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Abstract: Polymer nanocomposites can serve as promising electrostatic shielding materials; however,
the underlying physical mechanisms governing the carrier transport properties between nanofillers
and polymers remain unclear. Herein, the structural and electronic properties of two polyethy-
lene/graphene (PE/G) interfaces, i.e., type-H and type-A, have been systematically investigated
under different electric fields using first principle calculations. The results testify that the bandgaps of
128.6 and 67.8 meV are opened at the Dirac point for type-H and type-A PE/G interfaces, respectively,
accompanied by an electron-rich area around the graphene layer, and a hole-rich area around the PE
layer. Moreover, the Fermi level shifts towards the valence band maximum (VBM) of the PE layer,
forming a p-type Schottky contact at the interface. Upon application of an electric field perpendic-
ular to the PE/G interface, the Schottky contact can be transformed into an Ohmic contact via the
tuning of the Schottky barrier height (SBH) of the PE/G interface. Compared with the A-type PE/G
interfaces, the H-type requires a lower electric field to induce an Ohmic contact. All these results can
provide deeper insights into the conduction mechanism of graphene-based polymer composites as
field-shielding materials.

Keywords: polymer nanocomposite; interface; field-shielding material; electric field modulation;
carrier transport; first principle

1. Introduction

In recent years, the rapid development of electronic devices making use of low-
frequency microwave radiation—such as cellular phones, local area networks, and radar
systems—has led to serious electromagnetic interference problems. Therefore, the interac-
tion between polymer dielectric composites and microwaves has attracted considerable
attention [1–4]. Composites of carbon-based nanoparticles and polymers have been ex-
tensively investigated as antistatic or electromagnetic shielding materials, owing to their
excellent mechanical and electrical properties [5–10]. The combination of polymers and
nanoscale inorganics leads to a “1 + 1 > 2” composite effect, with excellent dielectric prop-
erties. Despite extensive experimental studies [11–16], the mechanism of carrier transport
between nanofillers and polymers is not yet completely understood.

The first principle simulation based on density functional theory (DFT) is a general
method for determining the structures and interactions of materials [17–21], and has become
a powerful tool for exploring their properties. Sun et al. [22,23] successfully established a
correlation between the breakdown strength and band gap of selected materials based on
first principles. Many first principle studies were conducted to explore the charge-transport
properties of organic–inorganic composite systems, such as polyethylene/nanofiller inter-
faces [24–26], in search of the intrinsic relationship between the electrical breakdown and
charge transport in specific materials. The charge trapping theory was then proposed by
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Kubyshkina et al. [27] to research polyethylene/MgO nanocomposites, where a long-range
potential well up to 2.6 eV deep exists in the interfacial region. Sato [28] also studied
the electronic structures of a polyethylene/MgO configuration to understand the charge
distributions during the carrier doping and band arrangement at the interface.

Graphene can be embedded in polymers to enhance the electrical conductivity of
composites owing to its own excellent conductivity, high carrier mobility, and high thermal
conductivity. Its conduction and electric field break easily, which occurs at the graphene
edge. Gaska [29] experimentally established that 1 wt% graphene nanosheets enhance
the mechanical properties of low-density polyethylene (LDPE)-based composites and
produced nonlinear field-dependent conductivity behavior. This strong-field-induced high-
conductivity characteristic behavior could be applied to a smart shielding effect in complex
electromagnetic environments. The interfacial region between the polymer matrix and
inorganic nanofiller may play a key role in tuning dielectric properties [30,31]. However, the
transport mechanisms at the interface between the organic layers and graphene continues
to be a challenging issue.

To date, polyethylene (PE) and graphene (G) are used as one of the most widely
studied polymeric dielectric materials. It is of crucial importance to understand their con-
duction states, since electrons are usually the relevant carriers for transport and breakdown
behaviors. In this study, two types of polyethylene/graphene (PE/G) hybridization models,
i.e., type-A and type-H, were constructed. The effects of the electric field on the electronic
properties of the PE/G interface have been investigated using first principles calculations.
The calculated results demonstrate that the contact type (Schottky/Ohmic) and barrier
height of the PE/G interface could be effectively modulated by applying an external elec-
tric field. The purpose of this study on field-adjusted band alignment is to understand
the nature of the conductive state of graphene-based polymer composites. Although the
system is ideal to some extent, our results can provide deeper insights into the conduction
mechanism of graphene-based polymer composites as field shielding materials. These
studies may also stimulate further theoretical studies on these fields.

