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Abstract: The aim of the present research work was to develop halogen and formaldehyde-free,
durable flame retardant fabric along with multifunctional properties and to find the optimal con-
ditions and parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were grown onto
100% cotton fabric using the sonochemical method. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O)
and sodium hydroxide (NaOH) were used as precursors. After ZnO NPs growth, N-Methylol
dimethylphosphonopropionamide (MDPA) flame retardant was applied in the presence of 1, 2, 3,
4-butanetetracarboxylic acid (BTCA) as cross-linkers using the conventional pad–dry–cure method.
Induced coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the de-
posited amount of Zn and phosphorous (P) contents. Scanning electron microscopy (SEM), X-ray
powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to
determine the surface morphology and characterization of the developed samples. Furthermore, the
thermal degradation of the untreated and treated samples was investigated by thermogravimetric
analysis (TGA). Furthermore, the vertical flame retardant test, limiting oxygen index (LOI), ultraviolet
protection factor (UPF), and antibacterial activity of samples were examined. The developed samples
showed excellent results for flame retardancy (i.e., 39 mm char length, 0 s after flame time, 0 s after
glow time), 32.2 LOI, 143.76 UPF, and 100% antibacterial activity.

Keywords: flame retardants; antibacterial; ZnO; nanoparticles; metal oxides

1. Introduction

Cotton fiber is one of the most plentifully used fibers all over the world. It is comfort-
able, cozy, and breathable when used in garment form [1–3]. However, it is one of the most
combustible fabrics and is very susceptive to thermal decomposition. It exhibits a very
low oxygen-limiting index and is a highly flammable fiber. It burns very quickly with a
hot flame and little sparks [4,5]. Moreover, with flammability and combustibility, cotton
fabric provides an indigent defense to human skin against UV radiation and bacterial
growth. Therefore, these are fundamental problems regarding cotton fabric, limiting its use
in industrial work wear, housing, and technical applications [6,7].

Flame retardant treatment on textile fabrics has gained significant importance because
flame retardant fabrics can be used as safety work wear in industry, firefighting, hospitals,
and in household upholstery [8,9]. Various chemical applications are involved in produc-
ing flame retardant fabrics, but most of the flame retardant chemicals contain halogen
compounds that are not environmentally friendly [10–12]. Phosphorous-based durable
flame retardant chemicals are alternative to halogen compounds. These phosphorous-based
compounds are environmentally friendly and economical for cotton textile application [13].
N-methylol dimethyl phosphonopropion amide (MDPA) is one of the most promising
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flame retardant compounds due to its durability, low toxicity, environmentally friendly
nature, and convenient application. When it is applied along with a cross-linker onto
the cotton fabric, it develops a covalent bond with a hydroxyl group of cotton cellulose,
enhancing its durability [14–16].

Nanotechnology is another important field that has been utilized successfully and
efficiently in the industry to achieve desired fruitful results. Nanomaterials in the textile in-
dustry have earned great importance due to their multipurpose uses [17]. Nanomaterials in
the form of nanoparticles are being used in the textile industry for antibacterial textiles [18],
UV protection, increased flame retardancy, self-cleaning, electromagnetic shielding (EMI),
conductive textiles, etc. [19–21]. Among the nanoparticles used in industry, metal oxides
are of great importance because of their multipurpose properties [22]. Zinc Oxide (ZnO)
is one of the most versatile inorganic metal oxides. It is an n-type semiconductor, white
in color, with a high refractive index and a wide band gap of 3.37 ev [23,24]. Along with
UV protection, antibacterial, and self-cleaning properties, zinc oxide nanoparticles (ZnO
NPs) are being used in flame retardant coating [25,26]. ZnO NPs are used as co-catalysts
in flame retardant finishings and are very effective in char formation during the burning
of fabric [12]. Researchers showed that ZnO NPs, when used as co-catalysts, increase the
flame retardancy of cotton fabric by increasing its thermal stability, as well as increasing the
durability of the flame retardant [27–29]. Various techniques are being used for in situ syn-
thesis of ZnO NPs onto fabric, such as hydrothermal, solvochemical, sol-gel, precipitation
method, sonochemical, microwave irradiation method, etc. [30,31].

The main challenges in the flame retardant/ZnO NPs system are the use of formaldehyde-
free cross-linker, homogeneous, and stable deposition of ZnO NPs. BTCA is a formaldehyde-
free cross-linker that can be used for cotton flame retardant systems [32,33]. For ZnO NPs,
Javed et al. reported that sonochemical is an advanced and economical method for the in
situ synthesis of ZnO NPs onto cotton fabric. This technique controls the nanoparticle size
without affecting the strength of the fabric. It also allows ultrasonic waves to disperse and
deposit the nanoparticles onto the fabric more stably, homogeneously, and evenly [34].

In this research, ZnO NPs were in situ synthesized onto cotton fabric using the
ultrasonic irradiation method. After that, MDPA flame retardant in the presence of
formaldehyde-free cross-linker BTCA was applied onto the cotton fabric by the pad–dry–
cure method. The main goal of the present work was to determine the optimized parameters
for in situ sonochemical synthesis of ZnO NPs and investigate the role of ZnO NPs in flame
retardant finishing and their influence on the functional properties.

To the best of the authors’ knowledge, this is the first study on flame retardant appli-
cation in combination with MDPA along with formaldehyde-free cross-linkers and ZnO
NPs using the sonochemical method. The finding of this study could be beneficial for flame
retardant application in safety textiles (welding work wear, electrical work wear, industrial
work wear, etc.).

