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Abstract: The feasibility of strengthening deteriorated or under-capacity concrete structures with
external carbon-fiber-reinforced polymer (CFRP) laminates has been widely validated in the litera-
ture. However, there is a lack of knowledge on the in situ long-term performance and age-related
environmental degradation of the mechanical properties of the laminates. The current study involved
the immersion of coupons from a common new CFRP laminate in heated water at 23, 45, and 60 ◦C
for 224 days. The coupons were then tested for residual tensile properties, such as tensile capacity
and elastic modulus, using ASTM D3039 (2017) specifications. The CFRP tensile capacity and elastic
modulus decreased by a maximum of 33% and 26%, respectively, for 224 days of exposure. Based on
the test data, an age-based long-term prediction model with excellent reliability for CFRP laminate
tensile capacity was developed. The model was then calibrated with test results from old CFRP
coupons collected from an existing CFRP laminate retrofitted concrete bridge. The calibrated model
output was then compared with the environmental reduction factor from ACI 440.2R-17 and a few
other common sources. It was found that the ACI specified a reduction factor of 0.75, which does
not consider the CFRP age and overestimates the design tensile strength of the CFRP laminate by
approximately 13%, which may compromise the structural safety of retrofitted bridges. The reduction
factors from the other guidelines varied between 0.51 and 0.85.

Keywords: carbon-fiber-reinforced polymer CFRP; environmental exposure; accelerated aging test;
durability; Arrhenius method; ACI 440.2R

1. Introduction

According to the ASCE Report Card [1], the average age of highway bridges in
the U.S.A. is 43 years and most of them are approaching or beyond their design lives.
Therefore, an increasing number of bridges each year need rehabilitation or replacement
and are unlikely to be replaced in a timely manner due to public funding limitations.
Hence, there is increasing interest in fiber-reinforced polymer (FRP) composites for bridge
repair and rehabilitation [2–5]. They have many advantages including high tensile strength,
lightweight, corrosion resistance, and relative ease of application [6–8]. Although the
feasibility of strengthening deteriorated concrete structures with FRP has been widely
validated through laboratory experiments and field tests, there still exists a research gap in
understanding its long-term durability and performance.

Numerous studies have been conducted to investigate the long-term performance
of FRP composites using accelerated aging tests and predictive models, such as the Ar-
rhenius method [9–13]. The durability of FRP is highly affected by moisture and high
temperatures [14]. The evolution of CFRP materials, along with the process of immersion
in different temperatures and for different durations, shows a continual decrease in the
tensile strength as the exposure duration increases [15].

Li et al. [12] investigated the mechanical properties of CFRP and Glass FRP (GFRP)
subjected to sustained load and environmental conditions including hygrothermal aging,
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freeze-thaw cycles, and wet-dry cycles. The sustained loads were 30% and 60% of the
ultimate loads. The results showed that hygrothermal aging caused a significant decrease
in tensile strength and elongation of the specimens with sustained loads. For the load-free
condition, the wet-dry cycles aging test revealed a major decrease in tensile strength, but
the tensile modulus showed excellent resistance to degradation. Silva et al. [13] studied
the degradation of GFRP laminates under accelerated aging systems by immersing them
in a saltwater solution at 30, 40, and 55 ◦C and salt fog cycles for a period up to 5000 h.
The physical and mechanical properties of the specimens were then examined by moisture
absorption and tensile tests. It was found that the laminate immersed in saltwater expe-
rienced a reduction in tensile strength. In addition, the specimen’s solution uptake and
degradation increased with an increase in temperature.

Uthaman et al. [16] studied the aging of CFRP laminate upon immersion in water,
acidic, and alkaline solutions at temperatures of 20, 40, and 60 ◦C. The mechanical and
scanning electron microscopy results revealed that CFRP composites were more suscep-
tible to the acidic solution and need protection to extend their service life. Karbhari and
Abanilla [17] compared the Arrhenius and Phani and Bose methods’ long-term durability
prediction performance by employing specimens immersed in a high-temperature water
tank. It was found that the Arrhenius method is superior.

