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Abstract: Inappropriate disposal of leaching residues from the lead-zinc tailings recovery process may
result in environmental pollution. Its recycling and reuse remain a prevalent topic in environmental
science and technology. It was roasted to prepare leaching residues-based materials (TLRS) in this
work, and the TLRS were creatively used as the catalyst to active sodium persulfate (PS) to degrade
organic pollutants. Degradation of tetracycline using the TLRS–PS system was evaluated, and the
treating parameters were optimized. Roasting resulted in the exposure of active sites on TLRS surface,
in which transition metals can donate electrons to PS to form SO4

·−. SO4
·− can further react with

OH− to form ·OH. Formation of these radicals was confirmed by both quenching experiments and
EPR analysis. Under optimized conditions, 85% of the TC can be degraded in 3.0 h, and ~50% of
degraded TC was mineralized to CO2 and H2O. The performance of TLRS barely changed after four
reuses, suggesting the chemical stability of TLRS. The presence of dissolved substance in the water
matrix could weaken the performance of the TLRS–PS system. A mechanism of TC degradation was
proposed based on the experimental results and literature. These preliminary results provide us new
insight on the reuse of lead-zinc flotation tailings.

Keywords: leaching residues; tetracycline; persulfate activation; oxidative degradation; solid waste

1. Introduction

Antibiotics have played a highly prominent role in social civility and environmental
health over the past century [1]. However, superabundant antibiotics, including tetracycline
(TC), released into environmental matrices, have become a notable global environmental
problem [2]. China uses up to 180,000 tons of antibiotics for both human and agricultural
purposes. Therefore, it is critical to remove superabundant antibiotics such as TC from
environmental media. To date, various treatment methods have been applied, including
photodegradation [3], biodegradation [4], catalytic oxidation [5], and advanced oxidation
processes (AOPs). With the free radicals (OH, SO4

·−, O2
·−, etc.) generated within the AOPs

process, TC would be completely decomposed or mineralized. It was a most effective way to
remove the TC among the methods reported in a specific environment. Free radicals can be
generated with the activation of persulfate (PS) [6], and the PS can be activated by various
methods, including UV–visible light, heat, bases, microwaves, carbon materials, and
transition metal-containing materials [7,8]. However, these methods cannot be applied due
to their high cost for the raw materials. Therefore, it is of great environmental significance
to seek materials that allow for a multiple activation strategy and can be mass-produced
for the heterogeneous activation of PS.
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Tailing from lead-zinc mines is a serious environmental problem in many regions
worldwide [7,9]. According to statistics, the amount of lead and zinc sulfide tailings gener-
ated in China is as high as 29 million tons, and the accumulated stockpile is over 1 billion
tons [9]. Through the resource recovery process, sulfur, iron, and other valuable metals have
been utilized, and the associated environmental risks were thoroughly eliminated [10–13].
While some residues were discarded, the discarded residue will be another pollution source
without effective disposal [14]. In our previous study, the leaching residue was used as
raw material to produce active silicon materials. The latter, a resourceful product from
tailings, possesses highly available SiO2 content, rich porous structure, various forms of
transition metals (Fe-, Mn-based metals, etc.), and their oxide sites, offering great potential
for the immobilization of heavy metals [15–17]. Apart from this, Anbia et al. [18] reported
that Fe3O4–copper-functionalized silicon nanowires from silicon powder were utilized as a
catalyst for phenol degradation with an efficiency of approximately 100%. Highly doped
silicon materials have also been shown to be capable of the post-catalytic degradation of
methylene blue and anionic (methyl orange) dyes [19]. In addition, mine-based active
Fenton-like materials have been already reported as capable of degrading TC and other
antibiotics in water [20].

However, there are rare works focused on the use of tailings slag-based materials
as PS activators for TC removal to date. Consequently, combining previous research on
the leaching residue and the composition characteristics of active silicon materials, we
conjectured that the composite obtained by the roasted leaching residue of the tailings
would be an effective catalytic material as a PS activator to remove organic pollutants,
which may simultaneously remove the target pollutants and obtain a potential amendment
from the perspective of resource recycling.