2. Materials and Methods
2.1. Materials

The 100 percent cotton fabric with a plain weave texture, 155 g/m2 density, 52 ends/inch,
28 picks/inch, and 20 tex warp count, 20 tex filling count, was acquired from the Tech-
nical University of Liberec, Czech Republic. Citric acid C6H8O7, zinc acetate dihydrate
(Zn(CH3COO)2·2H2O), sodium hydroxide (NaOH), sodium hypophosphite (SHP), and
1, 2, 3, 4-butanetetracarboxylic acid (BTCA) chemical reagents were procured from Merk,
Prague, Czech Republic. N-Methylol dimethylphosphonopropionamide (MDPA) was ob-
tained from the Huntsman Corporation. Acramin SW acrylic-based binder was obtained
from Tanatex Chemicals, The Netherlands. All the obtained chemical reagents were of
analytical grade and utilized as purchased without further purification.
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2.2. Surface Functionalization of Cellulose

To obtain maximum adherence of ZnO NPs and MDPA on the cellulosic structure of
the cotton fabric, the cotton fabric was pretreated with a 0.5% aqueous solution of citric
acid in the presence of 0.5% sodium hypophosphite as a catalyst for cellulosic surface
functionalization. As the citric acid and cotton fibers were added to deionized water, both
were ionized, as shown in Equations (1) and (2). In a further reaction, carboxylic groups of
citric acid were easily attached to the hydroxyl groups on the cotton fabric, as shown in
Equation (3) [20].

C6H8O7 + H2O ↔ C6H7O−7 + H3O+, (1)

Cellulose−OH + H2O ↔ Cellulose−O + H3O+, (2)

C6H7O−7 + Cellulose−OH + H2O ↔ Cellulose−CA + H3O+. (3)

2.3. In-Situ Sonochemical Synthesis of ZnO NPs on Cotton Fabric

ZnO NPs were synthesized and stabilized onto the cotton fabric concomitantly by
hydrolysis of zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH)
in deionized water. The precursors, zinc acetate dihydrate (Zn(CH3COO)2·2H2O) (0.05 M,
0.1 M, 0.15 M) and sodium hydroxide (NaOH) (0.1 M, 0.2 M, 0.3 M) with different molar
concentrations, were dissolved separately in deionized water under vigorous magnetic
stirring (300 rpm) conditions. After that, the cotton fabric piece was dipped into the
zinc acetate dihydrate solution for 10 min under vigorous magnetic stirring (300 rpm).
After 10 min, the NaOH solution was poured dropwise into that solution at ambient
temperature and under vigorous magnetic stirring (300 rpm). For absolute completion of the
reaction mechanism, the obtained solution containing the immersed cotton fabric piece was
sonicated for different sonication times (30 min, 60 min, 90 min, and 120 min). The Branson
sonication probe (20 kHz, 50% efficiency, 150 W) was utilized in this experimental procedure.
The reaction temperature was maintained at 80 ◦C by utilizing a hot plate. Then, the treated
fabric pieces were washed thoroughly with deionized water to remove any impurities.
Eventually, the obtained fabric pieces were placed in an air oven at 90 ◦C for 120 min.
In order to compare the sonochemical process and to accentuate the critical influence of
ultrasound irradiation waves, one sample was developed using a conventional magnetic
stirring method using the same precursor concentrations (0.1 M Zn(CH3COO)2·2H2O,
0.3 M NaOH) and temperatures (80 ◦C) as the optimized sample, under vigorous magnetic
stirring (300 rpm) for 90 min. In this research work, this sample was named sample A.
Equations (4)–(6) show the proposed mechanism of ZnO NPs synthesis on the cotton fabric.

Zn(CH3COO)2· 2H2O + 2NaOH→ 2CH3COONa + Zn+ + 2OH− + 2H2, (4)

Zn+ + 2OH− → Zn(OH)2, (5)

Zn(OH)2 → ZnO + H2O. (6)

2.4. MDPA Application

MDPA application was performed with the help of a laboratory padder (Werner Mathis
AG Switzerland) at 80% wet pick up. The bath formulation used 300 g/L MDPA, 60 g/L
BTCA crosslinker, 50 g/L SHP catalyst, and 5 g/L acramin SW binder. Various preliminary
trials were conducted to determine the best compatible concentrations of MDPA and BTCA
with optimized ZnO NPs loaded samples. ZnO NPs loaded samples were impregnated in
MDPA and BTCA solution, padded and dried at 110 ◦C for 3 min, and cured at 150 ◦C for
2 min. In order to determine the crucial role of ZnO NPs in flame retardancy, a cotton fabric
sample was treated with MDPA and BTCA without ZnO NPs treatment. In this research
work, that sample was named sample B.

Table 1 show the complete experimental design for the in situ synthesis of ZnO NPs
on the cotton fabric and MDPA application. Figure 1 show the schematic diagram for the
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surface functionalization of cellulose, in situ synthesis of ZnO NPs on the cotton fabric, and
MDPA application. Table 2 show the results for flammability and functional properties.

Table 1. Molar concentrations of the precursors, sonication time, MDPA, resulting Zn contents,
P contents, and add-on %.

Sample
Zinc

Acetate
(M)

NaOH
(M)

Sonication Time
(Minutes)

MDPA
(g/L)

Zn Contents P Contents Add-On

(%) Std.
Dev. (%) Std.

Dev. (%) Std.
Dev.

1 0.05 0.1 30 300 1.69 0.071 3.88 0.083 16.92 0.157
2 0.05 0.1 60 300 1.84 0.041 3.86 0.079 17.11 0.128
3 0.05 0.1 90 300 2.13 0.093 3.83 0.062 17.45 0.152
4 0.05 0.1 120 300 1.91 0.080 3.84 0.074 17.22 0.161
5 0.05 0.2 30 300 2.83 0.107 3.81 0.086 18.31 0.186
6 0.05 0.2 60 300 3.19 0.099 3.79 0.053 18.61 0.148
7 0.05 0.2 90 300 3.34 0.138 3.78 0.094 18.91 0.226
8 0.05 0.2 120 300 3.27 0.071 3.79 0.062 18.78 0.142
9 0.05 0.3 30 300 4.64 0.108 3.75 0.057 20.38 0.171

