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Abstract: Electrochromic materials carry out redox reactions and change their colors upon external
bias. These materials are the primary component in constructing smart windows for energy saving
in buildings or vehicles. Enhancing the electrochromic performances of the materials is crucial
for their practical applications. Micropatterned poly(3,4-ethylenedioxythiophene) (mPEDOT) thin
films are electrodeposited on indium tin oxide conducting glass in this study. Their electrochromic
properties, including transmittance modulation ability, color-switching rates, and coloration effi-
ciency, are investigated and compared with nonpatterned PEDOT thin films. The mPEDOT thin
films exhibited faster coloring and bleaching speeds and higher coloration efficiency than the PEDOT
thin films while keeping similar transmittance modulation ability. The results suggest that micropat-
terning an electrochromic material thin film might enhance its electrochromic performances. This
research demonstrates the possibility of promoting the color-switching rate of a PEDOT thin film by
micropatterning it.

Keywords: poly(3,4-ethylenedioxythiophene); micropattern; electrochromic material; electrode

1. Introduction

Electrochromic (EC) materials are species that can switch their absorptivity toward
incident light upon external bias switches [1]. EC materials can be prepared as thin
films on transparent conducting substrates, and the resulting electrodes can be used to
construct electrochromic devices (ECDs). The operating mechanisms of ECDs are used for
constructing smart window systems [2]. The systems manipulate light and heat interchange
between a building or a vehicle and its surroundings. For example, reducing the heat
transfer into a building through windows during summertime could decrease the loading
of the air-conditioning system, which could achieve energy-saving purposes [3]. One
of the major challenges in developing ECDs for practical applications is to improve the
color-switching rate. Decreasing the coloring and bleaching response times of EC material
thin films plays a pivotal role in promoting ECD performances.

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a well-known conducting polymer [4].
PEDOT derivatives electrodeposited from various functionalized 3,4-ethylenedioxythiophenes
exhibit the possibility for multiple and a wide variety of color changes [5–7]. Their applications
in many areas, such as energy conversion and storage devices [8], sensors [9], and displays [10],
have been extensively explored. PEDOT is a polymeric EC material that can be switched
between light-blue and dark-blue states. The coloring-switching mechanism corresponds to
its electrochemical redox reactions [11]. The redox reactions of the PEDOT thin film can be
expressed as Equation (1).

PEDOTn+: nClO−
4 +ne− � PEDOT + nClO−

4 (1)
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The perchlorate ions in the electrolyte serve as the dopant during the reduction of the
PEDOT. Electrons and perchlorate ions are inserted into the PEDOT thin film simultane-
ously to maintain the thin film’s natural state and are extracted from the thin film during
oxidation. Efforts have been attempted to improve the coloring-switching rate of PEDOT
electrodes, such as structure modifications [12–14] or incorporating other species [15–17].
Micropatterned PEDOT electrodes have been sporadically studied for sensor applications
or optical properties [18,19]. Various methods have been employed for the fabrication of
conjugated polymers, such as electropolymerization [20], oxidative chemical vapor deposi-
tion [21], and vapor phase polymerization [22]. Our previous studies developed the direct
electrodeposition of micropatterned thin films [23,24]. This study prepared micropatterned
PEDOT (mPEDOT) thin films on indium tin oxide (ITO) conducting glass by the direct mi-
cropattern electrodeposition method. The primary purpose was to investigate the effects of
a micrometer-scale PEDOT thin film structure modification on its electrochromic properties.
The bleached state of a PEDOT thin film is light blue. A micropatterned PEDOT thin film is
also expected to provide higher bleaching state see-through visibility. Electrochromic prop-
erties of the mPEDOT thin films were investigated and compared with non-micropatterned
PEDOT thin films prepared using the same procedures.

2. Materials and Methods

3,4-Ethylenedioxythiophene (EDOT) was purchased from Tokyo Chemical Industry.
Acetonitrile (ACN) was obtained from Acros. Lithium perchlorate (LiClO4) and propylene
carbonate (PC) was acquired from Alfa Aesar. Perchloric acid (HClO4) was bought from
Sigma-Aldrich. All chemicals were used as received without further purification. A
micropatterned electrostatic film (PE-1101E) was purchased from Youlen Technology Co.,
Ltd., New Taipei City, Taiwan) ITO (sheet resistance = 7 Ω/sq) conducting glass was
obtained from AimCore Technology Co., Ltd., Hsinchu County, Taiwan.