Homam et al. [18] studied the long-term durability of FRP subjected to various envi-
ronmental conditions, such as freeze-thaw cycles, UV radiation, temperature variations,
an alkaline environment, and moisture. Specimens were examined by direct tension and
direct shear tests, which revealed that the mechanical properties of FRP are resistant to all
the environmental conditions mentioned except moisture. Cromwell et al. [19] evaluated
the performance of a CFRP plate, CFRP fabric, and GFRP fabric under nine different envi-
ronmental conditions. The study then proposed reduction factors of 0.90, 0.50, and 0.80 for
the three systems, respectively, which are appropriate for exterior exposure only. However,
the investigation lacks actual data from the field for calibration purposes.

The environmental reduction factor for CFRP from ACI 440.2R-17 [20] was suggested
to be 0.85, but no explanation was provided on how this factor was established, which led
researchers to fill the gap by studying the long-term performance, durability, and resistance
of CFRP to environmental conditions [13,15,17,19,21] through laboratory experiments. Yet,
none of the results of these investigations were calibrated using data from an existing
structure. Thus, to fill this knowledge gap, the current study used a prediction model
employing short-term accelerated aging of CFRP under different environmental regimes
using the Arrhenius method. Then, the model was calibrated by the results of long-term
degraded samples extracted from an existing CFRP retrofitted bridge [22,23]. The calibrated
model output was then compared with the environmental reduction factor from ACI 440.2R-
17 [20] and a few other common international design guidelines. In the end, and based on
the findings of this study, a function of design life to calculate the environmental reduction
factor for CFRP laminate was proposed.

2. Experimental Program
2.1. Field Samples Collection

On 28 May 2005, the MacArthur Blvd Bridge (Figure 1) carrying State Highway 183
(SH 183) over MacArthur Boulevard in Irving, Texas was damaged by fire when a fuel
tanker carrying 11.5 m3 of gasoline on SH 183 fell off the bridge and caught fire. The fire
lasted approximately 30 min and caused severe damage to the concrete substructure and
superstructure as shown in Figure 2a. It took 48 days to repair the bridge by chipping out
the deteriorated concrete areas, cleaning the rebars, applying mortar to the removed areas,
and strengthening several columns and girders using CFRP laminate (Figure 2b) [22,24]. On
16 June 2017, 12 years later, representative CFRP coupons were collected from the U-wrap
of a girder in span 3 and were tested in the laboratory to obtain their tensile strength.
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Figure 1. Bridge location map. Map data: Google © 2022.

Figure 2. MacArthur Blvd. Bridge: (a) Post-fire; (b) during CFRP strengthening: Photos credit: Sika
Corporation © 2006.

2.2. Field Samples Dimensions Preparation

After the field sample collection, four field CFRP coupons were prepared and cut to
the suggested dimensions for the tensile test. To compare the performance of field samples,
new samples of CFRP laminates using the same fiber and epoxy were created. Despite
efforts to make the laminate thickness similar, there was a dissimilarity in the thinness
between the new and field samples, which may be due to the automated saturation that
was used during the initial field application [22,24]. To provide a logical comparison, the
thickness and volume fraction of epoxy and fiber in the laminate had to be similar in both
sample types. Equation (1) shows the relationship between the elastic modulus of laminate
and the volume of laminate.

El = ν f E f + νeEe (1)

where:

ν f and νe = volume ratio of fiber and epoxy, respectively.
El , E f , and Ee = longitudinal elastic modulus of laminate, fiber, and epoxy, respectively.

Because the length and width of the new and field samples were identical, the volume
of the fiber (ν f ) and epoxy (νe) were reliant only on the thickness of the fiber (t f ) and
epoxy (te). The thickness of fiber (t f ), the thickness of laminate (tl), and the elastic modulus
of fiber (E f ) were known, which resulted in a reduction of Equation (1) to Equation (2),
as follows:

El = t f E f + (tl − t f )Ee (2)

The field samples’ laminate modulus of elasticity (El) was found from tensile testing.
Assuming that the modulus of the fiber (E f ) did not change with time, the modulus of
elasticity of the epoxy (Ee) was calculated as per Equation (2). Finally, the modulus of
elasticity of the laminate was recalculated using the thickness of the laminate (tl) equal to
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the laboratory samples. This process provided a logical comparison between the field and
laboratory samples as they had the same thickness and epoxy volume ratio.