10 0.05 0.3 60 300 4.86 0.067 3.73 0.082 20.70 0.132
11 0.05 0.3 90 300 5.09 0.103 3.72 0.065 20.96 0.155
12 0.05 0.3 120 300 5.01 0.055 3.72 0.068 20.84 0.133
13 0.1 0.1 30 300 5.34 0.073 3.71 0.054 21.23 0.123
14 0.1 0.1 60 300 5.47 0.085 3.70 0.073 21.43 0.163
15 0.1 0.1 90 300 5.65 0.051 3.70 0.064 21.60 0.127
16 0.1 0.1 120 300 5.53 0.054 3.70 0.062 21.51 0.112
17 0.1 0.2 30 300 8.78 0.077 3.63 0.076 25.32 0.168
18 0.1 0.2 60 300 9.07 0.067 3.61 0.058 25.65 0.143
19 0.1 0.2 90 300 9.31 0.043 3.58 0.050 25.48 0.194
20 0.1 0.2 120 300 9.17 0.071 3.60 0.074 25.77 0.203
21 0.1 0.3 30 300 11.23 0.064 3.50 0.049 28.24 0.162
22 0.1 0.3 60 300 12.09 0.076 3.47 0.038 29.21 0.181
23 0.1 0.3 90 300 13.14 0.068 3.44 0.067 30.47 0.129
24 0.1 0.3 120 300 12.54 0.059 3.46 0.052 29.79 0.117
25 0.15 0.1 30 300 5.39 0.059 3.72 0.068 21.31 0.134
26 0.15 0.1 60 300 5.61 0.068 3.69 0.048 21.54 0.108
27 0.15 0.1 90 300 5.73 0.042 3.69 0.056 21.72 0.112
28 0.15 0.1 120 300 5.57 0.054 3.70 0.072 21.52 0.138
29 0.15 0.2 30 300 8.89 0.050 3.62 0.058 25.42 0.116
30 0.15 0.2 60 300 9.21 0.024 3.59 0.037 25.82 0.089
31 0.15 0.2 90 300 9.43 0.041 3.55 0.048 26.11 0.102
32 0.15 0.2 120 300 9.29 0.032 3.58 0.064 25.91 0.113
33 0.15 0.3 30 300 9.63 0.064 3.54 0.028 26.31 0.094
34 0.15 0.3 60 300 9.91 0.034 3.53 0.038 26.65 0.097
35 0.15 0.3 90 300 10.13 0.051 3.52 0.058 26.91 0.124
36 0.15 0.3 120 300 9.97 0.079 3.53 0.046 26.57 0.146
A 0.1 0.3 90 (magnetic stirring) 300 7.83 0.102 3.67 0.061 24.09 0.188
B - - - 300 - - 3.92 0.077 14.93 0.93
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Figure 1. Schematic diagram for surface functionalization of cellulose, in situ synthesis of ZnO NPs
on the cotton fabric, and MDPA application.

Table 2. Experimental results for flammability test, LOI, bacterial reduction %, and UPF.

Sample

Flammability Test
LOI

Bacterial Reduction %
UV ProtectionAfter Flame

Time
After Glow

Time Char Length S. aureus E. coli

(s) Std.
Dev. (s) Std.

Dev. (mm) Std.
Dev. (%) Std.

Dev. R (%) Std.
Dev. R (%) Std.

Dev. UPF Std.
Dev.

Untreated 19.34 3.216 9.62 1.867 Completely
burned - 17.6 0.262 - - - - 4.78 0.117

1 7.42 0.117 3.25 0.130 103 1.923 24.2 0.291 41.78 3.448 30.34 3.379 19.12 0.500
2 7.02 0.133 3.11 0.080 99 2.121 24.7 0.254 43.29 3.526 34.67 4.539 20.31 0.365
3 6.,24 0.176 2.94 0.107 95 1.224 25.1 0.071 47.86 3.720 40.45 3.423 20.87 0.254
4 6.74 0.119 3.03 0.084 96 0.707 24.8 0.187 45.76 4.211 37.47 4.502 20.64 0.145
5 5.83 0.212 2.72 0.175 92 2.000 25.4 0.141 49.97 5.535 41.23 5.051 20.94 0.333
6 5.26 0.168 2.33 0.167 90 2.345 25.7 0.100 51.79 4.442 45.57 3.760 21.53 0.390
7 4.19 0.222 2.04 0.074 89 0.704 25.8 0.158 59.93 3.761 50.78 4.039 21.72 0.289
8 4.84 0.253 2.17 0.137 89 1.000 25.7 0.072 52.79 5.963 45.91 2.483 21.67 0.354
9 3.87 0.224 1.91 0.113 83 1.870 26.0 0.122 69.86 4.751 59.92 3.621 32.52 0.418
10 3.58 0.178 1.62 0.077 78 3.114 26.1 0.212 73.32 3.729 65.76 3.305 33.71 0.294
11 2.82 0.204 1.06 0.059 76 1.581 26.3 0.108 78.84 4.300 74.65 2.734 34.13 0.206
12 3.12 0.147 1.34 0.123 76 1.214 26.1 0.123 75.54 4.326 71.78 2.152 33.98 0.214
13 2.09 0.213 0.78 0.092 73 1.225 26.7 0.119 81.45 3.413 77.87 2.160 34.39 0.231
14 1.56 0.167 0.27 0.054 71 1.870 26.9 0.164 85.42 4.032 82.98 3.313 37.17 0.376
15 0.59 0.108 0 0 68 2.645 27.3 0.137 94.43 1.606 91.46 4.328 49.09 1.586
16 1.17 0.125 0 0 70 2.549 27.0 0.094 89.95 2.142 84.56 2.688 37.98 0.906
17 0 0 0 0 55 2.738 29.2 0.146 100 0 98.64 0.869 67.74 1.103
18 0 0 0 0 53 2.121 29.4 0.086 100 0 100 0 73.89 1.623
19 0 0 0 0 51 2.236 29.6 0.092 100 0 100 0 93.34 2.465
20 0 0 0 0 52 2.915 29.5 0.128 100 0 100 0 82.98 2.613
21 0 0 0 0 42 2.167 31.2 0.114 100 0 100 0 134.32 3.181
22 0 0 0 0 40 1.788 31.9 0.099 100 0 100 0 134.87 2.776
23 0 0 0 0 39 0.707 32.2 0.102 100 0 100 0 143.76 3.439
24 0 0 0 0 40 1.581 32.0 0.110 100 0 100 0 139.93 2.645
25 1.97 0.145 0.53 0.036 73 1.140 26.8 0.146 84.49 2.597 80.54 2.172 36.89 0.581
26 0.92 0.115 0 0 69 2.726 27.0 0.173 93.23 2.100 87.76 2.338 48.04 1.034
27 0.42 0.078 0 0 65 1.643 27.4 0.085 95.67 1.378 92.51 2.311 50.96 1.452
28 1.02 0.106 0 0 70 2.126 27.1 0.167 90.42 2.404 85.78 1.636 42.74 1.215
29 0 0 0 0 55 2.166 29.3 0.118 100 0 100 0 71.87 1.092
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Table 2. Cont.