For the electrodeposition of mPEDOT thin films, ITO conducting was successively
washed with a neutral detergent solution, deionized water (DIW), and acetone in an ultra-
sonic bath each for 5 min. A micropatterned electrostatic (ES) film was attached to the ITO
surface for more than 7 days. The ES film consisted of an array of polyacrylate circle bumps
(diameter ~ 220 µm) on a polyethylene sheet. Figure 1f shows an optical microscope image
of the micropatterned ES film. The preparation procedures of the mPEDOT and PEDOT
thin films are illustrated in Scheme 1. The ES film was removed before the electrodeposition
of PEDOT. Polyimide tapes fixed the ITO surface area to be 1.0 × 1.0 cm2. The currents
measured in the electrochemical experiments can be expressed as current density since
the working area was 1.0 cm2. The plating solution for the electrodeposition of PEDOT
thin films was an ACN solution containing 0.01 M EDOT and 0.1 M LiClO4. A constant
potential of 1.2 V (vs. Ag/Ag+) was applied until the passing charge capacity was 15, 20,
25, 30, or 35 mC/cm2. Bluish mPEDOT thin films were then obtained and named mP15,
mP20, mP25, mP30, and mP35. Before further experiments, the thin films were washed by
ACN, dried, and stored in an electronic dry cabinet. Non-micropatterned PEDOT thin films
were also prepared on a pristine ITO substrate using the same electrodeposition procedures
for comparisons. These thin films were P15, P20, P25, P30, and P35.

The thickness of the mPEDOT and PEDOT thin films was measured by a surfcorder
(EZSTEP, Force Precision Instrument Co., Ltd., New Taipei City, Taiwan). A blade was
used to scratch off the mPEDOT or PEDOT thin film and reveal the ITO surface for the
film thickness measurements. The surfcorder tip was started from the ITO surface and
moved toward the mPEDOT or the PEDOT thin film, and the height variations were
recorded. The tip moving path is shown in Scheme S1 (Supporting Information). An
optical microscope (BX51, Yuan Li Instrument Co., Ltd., Taipei City, Taiwan) was used to
obtain the surface images of the thin films. A conventional three-electrode system with a
potentiostat/galvanostat (CHI 611D, CH Instruments, Inc., Austin, TX, USA) was employed
for the electrochemical experiments. The reference electrode was an Ag/Ag+ electrode,
and the counter electrode was a platinum foil. Cyclic voltammetry and potential-step
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experiments were carried out in a PC solution containing 0.1 M LiClO4 and 1.0 mM HClO4.
Transmittance spectra of the thin films were acquired by a UV–VIS spectrometer (SD1200-
LA-HA, OTO Photonics Instruments Co., Hsinchu City, Taiwan). In situ experiments
obtained transmittance changes during potential-step operations of the thin films. The
UV–VIS spectrometer recorded the transmittance changes, while the potentiostat applied
different potentials to the thin films. The obtained data were used to estimate the color-
switching response times of the thin films.
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3. Results and Discussion