2. Materials and Methods

In this study, geometric and electronic calculations based on the density functional
theory (DFT) were implemented in VASP code [32,33]. The exchange and correlation effects
were treated using the Perdew–Burke–Ernzerhof (PBE) functional of the generalized gradi-
ent approximation (GGA) [34]. The Brillouin zones (BZs) of the type-H and type-A PE/G
interfaces were sampled at 3 × 5 × 1 and 3 × 3 × 1 k-points, respectively. The vacuum space
was set at 20 Å to minimize the slab-to-slab interaction. The van der Waals (vdW) correction
factor was considered at the vdW-DF level [35,36]. All geometries were completely re-
laxed until the total energy converged to 10−5 eV and the maximum force was 0.001 eV/Å.
The calculated lattice constants of graphene were aG = 4.26 Å and bG = 2.46 Å, respec-
tively. The crystal structure parameters of polyethylene were aPE = 7.18 Å, bPE = 4.94 Å,
and cPE = 2.56 Å, respectively, which were in good agreement with previous results [37–39],
listed in Table 1.

Table 1. Values of equilibrium lattice parameters a0, b0 and c0 of graphene and polyethylene crystal
structure compared with other theoretical data.

Graphene Polyethylene

a0 /Å 4.26 1 4.26 7.12 2 7.40 3 7.18
b0/Å 2.46 1 2.46 4.85 2 4.93 3 4.94
c0/Å - - 2.57 2 2.53 3 2.56

1 Ref. [37]. 2 Ref. [38]. 3 Ref. [39].
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3. Results and Discussion
3.1. Structural Features of the PE/G Interfaces

The optimized geometries of the PE/G interfaces are shown in Figure 1. Two hybridiza-
tion models of graphene/polyethylene were constructed, one being a two-dimensional
heterostructure formed by lattice matching of polyethylene and graphene (heterostructure
type-H), and the other being a polyethylene chain adsorbed onto the graphene surface to
form a complex (adsorption type-A). As shown in Figure 1a,c, a 3 × 2 graphene (24 car-
bon atoms) supercell was obtained to match a 5 × 2 PE supercell (2 chains composed of
20 −CH2− monomers) with a negligible lattice mismatch of <2%. The PE/G interface was
constructed in an orthogonal supercell, and the lattice constants of that were a = 12.78 Å
and b = 4.93 Å. For the type-A hybrid, the lattice constant of the 3 × 4 graphene supercell
was a = 12.78 Å and b = 9.86 Å, and the adsorbed polyethylene chain exhibits a zigzag
configuration consisting of 10 −CH2− monomers, which was plotted in Figure 1b,d. The
corresponding key parameters of the type-H and type-A PE/G interfaces are listed in
Table 2.
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Figure 1. Top (upper panel) and side views (lower panel) of atomic geometries for the PE/G inter-
faces: (a,c) for type-H; (b,d) for type-A. Yellow and blue spheres represent C atoms and H atoms, 
respectively. 
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dC-C/Å 1.536 1.536 

Figure 1. Top (upper panel) and side views (lower panel) of atomic geometries for the PE/G
interfaces: (a,c) for type-H; (b,d) for type-A. Yellow and blue spheres represent C atoms and H
atoms, respectively.

To effectively evaluate the interface mechanical properties, the binding energy (Eb)
can be estimated using the following formula:

Eb= EPE/G − EPE − EG (1)

where EPE/G correspond to the total energy of the PE/G interfaces, and EPE, and EG are the
energies of individual PE and G, respectively.
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Table 2. The calculated lattice parameters (a, b), bond lengths of PE (dC-C, dC-H), interlayer distances
(d), and binding energy (Eb) of type-H and type-A PE/G interfaces.

Type-H Type-A

a/Å 12.8 12.8
b/Å 4.93 9.86

dC-C/Å 1.536 1.536
dC-H/Å 1.103 1.102

d/Å 2.76 2.67
Eb/eV −0.76 −0.72

In the following procedure, the spacing distance between the graphene and PE was
adjusted to detect the true equilibrium configuration. The binding energy as a function of
layer spacing is plotted in Figure 2. Clearly, in the case of PE/G interfaces, the equilibrium
interlayer distances for type-H and type-A are, respectively, d1 = 2.76 and d2 = 2.67 Å as
listed in Table 1. Corresponding to the lowest binding energies of the two stacking modes
are −0.76 and −0.72 eV, respectively. The most negative binding energy exhibits the best
electronic stability of the favorable complexation of PE/G interfaces.

Figure 2. Binding energy (Eb) as a function of the interlayer spacing between graphene and PE for
(a) Type-H and (b) Type-A.