Sample

Flammability Test
LOI

Bacterial Reduction %
UV ProtectionAfter Flame

Time
After Glow

Time Char Length S. aureus E. coli

(s) Std.
Dev. (s) Std.

Dev. (mm) Std.
Dev. (%) Std.

Dev. R (%) Std.
Dev. R (%) Std.

Dev. UPF Std.
Dev.

30 0 0 0 0 51 1.789 29.5 0.090 100 0 100 0 84.45 1.467
31 0 0 0 0 50 1.562 29.7 0.114 100 0 100 0 97.12 3.991
32 0 0 0 0 51 3.741 29.6 0.158 100 0 100 0 87.92 2.032
33 0 0 0 0 49 1.303 29.9 0.172 100 0 100 0 104.45 2.279
34 0 0 0 0 47 0.836 30.1 0.126 100 0 100 0 111.56 3.003
35 0 0 0 0 44 1.870 30.4 0.132 100 0 100 0 124.47 5.080
36 0 0 0 0 47 1.224 30.2 0.121 100 0 100 0 121.34 2.711
A 2.13 0.754 0 0 76 3.824 27.7 0.192 96.27 7.358 93.52 5.674 52.05 6.092
B 8.04 0.246 5.21 0.232 127 4.949 23.8 0.097 - - - - 13.23 0.268

2.5. Characterization and Testing of Functional Properties

The induced coupled plasma atomic emission spectrometer (ICP AES, Optima7300 DV,
Perkin-Elmer Corporation, Waltham, MA, USA) was utilized to analyze the zinc (Zn) and
phosphorous (P) content. The developed fabric sample weighing 0.1 g was treated with
8 mL of concentrated nitric acid (HNO3) (65%) until the fabric wholly dissolved. Then, the
obtained solution was shifted to a volumetric flask of 100 mL capacity, and finally, dilution
was carried out with deionized water.

The add-on% (uptake) was calculated according to Equation (7) and tabulated in
Table 1.

Add on% =
w f − wi

wi
× 100. (7)

In Equation (7), wf is the final weight of the developed sample and wi is the initial
weight of the untreated sample.

The surface of the pristine cotton and developed samples was visualized using a
Quanta 200 FEG scanning electron microscope (SEM) (FEI Company, Hillsboro, OR, USA).

The particle size of the synthesized ZnO NPs was examined by employing dynamic
light scattering (DLS) technology using the Malvern zeta sizer (Malvern Panalytical Ltd.,
Malvern, UK). After removing the fabric from the synthesis solution, the remaining solution
was centrifuged at 5000 rpm for 3 min to separate the solid ZnO NPs from the liquid, and
then the separated solid ZnO NPs were dried in an air oven at 90 ◦C for 120 min. The
obtained ZnO NPs were dispersed in deionized water with the help of an ultrasonic probe.
Eventually, the DLS technique was employed.

The XRD patterns were measured using an X-ray diffraction system (Powder X-ray
diffraction system, ARL, X TRA, Thermo Scientific, Waltham, MA, USA). The measurements
were recorded in the range of diffraction angle 2θ = 10◦–70◦, with step size 0.02, a scan rate
of 2 [◦/m], and 0.6 integration duration. The average nano crystallite size was calculated
by employing the Scherrer Equation (8).

d =
K y

βcosθ
. (8)

In Equation (8), d is the nanocrystallite size, K is the scherrer constant (0.89), L is the
X-ray wavelength, β is the full-width at half maximum of the peak, and θ is the Bragg
diffraction angle.

Fourier transform infrared spectroscopy (FTIR) was employed on the developed
samples and pristine cotton to investigate the surface chemical structure. The measure-
ments were performed at room temperature with the help of a Perkin Elmer spectrometer
equipped with Thermo Scientific Nicolet IS50 FT-IR USA attenuated total reflectance (ATR)
technology. The spectra were recorded in the range of 4000 to 400 cm−1 using ZnSe crystal
at a resolution of 4 cm−1 with 32 scans.

The thermal stability of the developed and untreated samples was examined with
the help of thermogravimetric analysis (TGA) using a TGA/SDTA 851 METLER TOLEDO
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analyzer. The untreated and developed samples were subjected to heat in a synthetic air
atmosphere from 30 ◦C to 700 ◦C with a 10 ◦C/min heating rate. Finally, the weight loss
percentage of the samples was measured.

To evaluate the flammability of the untreated cotton samples and developed samples,
a vertical flame test (ASTM 6413-2015) was employed.

The LOI values were recorded for untreated and developed samples according to
the standard test method ASTMD 2863-97. In this method, the sample is ignited with a
combustible flame in an oxygen/nitrogen environment. Then, the oxygen concentration
in the oxygen/nitrogen environment is decreased until the flame is extinguished. The
minimum concentration of oxygen which supports the combustion is recorded. LOI is
expressed as a volume percentage and calculated according to the following Equation (9).