mPEDOTs are prepared on electrostatic film-pretreated ITO substrates with different
electrodeposition charge capacities (Qd). The PEDOT thin film was mainly deposited on the
ITO surface, which was not attached by the polyacrylate bumps of the ES film (outside the
light-colored circles in Figure 1a–e). Their optical microscope images are shown in Figure 1.
The deep-colored (bluish) portions indicate the distribution of the deposited PEDOT thin
films. The light-colored parts correspond to the areas with comparatively fewer PEDOTs
deposited. The light-colored circles were arranged regularly as an array. The circle diameter
was about 200 µm, and the distance between the circle centers was about 300 µm. The size
of the circles and their arrangements consisted of the bump distribution of the electrostatic
film. It can be observed that a small amount of PEDOT started to be deposited within
the light-colored circle areas as the deposition charge capacities (Qd) increased from 15 to
35 mC/cm2. The optical microscope images indicated that micropatterned PEDOT thin
films could be successfully deposited on the ITO surface. The dense PEDOT thin film
covered about 60% of the ITO substrate surface.
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A surface profiler measured the thickness of the PEDOT and mPEDOT thin films
prepared using different Qd’s. The results are shown in Figure 2 and listed in Table 1. The
average thickness of the mPEDOT thin films at the deep-colored area (HmP) was higher
than the average thickness of the PEDOT thin films (HP) obtained using the same Qd.
The PEDOT thickness within the light-colored circle was negligible compared with HmP.
According to the OM images and the measured film thickness, the PEDOT deposition was
inhibited on the ITO surface areas attached by the bumps of the electrostatic film. The
electropolymerization of PEDOT concentrated on the un-pretreated ITO surface areas.
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Table 1. Thickness of the mPEDOT and PEDOT thin films.

Qd
(mC/cm2)

mPEDOT
HmP (nm)

PEDOT
HP (nm)

15 55 50
20 96 73
25 109 82
30 132 89
35 137 96

Figure 3 shows the typical cyclic voltammograms of the mPEDOT and PEDOT thin
films (Qd = 20 mC/cm2). The current responses increased with the increasing Qd used in
the electrodeposition process for both thin films. During the cathodic potential scan, the
thin films changed from light-blue to deep-blue color from 0.3 V (vs. Ag/Ag+) to −1.3 V
(vs. Ag/Ag+). The thin-film bleaching process took place during the reverse potential
scan. Current responses of the mPEDOT thin films were smaller than those of the PEDOT
thin films prepared using the same Qd. Smaller current responses may imply that a fewer
PEDOTs were polymerized on the pretreated ITO substrate.
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and 1.0 mM HClO4. The inset optical images are the colored state (left side) and the bleached state
(right side) images of the mPEDOT thin film.

The coloration charge capacities of the mPEDOT and PEDOT thin films (Qc,mP and
Qc,P) were estimated by potential-step experiments. Successive chronoamperometry ex-
periments were carried out to estimate Qc,mP, and Qc,P. The resulting i-t curves are shown
in Figures S1 and S2 (Supporting Information). The thin films were switched from their
bleached state (0.3 V (vs. Ag/Ag+)) to their colored state (−1.3 V (vs. Ag/Ag+)), and the
corresponding Qc,mP and Qc,P were obtained from the integration of the i-t curves. The
results are listed in Table 2. Both Qc,mP and Qc,P increased with Qd, and Qc,mP was larger
than Qc,P. The relative percentage difference (RPD) of the coloration charge capacity, which
is defined as ((Qc,mP − Qc,P)/Qc,P) × 100%, was calculated and is listed in Table 2. RPD
became smaller as larger Qd was used for the electrodeposition process. The observation
indicated that fewer PEDOTs were formed on electrostatic film-pretreated ITO surfaces.
Additionally, the influence of the pretreatment ITO surface on the electrodeposition process
diminished as the thicker film was prepared (more extensive Qd employed).

Table 2. Coloration charge capacities of the mPEDOT and PEDOT thin films prepared using different
Qd’s.

Qd
(mC/cm2)

Qc,mP
(mC/cm2)

Qc,P
(mC/cm2)

RPD
(%)

15 2.10 2.54 −17.3%
20 2.51 2.91 −13.7%
25 3.01 3.33 −9.6%
30 3.84 4.27 −10.1%
35 4.69 4.95 −5.3%

The surface coverage of the mPEDOT thin films was about 40% smaller than that
of the PEDOT thin films, but their coloration charge capacity differences were smaller
than 20%. With the same Qd, the obtained mPEDOT thin films were thicker than the
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PEDOT thin films, as shown in Table 1. These results suggest that the electropolymerization
process was concentrated on the ITO surfaces attached by the electrostatic film. The PEDOT
electrodeposition was enhanced on the electrostatic film attached to ITO surface areas. The
uneven surface electropolymerization processes thus formed the micropatterned PEDOT
thin films.