3.2. Electronic Structures of the PE/G Interfaces

Local perturbation of the electronic structure at the interfaces may significantly affect
the electronic properties of composite materials. To obtain the electronic properties of
the PE/G interfaces, the band structures of type-H and type-A PE/G interfaces were
studied, as shown in Figure 3a,b, respectively. The Fermi level (Ef) is set at 0 eV. The path
along the high-symmetry points of the BZ is selected as Gamma (G)-X-S-Y-Gamma (G). A
linear Dirac-like dispersion can be folded onto the Y-G path, which is confirmed by the
band structure of other rectangular-lattice graphene [40]. Furthermore, the bandgaps of
about 128.6 meV and 67.8 meV were opened at the Dirac point for the type-H and type-A
PE/G interfaces, respectively, which may be induced by the reduced in-plane symmetry
at the PE/G interface [41]. It is observed that the electronic states at the conduction band
minimum (CBM) and valence band maximum (VBM) are mainly dominated by graphene.
The PE is mainly located in the valence band, exhibiting a natural type-I band arrangement.
The valence band edge of PE is at the energy of 2.4 eV, which mainly comes from the
contribution of the 2px orbital of the C atom of PE, forming a p-type Schottky barrier height
(SBH) at the PE/G interface. Notably, the presence of distinct flat bands in the PE located in
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the valence band, indicating the existence of considerable numbers of quantum states in PE
with similar kinetic energies. This strong electron localization corresponds to the formation
of spikes in the density of states. From the projected density of states (PDOS) of two-type
PE/G interfaces, it is noted that the orbital overlap of PE and graphene is mainly located
in the valence band. Therefore, understanding the regulation of the electronic state of the
valence band is essential for the design of polymeric dielectric materials.

Figure 3. Band structures and PDOSs of (a) type-H and (b) type-A PE/G interfaces, respectively. The
black curves denote graphene, while the red and blue solid dots denote the contribution from C and
H atoms and states of PE in the band structures of PE/G interfaces.

The electrostatic potentials along the Z-direction perpendicular to the interface for the
PE/G interfaces are shown in Figure 4a,b. The results show that large potential drops of
14.0 and 19.4 eV are formed at the type-H and type-A interfaces, respectively, indicating the
presence of a strong electrostatic field at the interface. The carrier dynamics at the interface
are significantly affected, leading to a redistribution of the charge density and the formation
of interfacial dipoles in PE/G interfaces. The potential of graphene is lower than that of PE,
so it is easier to transfer electrons from the PE to the graphene layer. In addition, the charge
redistribution between the PE/G interfaces can be visualized by using the plane-averaged
charge density, as shown in Figure 4c,d, which is calculated as

∆ρ = ρI − ρG − nρPE (2)

where the ρI, ρG, and ρPE are the charge density of the PE/G interfaces, monolayer graphene,
and PE, respectively. The results show that the charges are mainly accumulated in the
graphene layer and depleted in the PE layer. Ultimately, the graphene and PE layers form
an electron-rich region and a hole-rich region, respectively. The electrons are transferred
from the PE to the graphene layer at the PE/G interface, consistent with results of the
electrostatic potential.

3.3. Electric Field Effects on the PE/G Interfaces

Now, we turn to investigate the modulation effect of the external electric field on
the electronic structure of the PE/G interface. In Figure 5, we illustrate the schematic
illustration of the external electric field to PE/G interfaces. The direction from the graphene
to the PE layer was defined as the positive direction of the electric field, and vice versa.
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Figure 4. (a,b) the electronic potential energy distribution along the Z-direction, with the plane-
averaged charge density in (c,d) for type-H and type-A PE/G interfaces, respectively. The inset is
the charge density difference with an isosurface of 0.15 e/Å. The yellow and cyan areas represent
electron accumulation and depletion, respectively.

Firstly, we calculated the potential energy difference (∆ε = εE − ε0) along the Z-
direction, as shown in Figure 6a,b. Here, εE and ε0 represent the electrostatic potential
energy under electric fields of E V/Å and 0 V/Å, respectively. Further, the distribution of
the electric field intensity along the Z-direction can be determined by differentiating the
potential energy differences using equation:

E =
dϕ

dz
=

d∆ε

−edz
(3)