LOI = (100×O2)/(O2 + N2) (9)

Pristine cotton samples and treated samples were analyzed for their UV protective
properties on a Varian CARY 1E UV/VIS spectrophotometer equipped with a DRA-CA-301
integration sphere and solar screen software. The samples were measured in the UV range
of 280 nm to 400 nm. The transmittance measurements and calculations of the UPF were
carried out in accordance with the AATCC TM 183 standard. The UPF value was calculated
according to Equation (10).

UPF =
∑400nm

280nm EλSλ∆λ

∑400nm
280nm EλSλTλ∆λ

. (10)

Eλ is the solar spectral irradiance, Sλ is the relative erythemal spectral response,
∆λ is the measured wavelength interval in nanometers, and Tλ is the average spectral
transmittance from the sample.

The quantitative method AATCC 100-2012 was used to analyze the antibacterial
performances of the samples. According to this standard, 1 mL of bacterial inocula was
taken in a conical flask, and fabric pieces (4.8 ± 0.1 cm diameter) were added to that
flask and allowed to remain in contact with the bacterial inocula for 24 h. After that, the
solution was subjected to serial dilution up to 10−7 in nutrient broth. Then, the 0.1 mL of
the dilution was transferred to an agar plate and finally incubated for the duration of 24 h
at a temperature of 37 ◦C. The no. of bacterial colonies that appeared was counted. The
bacterial reduction % was calculated according to the following Equation (11).

R% =
A− B

A
× 100 (11)

where R is the bacterial reduction %, A is the no. of bacterial colonies that appeared
from the untreated sample, and B is the no. of bacterial colonies that appeared from the
treated sample.

The home laundering washing durability of the treated samples was examined as per
the ISO 105-CO6 standard. Each wash cycle of this method is equal to five home laundering.
The treated samples were washed at 50 ◦C for 45 min in the presence of 4 g/L washing
detergent. Finally, the washed samples were rinsed and then dried at 80 ◦C. Eventually, the
washed samples were investigated for their functional properties.

3. Results

All the results present in this research study are the mean of five replications.

3.1. Content Analysis

ICP-AES technique was employed to analyze the Zn and P contents of the developed
samples and tabulated in Table 1. Zn contents analysis was conducted to decide the most
productive and optimized sonication time and concentrations of chemical reagents. It
can be seen from Table 1 that with increased sonication time up to 90 min synthesis, the
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mass of Zn contents also increased. However, after being synthesized for 90 min, the
mass of Zn contents decreased. After a critical time of 90 min, ultrasonic waves might
lead to the removal the ZnO NPs from the fabric. The maximum synthesized mass of Zn
contents was achieved for sample 23, which exhibited Zn contents of 13.14%. Therefore,
the optimal sonication time for this experiment is 90 min, and the optimal concentrations
of the reagents are 0.1 M Zn(CH3COO)2·2H2O and 0.3 M NaOH. It is evident from Table 1
that the sonication time and concentrations of chemical reagents have a significant effect on
the mass of Zn contents synthesized.

3.2. SEM Analysis

SEM Images were measured to investigate the surface morphology of the pristine
cotton fabric and ZnO NPs-coated samples. It can be seen from Figure 2a,b that pristine
cotton has a clean and smooth surface. Figure 2c,d show the SEM images for optimized
sample 23, which reveals that after optimized sonochemical treatment, ZnO NPs are spread
onto the cotton fabric surface homogeneously, finely, and evenly. Figure 2c,d show that the
surface of the fabric is entirely covered by the ZnO NPs. The deposition of ZnO NPs onto
the cotton fabric surface results from attractive forces between cellulosic functional groups
and ZnO NPs [35]. SEM images show that deposition of ZnO NPs created roughness on the
surface of fibers. The Figure 2f SEM image for sample A shows that there is a deposition of
ZnO NPs onto the cotton fabric surface after the conventional magnetic stirring method,
but as compared to the sonochemical method, the ZnO NPs are not spread smoothly, finely,
and homogeneously. Figure 2e show the SEM image for the optimized sample 23 at high
resolution, showing that ZnO particles are deposited onto the cotton surface at a nanoscale
with narrow size distribution. Moreover, Figure 2e reveal that most of the ZnO NPs have a
round and spherical shape.
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3.3. Particle Size

Figure 3 show the particle size distribution of sonochemical in situ synthesized ZnO
NPs (optimized sample 23). It can be seen from the figure that nanoparticle size distribution
is uni-modal, with an average particle size of 30.89 nm. At the nanoscale, the particles
show increased surface areas, allowing the nanoparticles to be utilized in many technical
applications [36,37].
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Figure 3. Particle size distribution Sample 23.

3.4. XRD Analysis

The XRD diffractograms of pristine cotton fabric and optimized sonochemically treated
sample 23 are presented in Figure 4. It is obvious from Figure 4 that the pristine cotton
fabric only has the characteristic peaks of cellulose (at 2θ = 14.8, 16.5, and 22.7) (JCDPS
No. 03-0226) [38]. In comparison, sample 23 has some additional peaks (at 2θ = 32.1, 34.7,
36.5, 47.8, 56.7, 63.1, 68.1, 69.2) in the diffraction planes (100), (002), (101), (102), (110), (103),
(200), and (112). These are characteristic peaks of ZnO NPs (as per diffraction standard
No. 36-1451 defined by the Joint Committee on powder diffraction standard (JCDPS)) [39].
The additional peaks are evidence of the presence of the crystalline hexagonal wurtzite
structure of ZnO NPs [40–42]. The peak in the plane (002) has the highest intensity, which
shows that the c-axis direction is the main dominant and leading growth direction for ZnO
NPS. Moreover, in the case of sample 23, the peak intensity of the cellulose decreased due
to ZnO NPs loading. Furthermore, there is no extra peak in the diffractogram of sample 23
other than cellulose and ZnO NPs, which shows the purity of the ZnO NPs. The crystallite
size measured by the Scherrer equation for sample 23 was 22.4 nm.
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3.5. FTIR Analysis