Figure 4a shows the typical transmittance spectra of the PEDOT thin film at different
applying potentials. The applying potential difference between each spectrum was 0.1 V.
The PEDOT thin film was at its bleaching state when the applying potential was 0.3 V (vs.
Ag/Ag+). Minor transmittance changes were observed when the applying potential varied
from 0.3 to 0.0 V (vs. Ag/Ag+). The apparent overall thin film transmittance decrease
started as the applying potential switched from 0.0 to −1.0 V (vs. Ag/Ag+). The PEDOT
thin film was at its fully colored state when the applying potential was more negative
than −1.0 V. As can be seen in Figure 4, negligible spectra differences were recorded for
the applying potential between −1.0 V (vs. Ag/Ag+) and −1.3 V (vs. Ag/Ag+). The
mPEDOT thin films had similar transmittance spectra as the PEDOT thin films since they
were electrodeposited using the same procedures.
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applying potentials. (b) Comparisons of the colored-state transmittance spectra of the mPEDOT and
PEDOT thin films. (c) Comparisons of Tc, Tb, and ∆T (at 630 nm) of the mPEDOT and PEDOT thin
films. The coloring and bleaching potentials were −1.1 V (vs. Ag/Ag+) and 0.3 V (vs. Ag/Ag+),
respectively. The electrolyte was a PC solution containing 0.1 M LiClO4 and 1.0 mM HClO4.

Representative colored-state spectra of the mPEDOT and PEDOT thin films at an
applying potential of −1.1 V (vs. Ag/Ag+) are compared in Figure 4b. The overall colored-
state transmittance decreased as larger Qd was used in the electrodeposition process. The
mPEDOT thin films showed a slightly higher colored-state transmittance than the PEDOT
thin films prepared using the same Qd. Differences between the colored-state and bleached-
state transmittance of the mPEDOT thin films (Tc,mP and Tb,mP) and PEDOT thin films (Tc,P
and Tb,P) at 630 nm are compared in Figure 4c. Both coloring and bleaching response times
decreased with the increasing Qd. The transmittance modulation abilities of the mPEDOT
and PEDOT thin films, ∆TmP and ∆TP, were defined as the transmittance difference between
their colored and bleached states (Tb,mP − Tc,mP or Tb,P − Tc,P). Table 3 lists the measured
colored and bleached state transmittances and corresponding transmittance modulation
abilities at 630 nm. The mPEDOT thin film has a higher colored-state and bleached-
state transmittance than the PEDOT thin films. The mPEDOT thin film covered about
60% of the ITO surface, allowing more incident light to pass through it. Therefore, the
mPEDOT thin films could have higher bleached and colored state transmittance than a
non-micropatterned PEDOT thin film. Similar ∆Tmp and ∆Tp were obtained when the
mPEDOT and PEDOT thin films were electrodeposited using the same Qd. On average,
50% of ∆Tmp or ∆Tp can be achieved by these thin films (except those prepared using
Qd = 15 mC/cm2). The mPEDOT thin films have lower ITO surface coverage than the
PEDOT thin films. It is deduced that their larger film thicknesses (as shown in Figure 2 and
Table 1) might contribute to more local transmittance changes. Therefore, these thin films
achieved similar overall transmittance modulation ability.

The thin films’ coloring or bleaching response times (tc or tb) were defined as the times
needed to achieve 90% of their fully colored or bleached state. Successive potential switches
were carried out between the colored and bleached states of the mPEDOT and PEDOT thin films.
Typical in situ transmittance changes of the mP25 and P25 thin films (at 630 nm) during the
potential switches are shown in Figure 5. The color-switching response times of the mPEDOT
thin films (tc,mp and tb,mp) and the PEDOT thin films (tc,p and tb,p) were calculated, and the
results are listed in Table 4. Both coloring and bleaching response times were prolonged with
larger Qd, indicating that the increasing film thickness slowed the color-switching rates. The
color-changing reaction involves the transportations of both electrons and ions between the
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electrolyte and the PEDOT thin film. It is deduced that ions need more time to migrate within a
thicker PEDOT film and decreased color-switching rate.