In this study, the leaching residues of the lead-zinc (Pb-Zn) tailings were reused, they
were roasted with the addition of an alkali material as an activator at some conditions. After
the leaching residues-based materials (TLRS) were synthesized, they were characterized
and used as the matrix for the decomposition of TC. During this study, the effect of TC
concentration, pH value, and dosage of TLRS and persulfate on the degradation of TC were
evaluated. In addition, the degradation mechanism of TC was evaluated by quenching
experiments and EPR capture experiments. This research will strengthen the application of
leaching residues in the TC decomposition process and provide a more effective way to
degrade antibiotics as well.

2. Materials and Methods
2.1. Chemicals and Materials

Chemicals used were purchased from the market. Tetracycline hydrochloride (TC, AR,
99%), HCl (AR, 37%), NaOH (AR, 96%), tert-butyl alcohol (TBA), furfuryl alcohol (FFA),
CH3OH and p-benzoquinone (BQ), and 5,5-dimethyl- L-pyrroline N-oxide (DMPO) were
supplied by Aladdin (Shanghai, China). Sodium persulfate (PS, AR, 99%) and polyethylene
glycol (PEG-4000) were obtained from the Damao Chemical Reagent Factory (Tianjin,
China). The purities of these chemicals were all analytical grade or better. Ultrapure water
generated from the Millipore system (Bedford, USA) was used for preparing the TC stock
solutions and conducting the experiments.

Leaching residues of lead-zinc flotation tailings were collected from the lead-zinc
tailings in the Fankou mine (Shaoguan, China). Residues were air-dried and milled to
pass through 200 mesh nylon sieves. After that, the residues were modified by mixing the
residues, Na2CO3, and CaCO3 at the mass ratio of 100:30:20 uniformly and roasting in a
muffle furnace (PVSgr-20-2000, Shanghai Haoyue Electric Furnace Technology Co., Ltd.
Shanghai, China) at 600 ◦C for 30 min. Then, the modified residues were cooled in air and
washed with ultrapure water to adjust their pH to near neutral and remove the dissolved
salts. After that, the mixture was dried and stored for further experiments. The mixture
was named as leaching residues-based materials (TLRS).
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2.2. Experimental Procedures

All experiments were conducted in 500 mL beakers at room temperature under me-
chanical stirring (150 rpm). TLRS were added to TC solutions at predetermined dosages.
After equilibrium adsorption (24 h), PS was added to the mixtures to initiate the degrada-
tion process. Reaction mixtures were sampled from the reaction system at time intervals,
filtered to pass through 0.22 µm polyether sulfone filter. The filtrate was collected and
stored for the analysis of residual TC. Effects of initial pH, TLRS dosages, PC, and TC
concentrations on the degradation of TC were evaluated by varying these parameters. The
roles of active radicals on TC degradation were investigated by quenching experiments,
where TBA, MeOH, FFA, and BQ were used as the scavengers [21]. The solid of the re-
action mixture was collected, centrifuged, and air-dried for reusability experiments. All
experiments were carried out in triplicate.

2.3. Analytical Methods

The TC concentrations were analyzed by Agilent 1260 high performance liquid chro-
matography (HPLC, Shimadzu, Kyoto, Japan) equipped with a diode array detector (DAD).
The wavelength was set at 270 nm. TC in the reaction mixtures was separated on a Zorbax
SB-C18 column (4.6 mm × 250 mm, 5 µm). A mixture of water (A) and 10 mM oxalic
acid (B) was used as the mobile phase. The volume ratio of A and B was kept constant at
75:25. The changes of total organic carbon and fluorescence spectrum during the degra-
dation of TC were measured by TOC-500 total organic carbon (TOC) analyzer (TOC-500,
Shimadzu, Kyoto, Japan) and Hitachi F-4600 fluorescence spectrometer (Hitachi F-4600,
Tokyo, Japan) [22,23], respectively. Active radicals generated in the system were in situ
monitored by Bruker EMX-E electron paramagnetic resonance spectroscopy (EPR, Bruker
EMXplus, Karlsruhe, Germany) [24]. The characteristics of the MLFTs before and after
degradation of TC were characterized by Hitachi SU8020 field emission scanning electron
microscopy (FE-SEM, Hitachi, Tokyo, Japan), Bruker VERTEX 70 Fourier transform infrared
spectroscopy (FTIR, MPA II, Karlsruhe, Germany), X-ray powder diffraction (XRD, Ultima
IV XRD, Tokyo, Japan), XRF-1800 X-ray fluorescence spectrometry (XRF, Shimadzu), and ES-
CALAB 250 X-ray photoelectron spectroscopy (XPS, Thermo Kalpha, Waltham, MA, USA).
The Zeta potential and specific surface area of MLFTs were analyzed by Malvern Zetasizer
Nano ZS90 (Malvern, UK) and Micromeritics ASAP-2020Plus Brunauer-Emmett-Teller
(BET, ASAP 2020, Norcross, GA, USA) analyzer.