2.3. Materials and Specimens, New Samples

The method chosen for the new samples was a typical CFRP wet-layup process. It
consists of primarily woven unidirectional carbon fiber (SikaWrap Hex-117C made by Sika
Corporation, Lyndhurst, NJ, USA) and epoxy (Sikadur 330 made by Sika Corporation,
Lyndhurst, NJ, USA) made of two components with a mixing ratio of four-to-one by weight.
Table 1 shows the properties of dry carbon fiber, epoxy, and laminate, which are identical
to the materials used in the field samples.

Table 1. Properties of CFRP.

Material Tensile Strength (MPa) Young’s Modulus (GPa) Failure Strain (%)

Dry carbon fiber 3793 234 1.5

Epoxy 33.8 4.5 1.2

CFRP laminate 724 56.5 1.0

The sample preparation involved the fabrication of a wooden frame to grip and stretch
the carbon fiber. Then, the two-part epoxy was mixed thoroughly for 5 min using an electric
mixer at a speed of 320 rpm at 23 ◦C, as shown in Figure 3a. The epoxy resin was applied
using a roller and slipper on both surfaces of the carbon fiber ensuring full saturation, as
shown in Figure 3b. The laminates were cured for three days at ambient temperature, and
finally, coupons (Figure 4) were fabricated using an electric band saw.

Figure 3. Preparation of the new CFRP coupons: (a) Mixing two-part epoxy resin; (b) applying
the epoxy resin using a roller on both sides of the carbon fiber fabric; (c) cured laminates cut into
strips (coupons).

Figure 4. Geometry of new and field coupons.

2.4. Environmental Exposure, New Samples

The environmental exposure protocol, adopted from a model proposed by Bank
et al. [21], consisted of 80 specimens in an effort to investigate the degradation mechanisms
of wet lay-up CFRP under various environmental conditions. The variables considered in
the test were the exposure conditions and duration. To avoid reaching a viscous state of the
CFRP, the specimens were conditioned to the typical 80% of the nominal glass transition
temperature of most epoxies, or 60 ◦C [21]. The Arrhenius theory requires a minimum of
three different temperatures to obtain degradation data [11]. Thus, after preconditioning,
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the CFRP samples were immersed in tap water at 23, 45, and 60 ◦C (Figure 5) for up to
224 days and were then removed for testing at intervals of 28, 56, 84, 112, and 224 days as
listed in Table 2. The 23 ◦C samples were kept at room temperature with no applied heat.
Water boiler tanks were used for the 45 and 60 ◦C exposure conditions with a temperature
variation of ±3 ◦C. The current study used five samples for each exposure condition and
duration plus five control samples, yielding a total of 80 specimens. Since the field samples
were naturally aged, there was no need for them to be subjected to accelerated aging.

Figure 5. Accelerated aging: (a) Three different temperatures water tanks; (b) inside view of 45 ◦C
water tanks with new CFRP coupons.

Table 2. Experimental program for accelerated aging of new CFRP laminates.

Environmental Exposure Duration (Days) No. of Samples

Immersion in water at 23 ◦C (RT) 28, 56, 84, 112, and 224 25

Immersion in water at 45 ◦C (MT) 28, 56, 84, 112, and 224 25

Immersion in water at 60 ◦C (HT) 28, 56, 84, 112, and 224 25

Control samples (no exposure) - 8

Total No. of samples 83

2.5. Tensile Test

The new CFRP coupons were removed from the water tank after each specific period
of exposure, after which their widths and thicknesses were measured with a 0.001-mm-
resolution digital micrometer. A 350-Ω-resistance foil strain gage was installed at the
mid-length of each specimen to capture their strain response (Figure 6). The coupons were
tested per ASTM D3039 (2017) [25] employing the test setup shown in Figures 7 and 8. The
test was displacement controlled with a loading rate of 1 mm/min. Load, strain gauge, and
displacement data were collected using a data acquisition system at a frequency of 8 Hz.
An identical tensile testing procedure was used for the field samples. The flowchart shown
in Figure 9 summarizes the experimental program.
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Figure 6. CFRP specimens: (a) Labeled specimens of each environmental condition; (b) closer view
of CFRP specimen with strain gauge.