Table 3. Colored-state and bleached-state transmittance and transmittance modulation ability of the
mPEDOT and PEDOT thin films electrodeposited using different Qd.

Qd
(mC/cm2)

mPEDOT PEDOT

Tb,mP (%) Tc,mP (%) ∆TmP (%) Tb,P (%) Tc,P (%) ∆TP (%)

15 76.7 34.6 42.1 71.7 28.7 43.0
20 68.7 18.5 50.1 68.2 17.3 50.9
25 64.2 14.0 50.2 62.9 13.0 49.9
30 62.0 12.6 49.4 59.6 11.8 47.8
35 59.6 12.6 47.0 59.0 10.1 48.9

∆TmP = Tb,mP − Tc,mP; ∆TP = Tb,P − Tc,P.
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Table 4. Coloring and bleaching response times of the mPEDOT and PEDOT thin films electrode-
posited with different Qd’s.

Qd
(mC/cm2)

mPEDOT PEDOT

tc,mP (s) tb,mP (s) tc,P (s) tb,P (s)

15 0.65 0.43 0.68 0.49
20 0.74 0.48 0.86 0.55
25 0.80 0.61 0.97 0.65
30 0.87 0.74 0.99 0.77
35 0.90 0.79 1.02 0.88

Figure 6 compares the coloring and bleaching response times of the mPEDOT and
PEDOT thin films prepared using the same Qd. The thin films’ bleaching response times
(tb,mP and tb,P) were shorter than their coloring response times (tc,mP and tc,P). The
mPEDOT thin films had faster coloring switching speeds than the PEDOT thin films.
According to these results, it is deduced that micropatterning a PEDOT thin film might
slightly facilitate its color-switching rates.
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An electrochromic thin film’s color efficiency (CE) is defined as ∆OD/Qc [25]. ∆OD
is the optical density estimated from the difference in the absorbance of the colored and
bleached state of an electrochromic thin film. The CE of the mPEDOT and PEDOT thin
films were calculated, and the results are shown in Figure 7. A larger CE value is desired for
an electrochromic thin film since unit energy consumption can result in a more significant
absorbance change. It is noted that the mPEDOT thin films have higher CE than the PEDOT
thin films (except for the thin film prepared using Qd = 35 mC/cm2). For the thin films
prepared using the same Qd, the mPEDOT thin films have minor Qc (Table 2) but similar
∆T (Table 3) compared with the PEDOT thin films. It is deduced that micropatterning
of a PEDOT thin film might facilitate its redox reactions while keeping its transmittance
modulation ability, resulting in higher CE and more energy-saving possibilities.
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4. Conclusions

Micropatterned PEDOT thin films were directly electrodeposited on ITO substrates
using different Qd’s. The electrochromic properties of these thin films were investigated
and compared with those of the PEDOT thin films prepared using the same Qd. These thin
films have similar ∆T, but the mPEDOT thin film has higher colored-state and bleached-
state transmittance than the PEDOT thin films. The mPEDOT thin films have lower ITO
surface coverage but larger film thickness, which should be the reason for having similar
∆T as the PEDOT thin films prepared using the same Qd. It is noted that both the coloring
and bleaching response times of the mPEDOT thin films were faster than those of the
corresponding PEDOT thin films. Additionally, the mPEDOT thin films have higher CE
than the PEDOT thin films. These results suggest that micropatterning of a PEDOT thin
film could preserve its transmittance modulation ability and, at the same time, increase its
coloring-switching rates and CE [19,26]. It is envisaged that such a strategy could serve
as a promising method to improve the performance of electrochromic thin film electrodes.
Further studies on the performance influences of the electrochromic devices using these
micropatterned electrodes were undergoing in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14142951/s1, Scheme S1: Illustration of the surfcorder
tip moving path when measuring the thickness of a mPEDOT thin film. Figure S1: i-t curves of the
successive chronoamperometry experiments of the PEDOT thin films electrodeposited using different
Qd.; Figure S2: i-t curves of the successive chronoamperometry experiments of the mPEDOT thin
films electrodeposited using different Qd.
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