4 shows the amount of residual alcohol that did not react in TESPD during
hydrolysis stage in the composite material measured by the headspace/gas chromato-
graphic(GC) technique [70]. The residual alcohol amount of the composite with water
added to silica (open circle) before mixing was lower than that of the composite with-
out water added (closed circle), and as the mixing time increased, the alcohol content of
the residual alcohol of both composites decreased. This means that the hydrolysis reac-
tion of silane and silica increases as the presence of moisture increases and the mixing
time increases.
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Figure 4. Percent of ethoxy remaining in the 3-pass vs. 2-pass compounds; adopted from [70].

Figure 5 shows that the sulfur in the bifunctional silane (e.g., TESPD or TESPT) chain
is separated from the bond between the sulfur chains, and the sulfur group at the end forms
a covalent bond with the double bond (e.g., NR, SBR) of the rubber chain [42]. Sulfur is
further activated with the help of zinc as a reaction activator [74]. That is, when silane is
not added, the size of the interaction between filler-polymer(silica-rubber) (αFP) is lower
than that of CB and rubber chains. However, when silane is added, a covalent bond is
created between the silica surface and the rubber chain through the silane as a medium, and
the bonding strength is high, so the size of the interaction (αFP: filler-polymer interaction
parameter in the material) is larger than that of the CB-rubber chain.

Figure 5. Cross-linking of unsaturated elastomers with sulfur containing silane (x = 2 or 4);
adopted from [42].

4. Effect of Sulfur Concentration of Hydrolyzed Silane

Figure 6 schematically shows the types of bonding between silica and natural rub-
ber (NR) after vulcanization of various types of silanes (e.g., triethoxysilyilpropane (TESP),
bis(triethoxysilyilpropyl)disulfide(TESPT), bis(triethoxysilyilpropyl)tetrasulfide (TESPD)) [23].
After silica and silane are combined by a hydrolysis mechanism, ethanol is produced as a
by-product and evaporates. Later, the sulfur attacks the double bond present in the NR
chain to form a covalent bond with the rubber chain. After vulcanization, it forms a 3D
structure with a different structure from silica and NR depending on the type of silane used.
Since TESP has no element to react with the double bond of rubber in the molecule, it exists
in a state sandwiched between rubber molecules as shown in Figure 6a. In TESPD, sulfur
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atom attacks the double bond in the NR chain to form a 3D structure as shown in Figure 6b.
TESPT also forms a 3D structure as shown in Figure 6c with NR with the same mechanism
as TESPD. Since TESPT has an average of 2 more sulfur per molecule compared to TESPD,
it has a higher cross-link structure than TESPD after vulcanization.

Figure 6. Schematic illustration of vulcanized silane treated silica (a) TESP (no sulfur), (b) TESPD,
and (c) TESPT; adopted from [23].

Comparing the physical properties of the silica/NR composite treated with TESPT
(S4) and treated with TESPD (S2), S4 has a higher tensile modulus and lower maximum
tensile stress, and has low tear resistance than S2. At room temperature or 100 ◦C before
and after vulcanization, S4 shows a low tan δ (delta) (=E”/E’) value due to the low E”
(loss modulus). In addition, it can be observed that the tan δ value of both composite
decreases as the temperature increases. When the blow out (BO) test was performed on the
two vulcanized composites, the S4 composite showed lower recovery from deformation
compared to the S2 one. In the HBU (heat build-up) test, S4 composite showed lower heat
generation than S2. In the abrasion loss test, S4 composite showed higher loss than S2,
which means that S4 has a more developed 3D network structure. However, in some of
the rigid 3D structures, the S4 structure may be broken earlier than the S2 when the over
critical strain is surpassed.

The results of the BO test of the silica composite treated with silane and without
treatment show a lot of difference [75].

Figure 7a shows the photos of the specimen before and after the ‘Firestone Flexometer’
BO test. Figure 7b shows the deformation ratio (%) of the picture above (Figure 7a).
After the BO test compared to the test specimen (No. 0), the NR specimens with only
silica (1&2) shows about 6-8% deformation, but the specimens with silica-silane added
(3&4 (TESPT(S4)), 5&6 (TESPD(S2))) shows a strain of about 1-3% as shown in the figure
(Figure 7b). In addition, as the concentration of ZB increased, it shows that the decrease in
strain and increase in BO time significantly. Figure 7c shows that the addition of zinc ion to
the silane/NR composite affects the increase in BO time. It also shows that the addition of
ZB played a role in maximizing the above two properties.

Figure 8 shows the SEM image of the direct 3D network structure between silica-silane
and NR [52]. Figure 8a shows a photograph of SEM observation that the silica surface does
not have interfacial interaction with NR; however, when silane (TESPT) is added, interfacial
adhesion increases between the silica surface and NR(αFP) as shown in Figure 8b.