Figure 7. Tensile test setup showing the test apparatus.

Figure 8. Tensile test set-up: (a) CFRP specimen with a straight alignment; (b) close view before
tensile test; (c) failed sample.
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Figure 9. Summary of proposed work.

3. Results

This section discusses the field sample results followed by the tensile strength, ultimate strain,
and tensile modulus of new samples under different environmental exposure conditions.

3.1. Field Samples

The mechanical properties of the field and new samples were compared after applying
Equation (2). For the same thickness of CFRP laminates, the field samples exhibited a 13%
reduction in the elastic modulus. Moreover, the tensile strength of field samples was
reduced by approximately 21%, which may be due to environmental conditions [22,24].

3.2. Tensile Strength

The evolution of the tensile strength of the new CFRP specimens for different temper-
atures and exposure durations is presented in Figure 10. A continual decrease in the tensile
strength of the CFRP specimens occurred with an increase in the exposure duration, similar
to the findings of past studies [15,26]. The tensile strength retention and coefficients of
variation are shown in Table 3. Compared to their initial tensile strength, the new specimens
experienced 25%, 27%, and 33% reductions on the 224th day for exposure conditions at 23,
45, and 60 ◦C, respectively. Clearly, water immersion at 60 ◦C significantly accelerated the
degradation of tensile strength.
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Figure 10. Tensile strength variations in new CFRP samples.

Table 3. Results from new CFRP coupons testing.

Environmental
Exposure

Exposure
Time (Days) No. of Specimens Average Failure

Stress (MPa) CV (%) Tensile Strength
Retention (%)

Unconditioned
(Control samples) 0 8 678 6.99 100

RT (23 ◦C)

28 5 637 8.89 94
56 5 612 9.72 90
84 5 581 6.29 86

112 4 551 7.17 81
224 5 506 11.72 75

MT (45 ◦C)

28 4 604 4.95 89
56 5 592 5.74 87
84 5 553 9.90 82

112 4 533 10.00 79
224 5 493 14.16 73

HT (60 ◦C)

28 5 576 13.75 85
56 5 559 10.55 82
84 5 542 2.72 80

112 4 506 5.65 75
224 5 457 15.33 67

Note: RT, MT, and HT are room, moderate, and high temperatures, respectively; CV is the coefficient of variation.

3.3. Strain Performance

The change in ultimate strain of the new CFRP specimens as a function of the exposure
duration is illustrated in Figure 11. The strain does not show a consistent trend with an in-
crease in the exposure duration, confirming the study by Xie et al. [15]. Compared to their
initial failure strain, the specimens experienced 9%, 12%, and 11% reductions on the 224th
day for exposure conditions at 23, 45, and 60 ◦C, respectively. The specimens immersed
in 23 and 45 ◦C water experienced a 3% and 1% increase in failure strain, respectively, on
the 56th day compared to their failure strain at the beginning of the exposure. This was
attributed to the plasticization effect of the moisture ingress in the specimens [27].
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Figure 11. Failure strain variations in new CFRP samples.

3.4. Tensile Modulus

A graph showing the variation of tensile modulus of the new CFRP specimens after
exposure to elevated temperatures is presented in Figure 12. It predominantly exhibited
a trend similar to the tensile strength. ACI 440.2R-17 [20] assumes that the modulus of
elasticity of CFRP laminates is not affected by environmental conditions. Contrary to
this, the specimens experienced 20%, 22%, and 26% reductions on the 224th day under
exposure conditions of 23, 45, and 60 ◦C, respectively. A few past studies also showed
similar findings [28–30].

Figure 12. Tensile modulus variations in new CFRP samples.