The FTIR spectra for pristine cotton, citric acid treated cotton, sample 23, sample A,
and sample B are presented in Figure 5. The pristine cotton has an O-H stretching band at
3300 cm−1, which contains hydrogen bonding, and a band at 2900 cm−1 that is the result of
C-H stretching. The band at 1310 cm−1 is due to C-H wagging, while the peak at 1640 cm−1

shows the presence of absorbed H2O molecules. The band at 1030 cm−1 is attributed to
C=O stretching. The C–H bending is evident from the peak available at 1314 cm−1 [43,44].
After citric acid treatment, a new absorption peak appeared at 1729 cm−1, which can be
attributed to the absorption of the carboxyl group from citric acid [45]. In the case of the
treated samples, there are some new peaks. The peak due to P=O is centered at 1250 cm−1,
while the peak centered at 884 cm−1 is associated with the P–O bond. Furthermore, the
presence of the amide group can be confirmed by the peaks at 1624 cm−1 (amide vibration)
and 1528 cm−1 (amide vibration), which are evidence of flame retardant treatment on the
cotton fabric [46]. Moreover, in the case of sample A and sample 23, there is a major shift of
FTIR spectra in the wavenumber range of 400 cm−1 to 500 cm−1, which can be attributed
to the presence of ZnO NPs on the cotton fabric. In the case of sample 23, the intensity
of spectra shift is more than sample A, which can be attributed to the high amount of
ZnO NPs available in Sample 23. The shift of spectra in that wavenumber range can be
attributed to the formation of the –CH2–O–Zn structure [41,47].
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3.6. Thermal Stability

The thermal degradation trend of the fabric can be used to evaluate the flammability
behavior of cotton fabric. Therefore, thermogravimetric analysis of pristine cotton and
developed samples was performed in a synthetic air environment. Figure 6a show the
weight loss percentage with the rise of temperature, Figure 6b show the weight loss rate with
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the rise of temperature, whereas Table 3 shows the values of decomposition temperatures
for pristine cotton and developed samples. In the case of the TGA curve for pristine cotton,
there is only little weight loss below 343 ◦C, which corresponds to the evaporation of
water molecules. In this region, the decarboxylation and dehydration process of cotton
cellulose occurred, forming the aliphatic char and combustible gasses. The region 350 ◦C
to 550 ◦C corresponds to the transformation of aliphatic char into aromatic form carbon
dioxide and carbon monoxide [48]. Citric acid-treated cotton fabric showed the same
degradation behavior as pristine cotton but with little increase in residue. From Table 3, it
can be seen that the Tonset 10% values shifted towards lower temperatures after MDPA and
ZnO NPs coating. For pristine cotton, Tonset 10% is 319.23 ◦C, while for Sample 23, Tonset
10% is 266.07 ◦C which is the lowest of all the samples. This is attributed to the stronger
performance of MDPA and ZnO NPs for the decomposition of cellulose as compared to
pristine cotton. This Tonset mass loss is due to the evaporation of moisture contents from
the fabric. Loading of MDPA and ZnO NPs tends to escalate the fabric’s moisture, hence
lowering the Tonset for developed samples than pristine cotton [49]. Tmax for pristine
cotton was observed at 343.15 ◦C, while after treatment, Tmax decreased, and the lowest
Tmax was observed for Sample 23 (i.e., 280.19 ◦C). From Table 3, it can be seen that the
char residue at Tmax and 600 ◦C increased after treatment compared to pristine cotton.
This improvement can be explained as phosphorous components in MDPA were turned
into phosphoric acid, which caused the fabric’s dehydration, hence leading to the lower
degradation temperature and higher char residues [50]. The high char residual amount
in the case of Sample 23 corresponds to ZnO NPs [51]. The quantitative amount of char
residue produced is associated with flame retardance performance [52]. The reduction in
degradation temperature after MDPA treatment might be due to the fact that the P–O–C
bond is less stable than the C–O–C bond [53]. After ZnO NPs treatment, degradation
temperature further decreased, which can be attributed to higher moisture contents in the
fabric after ZnO NPs treatment [49]. The effect of ZnO NPs on the thermal stability can
be described by coating theory; ZnO NPs formed a protective layer on the surface of the
substrate, which restricted the reach of air to the substrate hence excluding the oxygen,
finally affecting the thermal stability [51].
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Table 3. Thermal characteristics of pristine cotton and developed samples.

Sample Tonset 10% (◦C) Tmax (◦C) Residue at Tmax
(%)

Residue at
600 ◦C (%)

Pristine cotton 319.23 343.15 47.04 2.29
Cotton-CA 317.12 335.52 62.93 4.19
Sample A 280.34 296.13 68.47 30.91
Sample B 295.18 304.32 67.11 24.25
Sample 23 266.07 280.19 70.21 38.17