3. Results and Discussion
3.1. Characterization of TLRS

TLRS consists of Si, Fe, Ca, Al, K, Mg, and Ti at the mass ratios of 75.2%, 6.8%, 5.8%,
2.3%, 0.4%, 1.4%, 0.4%, and 0.3% (represents as oxides), respectively (Table S1). Figure 1a
shows the morphology of the TLRS. TLRS are porous with rough surfaces (Figure 1a). Some
regular rod-like structures exist in the surface (Figure 1a). The specific surface area of TLRS
determined by BET method is 37.06 m2/g (Figure 1b), which is related to rough surfaces
and porousness. Generally, a higher specific surface area of TLRS was considered to be
more favorable for absorbing pollution. Figure 1c shows the FTIR spectra of the TLRS.
Characteristic peaks at 3200–3400 cm−1 were attributed to the vibration of –OH, and the
peak at 550 cm−1 could be ascribed to the vibration of the Fe-O bonds in the crystalline
lattice of iron oxides (Figure 1c) (Lei et al., 2018b). Moreover, the absorption bands in the
region of 1430 and 880 cm−1 refer to carbonates. The intense absorption band is most likely
related to asymmetric vibrations of the Si-O-Si bridge bonds as well as to asymmetric and
symmetric vibrations of the Si-O end bonds. Calcite (CaCO3, PDF#99-0022), nepheline
(NaAlSiO4, PDF#99-0083), goethite (FeOOH, PDF#99-0055), and microcline (KAlSi3O8,
PDF#99-0078) were the main crystallite phases of TLRS, while it contained small amounts
of almandine (Fe3Al2(SiO4)3, PDF#99-0003) and high-cristobalite (SiO2, PDF#99-0038)
(Figure 1d), which was further confirmed by XPS analysis (Figure 1e). The zeta potential of
TLRS was close to pH 6.2, which was higher than the raw materials.
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3.2. Degradation of TC

Figure 2a shows the effects of initial pH on the degradation of TC. The degradation
efficiency of TC decreased sharply with the increase of pH, which decreased from 97% to
58% as the solution pH increased from 2.0 to 12.0 (Figure 2a). In addition, 84% of the TC
was removed at the end of 3.0 h reaction with an initial pH of 7.0 (Figure 2a). Although
lowering the initial pH facilitated the degradation of TC, it also consumed external acid,
which may result in the rise of treatment cost. Thus, the initial pH (around 7.0) was not
adjusted in the subsequent experiments. The isoelectric point of TLRS is at ~6.2 (Figure 1f),
it carries positive charges when the solution pH is lower than 6.2, while it takes negative
charges at a solution pH higher than 6.2. Lowering the solution pH can increase the positive
charges on TLRS surface to enhance the adsorption of S2O8

2−, and thus to accelerate the
generation of active radials [21]. Meanwhile, more active radials generated (e.g., ·OH and
O2
·−) in the system may be quenched by OH− at a higher solution pH [22]. Moreover,

OH− may competitively occupy the active sites on TLRS surface to reduce the adsorption
of TC and activation of PS [25–27]. The removal efficiencies of TC decreased with its initial
concentrations at determined dosages of TLRS and PS (Figure 2b), which was expected
given that more active radicals were required to achieve the equal degradation efficiency at
higher initial TC concentrations according to the chemical equilibrium.