4. Prediction Model of Long-Term Effects

Durability and service life predictions of FRP composites in civil infrastructures are
challenging, as only short-term limited data are available. Due to the accurate results, the
Arrhenius approach is widely used in such cases to show first-order effects and predict the
service life of tested materials [12,15–17,21]. The degradation rate proposed by Nelson [31]
is shown in Equation (3):

k = A · exp
(
−Ea

RT

)
(3)
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where:

k = degradation rate (1/time).
A = constant of the material and degradation process.
Ea = activation energy associated with the set of mechanisms.
R = universal gas constant (8.3143 × 10−3 kJ/mol K).
T = temperature (K).

The main hypothesis of the Arrhenius method is that the single dominant degradation
mechanism does not change with temperature and time during exposure; however, the
degradation rate accelerates with an increase in temperature. Equation (3) can be converted
into Equations (4) and (5). In the former, the degradation rate, k, is expressed as the inverse
of the required time to reach a given value of the material property. In the latter, the
required natural logarithmic time for a property of a material to reach a given value is
linearly related to 1/T with a slope of Ea/R.

1
K

=
1
A

· exp
(

Ea

RT

)
(4)

ln
(

1
K

)
=

Ea

RT
− ln(A) (5)

4.1. Prediction Procedure

Following the procedure adopted by Chen et al. [10], the relationship between tensile
strength retention, Y, of new CFRP laminates and exposure time was calculated from the
experimental results of each exposure temperature as defined in Equation (6):

Y = 100 · exp
(
−t
τ

)
(6)

where:

Y = percentage of tensile strength retention.
t = exposure time.
τ = 1/k = fitted parameter.

As shown in Figure 13, the relationship between tensile strength retention and the
exposure time was obtained. By regression analysis, the fitted parameter, τ, and the
correlation coefficients, R2, of the curves for each exposure temperature are summarized in
Table 4, with the correlation coefficients, R2, of at least 0.88.

Figure 13. Tensile strength retention variations in new CFRP samples.
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Table 4. Correlation coefficients (R2) and fitted parameters for new CFRP tensile strength retention.

Water Temperature (◦C) Fitted Parameter, τ R2

23 554 0.99

45 494 0.94

60 434 0.88

The Arrhenius relationships for tensile strength retention were obtained by plotting
the natural logarithmic time to reach 60, 70, 80, and 90% tensile strength of CFRP laminates
versus the inverse of the exposure temperature as shown in Figure 14. For a selected
temperature on the x-axis, these lines provide the estimate of the time taken to reach the
selected tensile strength retention values. Parallel straight lines were fitted to the data using
Equation (5), and the slopes of the straight lines, Ea/R resulted in correlation coefficients,
R2, of 0.97 for 60, 70, 80, and 90% tensile strength retention. In order to meet the Arrhenius
assumption, all temperature regression lines should have approximately equal slopes with
correlation coefficients greater than 0.8 [21].

Figure 14. Arrhenius plots of tensile strength retention.

The time shift factor (TSF), initially used by Dejke [32], was based on the ratio between
the time required for the property of a material to reach a certain strength retention value
at two different temperatures. It can be expressed by Equation (7):

TSF =
t0

t1
=

c
k0
c

k1

=
k1

k0
=

A · exp
(
−Ea
RT1

)
A · exp

(
−Ea
RT0

) = exp
[

Ea

R

(
1
T0

− 1
T1

)]
(7)

where:

t1 and t0 = required times for a property to reach a given value at temperatures of T1 and
T0, respectively.
c = constant.
k1 and k0 = degradation rates at temperatures T1 and T0, respectively.

As stated, the field samples were collected from Irving, Texas. Thus, the reference
temperature used in calculating the TSF was 18.92 ◦C, the mean annual temperature for
that location [33]. The TSF values for each exposure condition are listed in Table 5.
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Table 5. Time shift factors (TSF) for the mean annual temperature in Irving, Texas.

Environmental Exposure Time Shift Factor

RT (23 ◦C) 1.02

MT (45 ◦C) 1.14

HT (60 ◦C) 1.22

The tensile strength retentions were then obtained by multiplying the exposure times
at the three test temperatures with the corresponding TSF values, as shown in Figure 15.
A curve was fitted to the data, yielding a correlation coefficient greater than 0.8, confirming
the validity of this procedure [21].