3.7. Vertical Flame Test

The measurements of the vertical flame test of untreated and developed samples are
shown in Table 2 and Figure 7. It can be seen from Table 2 and Figure 7 that MDPA has a
good effect on the flame retardancy of the cotton fabric, which is further improved by the
deposition of ZnO NPs. It is evident from the results that flame retardant properties (i.e.,
after flame time, after glow time, and char length) improved with increased deposition of
ZnO NPs. The untreated sample burned intensely in contact with flame. After detaching
the flame source, the burning process of the untreated sample continued until it completely
burned out without any char formation. On the other hand, all the treated samples (MDPA
treated and MDPA + ZnO NPs treated) were self-extinguished. Furthermore, char formation
was observed in the case of treated samples (MDPA treated and MDPA + ZnO NPs treated).
Moreover, it was observed that the after flame time, after glow time, and char length of
the treated samples decreased with an increased amount of Zn contents. The best flame
retardant results were observed in the case of sonochemically optimized Sample 23. Sample
23 self-extinguished immediately after the removal of the combustion source and had zero
seconds after flame time, zero seconds after glow time, and 39 mm char length. Sample A,
developed by the conventional magnetic stirring method, had 2.13 seconds after flame time,
zero seconds after glow time, and 76 mm char length, while sample B, only treated with
MDPA, had 8.04 seconds after flame time, 5.21 seconds after glow time, and 127 mm char
length. The char formation in the case of MDPA and MDPA + ZnO NPs treated samples was
because of water removal from the fabric, which created the insulating layer and protected
the fabric after flame removal, hence increasing the flame retardancy [54]. Furthermore,
ZnO NPs acted as co-catalysts and decreased the flame spread rate; therefore, improved
flame retardancy was achieved [55]. Figure 8 show the mechanism of flame retardancy. The
comparison of current research results with literature is shown in Table 4.

Table 4. Comparison of flame retardancy.

Fabric Treatment After Flame Time (s) After Glow Time (s) Char Length (mm) Reference

MDPA + ZnO NPs 0 0 39 This study
MDPA 0 0 59 [14]

MDPA + Dihydroxy ethylene urea 0.64 0 103 [56]
Diethyl

methacryloylphosphoramidate 0 0 125 [57]

Bis(hydroxymethyl)phosphinic-
methacrylate 0 0 90 [58]

Melamine salt of tannic phosphate 0 0 65 [59]
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3.8. Limiting Oxygen Index (LOI)

LOI can be defined as the minimum available percentage amount of oxygen gas in
the oxygen/nitrogen gas mixture that is necessary to continue the combustion process of
a material [60]. As the LOI value of a material is increased, it becomes more arduous
to combustion. An LOI value of more than 27 indicates that the material is a flame
retardant [60,61]. Table 2 and Figure 9 show the values for the LOI of treated and untreated
fabric samples. It can be seen from Table 2 that the untreated sample has an LOI value of
17.6, which indicates that pristine cotton is highly combustible. On the other hand, sample B,
having flame retardant application, has an LOI value of 23.8, which further increased after
ZnO NPs application. Table 2 and Figure 9 show that the LOI value increased as the loaded
concentration of ZnO NPs increased. These results are in accordance with Zhang et al., who
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concluded that the LOI value of cellulosic fibers increases as the loaded concentration of
ZnO NPs increases [8]. The higher LOI value after ZnO NPs application might be due to the
formation of a protective layer on fibers by ZnO NPs. The best LOI value was observed at
32.2 for sonochemical optimized sample 23, while sample A, developed by the conventional
magnetic stirring method, had the LOI value of 27.7, which is very near to the LOI value
(27.4) of sample 27, which had less ZnO NPs concentration compared to Sample A. This
might be due to the homogenous and smooth distribution of ZnO NPs in the case of sample
27 after the sonochemical process compared to the conventional magnetic stirring process.
The comparison of current research results with literature is shown in Table 5.
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Table 5. Comparison of LOI.

Fabric Treatment LOI Reference

MDPA + ZnO NPs 32.2 This study
MDPA 26.3 [14]

Diethyl methacryloylphosphoramidate 30.2 [57]
Hydroxyl-functional organophosphorus 31.6 [52]

N,N-dimethylformamide + Zinc ion 30 [8]
MDPA + Dihydroxy ethylene urea 28.1 [56]

3.9. Antibacterial Activity

Antibacterial activity of the developed samples was investigated according to the
colony count test procedure and is shown in Table 2 and Figure 10. The results show that
treated fabrics exhibit excellent bacterial reduction for both E. coli and S. aureus bacteria.
From Table 2 and Figure 10, it is evident that with an increased loaded amount of ZnO
NPs, the antibacterial activity of the treated samples also increased for both E. coli and
S. aureus bacteria. Furthermore, 100% S. aureus reduction was achieved with an 8.78%
loaded concentration of Zn contents (sample 17). In comparison, 100% E. coli reduction
was achieved with a 9.07% loaded concentration of Zn contents (sample 18). As the ZnO
NPs interact with bacteria, they generate reactive oxygen species, such as H2O2, •OH−,
and •O2

−. These reactive oxygen species damage the protein and DNA of the bacterial
cell, resulting in the death of a bacterial cell. Furthermore, ZnO NPs deactivate the various
necessary enzymes present in a bacterial cell; it is determined by the interaction between
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the ZnO NPs and the thiol group present in the bacterial cell. Moreover, the attachment of
ZnO NPs onto the cell wall of the bacteria increases the concentration of the Zn2+ cations in
the cytoplasm, which results in the death of bacteria [62–64]. A comparison of the current
research results with the literature is presented in Table 6.
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Table 6. Comparison of antibacterial activity.

ZnO NPs Synthesis Method
Bacterial Reduction %

Reference
S. aureus E. coli

Sonochemical method 100 100 This study
Wet chemical method >99.99 80 [65]

Microwave Irradiation Method 100 100 [23]
Solochemical process 100 - [66]

3.10. Ultraviolet Protection Factor (UPF)

There are three types of UV radiation in sunlight, i.e., UVA, UVB, and UVC. Among
these radiations, UVA is the most dangerous; it harms human skin and is the main cause of
DNA damage [67,68]. UV protective clothing can protect human skin from UV radiation.
Ultraviolet protection factor (UPF) is one of the basic parameters to evaluate the UV-
blocking ability of a fabric that specifies the potentiality of fabrics to shield the skin against
UV radiation [69]. The Australian Standardization Institute classifies the protection level of
fabric against its UPF value and the details are provided in Table 7 [70].

Table 7. UPF value and protection category of fabric categorized by The Australian Standardization
Institute.