Notably, ~11% of TC was removed in the absence of TLRS, while the removal efficiency
of TC increased to 89% in the presence of 0.4 g/L TLRS (Figure 2c). TLRS at higher loadings
can provide larger surface area for the adsorption of TC and more active sites for activating
PS to degrade TC [22]. The PS concentration had a pronounced effect on the degradation
of TC (Figure 2d). The removal efficiency of TC increased with the PS concentration
at the range of 0–5.0 mM, while further increasing the PS concentration inhibited the
degradation of TC. A larger number of active radicals can be generated at higher dosages
of PS (0–5.0 mM), while at much higher dosages, PS can also quench the radicals formed in
the system (5.0–20.0 mM) (Figure 2d) [27,28]. Thus, excess PS inhibited the degradation of
TC. The TOC was reduced by 48% at the end of 3.0 h reaction at an initial TC concentration
of 20 mg/L and initial pH of 7.0 in the presence of 0.4 g/L TLRS and 5.0 mM PS, suggesting
that about half of the degraded TC was mineralized to CO2 and H2O. Together, these results
indicated that TLRS was effective for the activation of PS and radicals formed were robust
for degrading TC.
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Figure 2. Degradation of TC under various conditions: (a) degradation of TC under different initial
pH (PS = 5 mM, TC = 20 mg/L, TLRS = 0.4 g/L); (b) degradation of TC under various initial
concentrations (initial pH of 7.0, PS = 5 mM, TLRS = 0.4 g/L); (c) degradation of TC under different
TLRS loadings (initial pH of 7.0, PS = 5 mM, TC = 20 mg/L); and (d) degradation of TC under
different PS loadings (initial pH of 7.0, TC = 20 mg/L, pH = 7, TLRS = 0.4 g/L).

Figure S4 evaluates the effect water has on the degradation of TC. Cl−, NO3
−, and

SO4
2− barely affected the degradation of TC, consistent with the literature [29]. This can be

explained by the excess of radicals generated in the system, and the addition of Cl−, NO3
−,

and SO4
2− at low concentrations resulted in negligible reduction of radical concentrations.

However, H2PO4
− and HCO3

− significantly inhibited the degradation of TC. H2PO4
−

and HCO3
− can decompose to release H+ to increase the solution pH [8,20]. Meanwhile,

H2PO4
− can also interact with iron ions to reduce the effective concentration of active iron

ions. HCO3
− can react with ·OH to form CO3

·– which is a weaker oxidant than ·OH [21].
HA can block the active sites on TLRS surface and quench the active radicals in the system,
both effects inhibited the degradation of TC (Figure S4) [20].

3.3. Reaction Mechanism

The roles of active radicals on TC degradation were evaluated by quenching exper-
iments. MeOH, TBA, FFA, and BQ were used as scavengers [30]. MeOH and TBA react
with SO4

·− and ·OH at the rate constants of 1.6–7.7 × 107 and 1.2–2.8 × 109 M−1s−1,
and 4.8–7.6 × 108 and 4.0–9.1 × 105 M−1s−1, respectively, while the second rate con-
stants for the reactions between FFA and 1O2, and BQ and O2

·− were in the range of
0.9–1.0 × 109 M−1 s−1 [30–32]. The single addition of MeOH, TBA, FAA, and BQ resulted
in the reduction of the removal of TC, the removal efficiencies decreased from 85% to 16%,
31%, 63%, and 72%, respectively (Figure 3a), suggesting SO4

·− and ·OH could be the main
radicals in the system, which was further confirmed by EPR analysis (Figure 3b) [20,33–35].
DMPO–SO4 and DMPO–OH were observed the EPR spectrum (Figure 3b), and the in-
tensity of DMPO–OH was higher than DMPO–SO4, suggesting SO4

·− and ·OH were all
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involved in the degradation of TC and SO4
·− formed can transform to ·OH in the reaction

system [36].
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TLRS after the degradation of TC was further characterized by XPS analysis (Figure 4).
The elemental composition on TLRS surface remained unchanged after the activation of PS,
suggesting the chemical stability of TLRS (Figure 4a). Three peaks located at 284.6, 286.1,
and 288.5 eV were observed on the C 1s spectrum, which could be assigned to the carbon
in C–C, C=O, and O-C=O states, respectively. C=O functional groups are electron-gaining
functional groups, which can act as an intermediate for electron transfer to form free
radicals (i.e., SO4

·− and ·OH) to promote the decomposition of TC [21,24]. Characteristic
peaks on O1s spectrum at the binding energies of 530.8, 531.3, and 532.7 eV were attributed
to the oxygen in surface hydroxyl, C-O, and C=O, respectively [37]. The disappearance of
the peak at 530.8 eV after the degradation of TC suggested the release of hydroxyl. Peaks at
the binding energies of ~710, ~718, and ~724 eV suggested the co-existence of Fe(II), Fe0,
and Fe(III) in TLRS (Figure 4d) [8,38]. The reduced peak area at ~724 eV and increased
peak area at ~710 eV at the end of the reaction indicated the transformation of iron species
during the degradation process. The electron transfers within the iron species resulted in
the activation of PS [20,24,38].