Figure 15. Tensile strength retention at the mean annual temperature (Irving, Texas).

A predictive equation, given by Equation (8), was employed to estimate the long-term
tensile strength performance of CFRP using the Arrhenius method [12,17].

f (t) =
f0

100
[Aln(t) + B], (t > 0) (8)

where:

f (t) and f0 = performance attributes at time t (in days) and zero time, respectively.
A = constant denoting degradation rate.
B = material constant reflecting the early effects of post-cure progression.

A value of B equal to 100 indicates that the material is fully cured prior to environmen-
tal exposure. Employing regression analysis in Figure 15, the predictive Equation (9) for the
mean annual temperature in Irving, Texas was developed and then used to plot Figure 16.

f (t) = −0.92ln(t) + 100 (9)
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Figure 16. Prediction model based on the mean annual temperature for Irving, Texas.

4.2. Prediction Model Calibration

It is essential to calibrate the new CFRP model with the actual field data after predicting
the long-term behavior of the CFRP laminate. Thus, the predictive Equation (9) was
modified to match the field data [22,23] by altering the degradation rate. Figure 17 shows
the calibrated prediction model along with the uncalibrated model.

Figure 17. Calibrated prediction model.

5. Discussion

In this section, the environmental reduction factors from five other international CFRP
design guidelines were compared, and the new calibrated model was compared with
ACI 440.2R-17 [20].

5.1. Environmental Reduction Factor

ACI 440.2R-17 [20] recommends that the CFRP laminate design’s ultimate strength,
ffu, shall be determined by reducing the manufacturer’s reported strength, f ∗fu, by the
environmental reduction factor, CE, as expressed in Equation (10). For the case of the
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CFRP laminate under exterior exposure, such as bridges, ACI prescribes an environmental
reduction factor of 0.85.

ffu = CE · f ∗fu (10)

where:

f ∗fu = f fu − 3σ.
f fu = mean ultimate strength.
σ = standard deviation.

The UK code, TR55 (2012) [34], gives no explicit environmental reduction factors;
rather, the characteristic material properties are divided by the factor of safety to determine
the appropriate allowable design value, ffd, as defined in Equation (11).

ffd =
ffm − 2σ

γmf · γmm · γmE
(11)

where:

ffm = mean ultimate strength.
γmf = partial safety factor for the strength of FRP.
γmm = partial safety factor for the method of manufacturing and application.
γmE = partial safety factor for modulus of elasticity of FRP.

For wet lay-up CFRP laminates, both γmf and γmm = 1.4, γmE = 1.1.
The Chinese code, GB 50608 (2010) [35], recommends calculating the allowable ulti-

mate CFRP laminate design strength using Equation (12):

ffd =
ffk

γf · γE
(12)

where:

ffk = µf − 1.645 σf.
µf = mean ultimate strength.
σf = standard deviation.
γf = reliability index and brittle failure behavior of FRP materials.
γE = environmental influence factor.

For wet lay-up CFRP laminate, the values of γf and γE = 1.4 and 1.2, respectively.
The European FIB Bulletin 14 [36] suggests calculating the CFRP laminate design

tensile strength using Equation (13):

ffd =
ffk,

γf,fib
·

ε f ue

ε f um
(13)

where:

γf,fib = CFRP safety factor (1.35 for wet lay-up).
ε f ue, ε f um = effective and mean ultimate FRP strain, respectively.

The Italian [37] and the Egyptian [38] codes recommend environmental reduction
factors identical to ACI 440.2R-17 [20].

5.2. Comparison of Calibrated Prediction Model with ACI 440.2R-17

The environmental reduction approach from ACI 440.2R-17 [20] was compared with
the calibrated prediction model. According to AASHTO LRFD Bridge Design Specifications,
the design life of highway bridges is 75 years [39]. The most conservative scenario of
rehabilitation involves retrofitting a concrete bridge at the early stages of its design life,
necessitated by impact damage from an over-height vehicle. As shown in Figure 17,
the CFRP laminate has a 75% tensile strength retention after 75 years, which is 10% less
than the environmental reduction factor from ACI 440.2R-17 [20]. This implies that ACI
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440.2R-17 [20] overestimates the design tensile strength of CFRP laminates, which may
compromise the structural integrity and safety of retrofitted bridges. Thus, the current
study proposed Equation (14) to calculate an environmental reduction factor for CFRP
laminate as a function of design life. If designers prefer to use a constant factor instead of
a variable time-dependent factor, a factor of 0.75 is recommended, which corresponds to
a design life of 77 years.