UPF Value Protection Level

Below 15 Not good
15–24 Good
24–39 Very good

40 and above Excellent

The UV protection factors (UPF values) of the untreated and developed samples are
shown in Table 2 and Figure 11. It is apparent from Table 2 and Figure 11 that untreated
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cotton fabric has a UPF value of 4.78, while the UPF value of sonochemically synthesized
optimized sample 23 has 143.76. It can also be seen from Table 2 and Figure 11 that with
the increase in ZnO NPs concentration, the UPF values of the samples also increase. The
study by Han and Yu supports these results; they concluded that the UV blocking ability of
textile material increases with increasing metal oxide in the textile matrix [71]. The higher
UPF value indicates that the fabric has a higher ability to protect against UV radiations [72].
ZnO NPs have a high refractive index, which causes UV radiations to be scattered when
they interact with ZnO NPs, and not to be transmitted to the human body [73]. ZnO NPs
also have a high ability to absorb UV radiations and convert them to infrared light, which
is harmless [30,74]. Sample A with 7.83% ZnO NPs concentration has a 52.05 UPF value,
and Sample 27 with 5.73% ZnO NPs has a 50.96 UPF value; the high difference in ZnO NPs
concentrations and very little difference in UPF values of these samples can be explained
as better and smooth distribution of ZnO NPs in the case of Sample 27 by the sonochemical
process as compared to sample A which is prepared by the conventional stirring method.
A comparison of the current research results with the literature is shown in Table 8.
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Table 8. Comparison of UPF.

ZnO NPs Synthesis Method UPF Reference

Sonochemical Method 143.76 This study
One-step hydrothermal method 80.2 [31]
Two-step hydrothermal method 157.8 [35]
Microwave Irradiation Method 96.56 [23]

3.11. Wash Durability

Table 9 show the results after 5, 10, and 20 wash cycles for Sample A, Sample B, and
Sample 23. The results show that there is a gradual decrease in the Zn content, P content,
flame retardancy, and functional properties of the sample after each wash cycle. However,
in the case of ultrasonically optimized Sample 23, there is enough Zn and P content even
after 20 wash cycles. Although char length increased to 52 mm and LOI decreased to 29.6
after 20 wash cycles for Sample 23, these values are excellent for flame retardancy. Sample
23 retained enough Zn content after 20 wash cycles and showed 100% bacterial reduction
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for both S. aureus and E. coli bacteria. Sample 23 showed an excellent UPF value of 123.16,
even after 20 wash cycles.

Table 9. Results of Zn contents, P contents, flammability test, LOI, bacterial reduction, and UPF after
different wash cycles.

Sample Zn Contents
(%)

P Contents
(%)

Flammability Test

LOI

Bacterial Reduction (%)

UPFAfter
Flame

Time (s)

After
Glow

Time (s)

Char
Length
(mm)

S. aureus E. coli

After 5 wash cycles

Sample A 5.76 3.30 5.94 3.15 89 26.7 72.43 70.28 41.37
Sample B - 3.48 10.32 5.19 134 22.1 - - 11.81
Sample 23 11.38 3.11 0 0 46 30.3 100 100 132.92

After 10 wash cycles

Sample A 4.74 3.13 7.03 3.52 93 24.9 63.23 60.96 34.87
Sample B - 3.32 10.72 5.89 145 21.6 - - 11.09
Sample 23 10.61 2.99 0 0 49 29.8 100 100 125.53

After 20 wash cycles

Sample A 3.97 3.04 7.82 4.23 96 23.5 54.47 50.52 30.76
Sample B - 3.24 11.29 6.08 149 20.4 - - 10.61
Sample 23 10.17 2.93 0 0 52 29.6 100 100 123.16

4. Conclusions and Future Prospectives

In this research study, cotton fabric was modified by the ultrasonically-assisted in-situ
synthesis of ZnO NPs and MDPA application by the conventional pad–dry–cure method.
The study revealed that MDPA greatly affects the flame retardant performance of cotton
fabric, which further increases by the deposition of ZnO NPs. For the deposition of ZnO
NPs onto the cotton fabric, sonication time and concentrations of the chemical reagents
were varied. The optimized conditions at 0.1 M zinc acetate, 0.3 M of NaOH, and 90 min
of sonication time produced 13.14% Zn contents. The pure hexagonal wurtzite crystalline
structure of ZnO NPs was confirmed by XRD. At optimal conditions, 22.4 nm crystallite
sizes of ZnO NPs were observed. The grafting and presence of ZnO NPs were confirmed by
ICP AES, FTIR, and SEM. The presence of phosphorous contents was confirmed by ICP AES,
and grafting of phosphorous and amide group onto the cellulose structure was confirmed
by FTIR. This research work disclosed that the concentration of ZnO NPs deposited onto
the fabric has a direct correlation with flame retardancy and other functional properties.
The optimized sample 23 showed excellent performance for flame retardancy before and
after washing. Overall, 100% bacterial reduction for both S. aureus and E. coli bacteria was
observed even after 20 wash cycles. The sample with the highest concentration of ZnO NPs
showed a UPF value of 143.76 initially and 123.16 after 20 wash cycles.

Flame retardant multifunctional textiles at hand these days are the outcome of chem-
ical treatments; at present, the technology that has been developed for producing flame
retardant textiles based on nanomaterial is still at lab scale. The uses of nanoparticles
impart some other desired properties. Future research should be focus attention on the
application of nanoparticles as stuffing material, as their nano sizes allow them to penetrate
into the interiors of polymer chains, hence imparting multifunctional properties. Along
with ZnO NPs in the future, other metal oxide NPs (e.g., TiO2, CuO, MgO etc.) should
also be used in combination with MDPA to obtain the best FR/NPs system. Furthermore,
the effect of the FR/NPs system on the fabric’s comfort properties (e.g., air permeability,
moisture permeability, stiffness, heat transfer, etc.) should be studied. Moreover, there is a
need to develop a statistical model to predict fabric’s functional properties for any given
process parameter.
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