The interaction parameter in the composite material is represented by αC, which is
expressed as αC = αF + αP + αFP. αF is the filler-filler parameter in the material, αP is the
polymer-polymer parameter in the material, and αFP is the filler-polymer parameter in
the material [52].
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Figure 7. S4 (TESPT) and S2 (TESPD) compounds before and after and with/without ZB: (a) Photo-
graph (0(Before Test), 1 (S4), 2 (S2), 3 (S4Z2), 4 (S4Z5), 5 (S2Z2), and 6 (SZ5)); (b) deformation ratio
(d/D)%; and (c) BO time (adopted from [75]).

Figure 8. SEM photograph of silica-NR compound (a) without silane, (b) with silane(TESPT) [52].

5. Zinc Ion Mechanism

Zinc ions are known to affect the improvement of the 3D network structure of the
silica-silane containing rubber compound, and this is explained by the reaction mechanism
of iron ions [32,76,77].

Zinc is a transition element and forms a compound with the active element in the
accelerator [76]. That is, due to the ‘d’ orbital of the zinc ion, it forms a stable divalent
complex with sulfur, nitrogen, and oxygen donor elements [76]. Figure 9a shows that
zinc ions form a vulcanized pre intermediate state with donor elements such as oxygen
and nitrogen [32].

The interactions of accelerators and sulfur and the crosslinking are complicated mix-
ture of reaction sequences with kinetic and thermodynamic controlling steps [74]. Both
mechanisms and kinetics seem to be controlled by the zinc compound structure. At the
vulcanization stage, the zinc ion increases the NR matrix network stronger. Zinc, as a
transient element, is known to form complexes with accelerators [77]. Many stable divalent
complexes, with sulfur, nitrogen, and oxygen donors, can form because of full ‘d’ orbitals on
zinc [76]. The complexes are typically 4, 5, or 6 coordinated. There is also evidence that π-π
allyl complexes of zinc form between zinc and simple olefins [78]. The ligand complexes,
a series of 4, 5, and 6 coordinated zinc structure explains the vulcanization process of all
the coordinate sites on zinc and the electron nature of the carboxylate using expansion and
contraction of the zinc orbitals [32]. The cross-linking mechanism with rubber matrix was
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explained by sulfur ring opening mechanism via bi-pyramidal model [32]. Two examples
shown are for the sulfur ring opening reaction as shown in Figure 9a and the formation
of the cross-linking as shown in Figure 9b. The sulfur ring opening reaction is shown as a
bi-pyramidal complex with sulfur and oxygen anions, and sulfur and two amino ligands
(residue from accelerators). The crosslinking intermediate allows for the transfer of sulfur
from the polysulfide accelerator to the rubber in a combined mechanism. The π allylic
model can be used to explain the carbon sulfur formation and types that form during
vulcanization [74]. It also can be used to explain the differences in activation energies and
reaction rates between various rubbers. This reaction binds some of the ZB onto the rubber
backbone and creates a secondary ionic network.

Figure 9. (a). Zinc Ion Effect on (a) Sulfur Ring Open Reaction Mechanism at Pre-Vulcanization Inter-
mediate State, and (b) formation of the cross-linking intermediate (π allyl complex); adopted from [32].

Overall, “the zinc ion in zinc oxide forms a pre-intermediate state between the nitrogen
(N) present in the main chain of accelerator and the oxygen (O) present on the surface of the
silica to form a pre-intermediate state between the two materials. An increase in adhesion
is achieved”. The evidence for this is the strong interfacial adhesion between NR and silica
as shown in the SEM picture in Figure 8 and the result of the increase in physical properties
as shown in Figure 7b,c.

6. Conclusions

The vulcanization process of silica filled NR composite is as follows. The alkoxy group
at one end of the silane (e.g., TESPT, TESPD) having an alkoxy function group is hydrolyzed,
and the hydrolyzed silane is subjected to condensation reaction with the hydroxyl group
on the silica surface. On the other side, a sulfur function group chemically bonds with
the double bond of NR to form a 3D network structure between silica and rubber. At this
time, under the influence of the accelerator, the degree of reaction and the rate of reaction
during crosslinking are controlled. Also, the 3D network structure is greatly increased with
the help of zinc ions. Figure 10 summarizes the mechanisms involved in the bonding of
bifunctional alkoxy silanes with silica and NR chains and the vulcanization of zinc ions.
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Figure 10. Schematic diagram of (a) hydrolysis of silane, (b) condensation between hydrolyzed silane
and silica surface, (c) chemical reaction between sulfur and rubber chain [52].
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