In Figure 6, the regions corresponding to the PE/G interfaces’ distribution are high-
lighted in yellow. One can observe that the electric field intensity in a vacuum is practically
equal to the applied electric field intensity, while that in the PE/G distribution region is
obviously weakened. Then, the average electric field intensity in the yellow region are con-
sidered to be the effective electric field intensity. The calculations show that effective field
strengths of the type-H and type-A regions were about 1/2.4 and 1/2 of the applied values,
respectively. The reduction of the electric field in the PE/G interfaces can be attributed to
the response field at the interface opposite to the external electric field, intuitively reflecting
the electromagnetic shielding properties of the material.
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It is well known that conventional DFT calculations usually underestimate the band
gap [42], but here we only focus on the variation trends in the band structures. The band
structures of the type-H PE/G interfaces under different applied electric fields are shown
in Figure 7a–d. The results clearly show that with the increase of the negative electric
field, more electrons overcome SBH (2.4 eV) and transfer the electrons from the valence
band of PE to the Dirac point. Subsequently, the p-type SBH decreases and the VBM of
PE approaches the Fermi level. The application of a −0.8 V/Å electric field can induce
a transition from the Schottky contacts to an Ohmic contact. Opposite to the effect of
the negative electric field, the electrons can be transferred from the Dirac point to the
conduction band of PE. The conduction bands with graphene’s contribution show a clear
shift down to the Fermi level, yet the VBM of PE shifts downward a little bit. Interestingly,
as shown in Figure 7a,d, the Dirac cones of graphene are located at different positions under
opposite electric field directions, higher than the Fermi level which exhibits semi-metallic
character and lower than the Fermi level which proves the metallic character. In fact, this is
consistent with previous reports [43,44]. External electric fields induce charge transfer in
interface and the electrostatic potential felt by electrons changes accordingly, resulting in
energy-level shifting of CBM and VBM. The evolution of potential barrier heights can be
more intuitively associated with the breakdown performance of the dielectric materials.
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To better describe the effect of the external electric field on electronic properties of
PE/G interfaces, the PDOSs of the type-H PE/G interfaces under applied electric field
were further studied, as presented in Figure 8a–d. When the PE/G interface is subjected to
the negative electric field, the orbitals of both the C and H atoms of PE shift towards the
Fermi level, in which the 2px orbital of the C atom dominates and crosses the Fermi level
under the −0.8 V/Å electric field, so that the p-type contact changes into an Ohmic contact.
By contrast, the 2py and 2pz orbitals of C atoms of PE move towards the Fermi level in
the conduction band with an increasing positive electric field. On the other hand, the PE
orbitals in the valence band region see little change, while the 2py orbital of graphene shift
closer to the Fermi level. The results are in good agreement with the band structures of
type-H PE/G interfaces.

In this section, the electronic structures of the type-A PE/G interface were examined
under different electric fields, as shown in Figure 9a–d. It is obvious that the VBM of PE
gradually rises near the Fermi level with negative electric fields, while with a positive
electric field the CBM of graphene plays a dominant role and decreases near the Fermi
level. The PDOSs of the type-A PE/G interface are depicted in Figure 10a–d. The C-2px
orbital of PE is close to the Fermi level under negative electric field, by contrast, the 2px
and 2py orbitals of graphene approach the Fermi level by applying positive electric field.
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When the applied electric field is +0.8 V/Å, the 2pz orbitals of graphene crosses the Fermi
level to induce half-metallicity. From the above discussion, we know that the SBH can be
reduced in the negative electric field, and it is easier to induce an Ohmic contact. Compared
with type-H PE/G interfaces, type-A requires a higher electric field to switch the Schottky
barrier to form an Ohmic contact.
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4. Conclusions

The electronic properties of graphene/polyethylene interfaces under external electric
fields have been examined using DFT calculations. Two hybridization configurations, viz.
type-H and type-A PE/G interfaces, were constructed. The lowest binding energies of
−0.76 and −0.72 eV for type-H and type-A, respectively, signifies that considered PE/G
interfaces can maintain electronic stability well. In addition, the stack of PE opens a
bandgap of 128 and 67.8 meV at the Dirac point for the type-H and type-A PE/G interface,
respectively. The Fermi level shifts towards the VBM of the PE layer, i.e., the Schottky
contact is p-type with a large SBH (2.4 eV). The charge transfer forms an interfacial dipole,
where the charge accumulated in the graphene layer and depleted in the PE layer. It is
found that the charge polarization is sensitive to the strength and direction of the electric
fields, and the negative electric fields can effectively modulate the SBH at the interface to
achieve the Schottky-to-Ohmic contact transition, in which the 2px orbitals of the C atoms
of PE play a dominant role. Compared with the type-A, the type-H interface surmounts
the lower SBH to form an Ohmic contact. These studies provide important implications for
understanding the field breakdown behaviors of graphene-based polymer composites.
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