CE = −2.44ln(t) + 100 (14)

where:

CE = environmental reduction factor.
T = design life (days).

5.3. Comparison of Calibrated Prediction Model with International Codes

Table 6 compares the environmental reduction factors from six widely used design
guidelines. In order to facilitate the comparison, reciprocal safety factors of TR55 [34], GB
50608 [35], and Fib Bulletin 14 [36] were considered equivalent environmental reduction
factors. Among these sources, TR55 [34] is the most conservative, proposing an environ-
mental reduction factor of 0.51. Another study [40] also reported that the multiplicative
factors specified by TR55 [34] can significantly reduce CFRP strength.

Table 6. CFRP laminate environmental reduction factors.

Source Country Publishing Entity and Year Environmental
Reduction Factor

ACI 440.2R USA American Concrete Institute (ACI), 2017 0.85

TR55 UK The Concrete Society, 2012 0.51

GB 50608 China China Architecture & Building Press, 2011 0.60

Fib Bulletin 14 Europe International Federation for Structural
Concrete (Fib), 2001 0.74

CNR-DT 200 Italy Advisory Committee on Technical
Recommendations for Construction, 2014 0.85

ECP 208 Egypt Egyptian Housing and Building
National Research Center, 2005 0.85

The second most conservative design guideline is GB 50608 [35], recommending an
environmental reduction factor of 0.60. This underestimates the strength of the CFRP by
33%, as described by Li et al. [12], which may result in ineffective utilization of the CFRP.
The European Fib Bulletin 14 [36] suggests an environmental reduction factor of 0.74. The
Italian [37] and Egyptian [38] codes prescribe a value of 0.85, similar to ACI 440.2R-17 [20].

6. Conclusions

The current study developed a time-dependent prediction model for the environmen-
tal reduction factor of the tensile strength of CFRP laminates using the Arrhenius method
and then calibrated it using CFRP coupon test results extracted from the existing CFRP
retrofitted bridge.

Age and exposure temperature negatively affected the properties of new CFRP
coupons. The immersion of CFRP laminates in water tanks with an elevated tempera-
ture resulted in the degradation of tensile strength, and the rate of degradation increased
with an increase in the water temperature and age. The highest degradation was observed
in 60 ◦C water for 224 days of immersion. The failure strain in the new CFRP laminates de-
creased with an increase in exposure time. However, the water immersion temperature had
negligible or no effect, unlike the tensile strength. This may be attributed to the plasticizing
effect of the moisture ingress in the specimens. The 12-year-old existing CFRP samples
from an existing CFRP retrofitted bridge showed appreciable degradation in its mechanical
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properties. With identical thickness, the elastic modulus and the tensile strength of the
field samples were 3% and 21% less than the new samples, respectively, most likely due to
environmental degradation.

The study found that ACI 440.2R-17’s [20] specified environmental reduction factor
of 0.85 for CFRP laminates is an overestimation of approximately 13% as compared with
the factor of 0.75 from the developed predictive model. Therefore, using ACI 440.2R-
17’s [20] specified factor results in overestimating the design tensile strength of CFRP
laminates, which may result in an unsafe design. ACI 440.2R-17 [20] does not consider
any environmental effects on the modulus of elasticity of CFRP laminates. However, the
current study showed that the loss of the modulus of elasticity could be as high as 25%,
depending on the exposure temperature and time.

The current study was limited to CFRP and did not consider factors such as freeze-
thaw cycles, ultraviolet radiation, and immersion in alkali and acidic solutions. Thus,
future investigations can further enhance this study by incorporating the stated limitations
and developing prediction models for Glass and Aramid FRPs.
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