Taken together, mechanism for the degradation of TC was proposed based on our
experimental results and literature (Figure 5) [24,26,33,37]. For phase 1, the transition met-
als and iron oxide in TLRS catalyzed the decomposition of PS to generate SO4

·− through
electron transfer (S2O8

2− + Fe0→Fe2+ + 2SO4
·− + 2SO4

2−, S2O8
2− + Fe2+→Fe3+ + SO4

·−

+ SO4
2−, S2O8

2− + HSO5
− + Mn+→M(n−1)+ + SO4

·− + SO4
2−) (Figure 5). The electrons

transfer from OH− to SO4
·− resulted in the formation of ·OH (SO4

·− + OH−→·OH +
SO4

2−). ·OH and SO4
·− are strong oxidants, which can result in the oxidative degradation

of TC (Figure 5), which can be directly reflected on the three-dimensional fluorescence
spectrum [38,39]. In phase 2, regeneration of the active sites of TLRS made the activation
cycle continue until PS was completely consumed. The yielded radical dot SO4

− attacked
TC, and various intermediate products were generated, which made TC ultimately miner-
alize into CO2 and H2O [40]. The raw TC solution had two characteristic fluorescence peak
areas at Em/Ex = 430 nm/330 nm and Em/Ex = 430 nm/230 nm, and the intensities for
these two peaks were 1100 and 700, respectively (Figure 6). These two peaks disappeared
at the end of 3.0 h reaction, confirming the degradation of TC [22,36,41], consistent with
the TOC results.
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3.4. Reusability Tests and Application in Real Water

Reusability is an important factor in determining the application of TLRS. The degra-
dation efficiency of TC barely changed in the first three cycles, while it slightly decreased
in the fourth cycle (Figure 7a). The reduced performance of TLRS could be attributed to
the leaching of iron and transition metals (Figure S5) [42]. Meanwhile, the accumulation
of degradation products can also occupy the active sites on the TLRS surface to reduce
the degradation of TC [42]. The above results confirm that TLRS is structurally stable and
reusable for the activation of PS and degradation of TC.
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Figure 7. Degradation of TC in TLRS/PS using the reused TLRS (a) and in tap water and Zhu-
jiang river water matrix (b) (respectively). Experimental conditions: TC = 20 mg/L, PS = 5 mM,
MLTFS = 0.4 g/L, and initial pH of 7.

Two types of water matrix (i.e., tap water and Zhujiang river water) were used to
evaluate the performance of the TLRS–PS system on degrading TC. Comparable TC removal
efficiencies were achieved in tap water with that of in Mill-Q water (85% vs. 83%), while a
slight decrease in the Zhujiang river water sample was observed (78%) (Figure 7b). Zhujiang
river water contained much higher metal ions, anions, and dissolved organic matter than
tap water and pure water (Table S2), these dissolved substances can competitively occupy
the active sites on TLRS surface to inhibit the generation of active radicals (mainly ·OH and
SO4

·−) and they can also scavenge the radicals formed [24,41]. The dosages of TLRS and PS
can be flexibly adjusted to counteract the adverse effects brought by dissolved substances
in the water matrix.

4. Conclusions

Leaching residues of lead-zinc flotation tailing were modified by roasting to active PS
in the study. Degradation of TC using TLRS–PS was evaluated under various conditions.
More active sites can be exposed on the TLRS surface through roasting to active PS. The
electrons transfer between iron species, transition metals, and PS resulted in the generation
of SO4

·−, which can be further converted to ·OH. Approximately half of the degraded TC
can be mineralized to CO2 and H2O, suggesting the robust oxidation ability of SO4

·− and
·OH. The performance of TLRS–PS barely degraded in the removal of TC after three reuses
of TLRS. The presence of dissolved substances in water can weaken the performance of the
TLRS–PS system through occupying the active site to reduce the generation of radicals and
scavenging the radicals formed. This work shows us a new direction in the recycling of
lead-zinc flotation tailing.
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