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Abstract: We investigated the evolution of the γ-phase spherulites of poly(vinylidene fluoride) (PVDF)
added to 1 wt% of tetrabutylammonium hydrogen sulfate during the isothermal crystallization at
165 ◦C through polarized optical microscopy and light scattering measurements. Optically isotropic
domains grew, and then optical anisotropy started to increase in the domain to yield spherulite.
Double peaks were seen in the time variation of the Vv light scattering intensity caused by the
density fluctuation and optical anisotropy, and the Hv light scattering intensity caused by the optical
anisotropy started to increase during the second increase in the Vv light scattering intensity. These
results suggest the two-stage evolution of the γ-phase spherulites, i.e., the disordered domain grows
in the first stage and ordering in the spherulite increases due to the increase in the fraction of the
lamellar stacks in the spherulite without a change in the spherulite size in the second stage. Owing
to the characteristic crystallization behavior, the birefringence in the γ-phase spherulites of the
PVDF/TBAHS was much smaller than that in the α-phase spherulites of the neat PVDF.

Keywords: poly(vinylidene fluoride); alkylammonium salt; crystallization; nucleation agent; γ-phase
spherulite; light scattering

1. Introduction

Poly(vinylidene fluoride) (PVDF) is broadly used for many applications, such as
electrospun nanofibers, films for photovoltaic applications, membranes, and sensors, due
to its excellent weatherability, chemical resistance, and ferroelectricity [1,2]. The specific
electroactive properties of PVDF strongly depend on its crystal phase. PVDF exhibits
at least four crystal polymorphs, i.e., orthorhombic α-, β- and δ-phases, and the mono-
clinic γ-phase [3–6]. The α- and δ-phases have the trans-gauche–trans-gauche’ (TGTG’)
conformation, β-phase has an all-trans (TTTT) planar zigzag conformation, and γ-phase
has a sequence of three trans linked to a gauche (TTTGTTTG’) conformation. The β- and
γ-phases are polar phases and are widely studied due to their electric properties, such as
their ferroelectric and piezoelectric characteristics [2,4].

The crystalline phase of PVDF is strongly affected by processing methods [3,4,7]. In
general, the electrically inactive α-phase is obtained through melt crystallization. On the
other hand, the electrically active β-phase is obtained through specific processing, for
instance, the hot stretching of the α-phase crystallites below 100 ◦C [8,9], crystallization
in polar solvents [10], miscible mixing with PMMA due to hydrogen bonding interactions
between hydrogen atoms of PVDF and carbonyl groups of PMMA [11,12], high pressures
above 300 MPa [13], and melt crystallization at ultrahigh cooling rates above 2000 K/s [14].
The electrically active γ-phase is generally obtained through melt crystallization at high tem-
peratures of approximately 170 ◦C [15] or annealing at high temperature above 158 ◦C [16].
It has been reported that the polar β- or γ-phase can be effectively obtained by adding
inorganic filler [17–19]. It is also known that the polar phase can be induced by adding ionic
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salts, such as ionic liquids [20], KBr [21], cetyltrimethylammonium bromide (CTAB) [22–24],
ionic fluorinated surfactant [25], and onium salt [26,27].

The effect of ionic salts on the γ-phase nucleation of PVDF is explained by ion–dipole
interactions between ionic salts and PVDF chains [28–30]. FT-IR study reveals the existence
of ion–dipole interactions between tetraalkylammonium salt and PVDF in the molten state,
suggesting that ion–dipole interaction promotes the formation of trans sequences [24]. By
adding ionic liquids to PVDF, ion–dipole interactions introduce trans sequences, which
leads to the formation of the β-phase through rapid cooling, and slow cooling and crystal-
lization at high temperatures relax TTTT conformation of the β-phase to a TTTG one, which
leads to the formation of the γ-phase [31]. It is considered that ion–dipole interaction is the
driving force for trans sequences in the molten state and crystallizes directly to β-phase
crystallites, while the TTTG conformation formed through the relaxation crystallizes to
γ-phase crystallites. Since the crystallization rate of the γ-phase is much slower than that
of the α-phase [32], it can be expected that further relaxation from TTTG to TGTG occurs
and produces α-phase crystallites. However, our previous work revealed that ammonium
salts, which have excellent dispersibility, accelerated the crystallization and produced only
γ-phase crystallites [33]. Thus, ion–dipole interaction and relaxation are insufficient to
understand the evolution of the γ-phase crystallites. It has been widely accepted that the
γ-phase crystallites are formed through the ion–dipole interactions between alkylammo-
nium salt and PVDF chains. However, details of the γ-phase nucleation and growth of
spherulites have not been clarified.

In this study, we investigated the evolution of the γ-phase spherulites of PVDF dur-
ing isothermal crystallization using polarized optical microscopic observation and light
scattering measurements. Here, the γ-phase crystallites were obtained by adding tetra-
butylammonium hydrogen sulfate (TBAHS) as an alkylammonium salt in accordance with
the large nucleation agent effect on the γ-phase crystallites suggested in our previous
study [33]. The characteristic crystallization behavior of the γ-phase spherulites was also
discussed in the results of small-angle X-ray scattering measurements and time-resolved
FT-IR measurements.

2. Experimental
2.1. Preparation of the Specimen

Poly(vinylidene fluoride) (PVDF) was obtained from Kureha Corporation, Tokyo,
Japan (grade KF1300, Mw = 350,000). Tetrabutylammonium hydrogen sulfate (TBAHS) was
purchased from Koei Chemical Company, Ltd., Tokyo, Japan. The melting temperatures of
the PVDF and TBAHS were 171 ◦C and 174 ◦C, respectively.

PVDF and TBAHS were melt blended at a weight ratio of 99/1 in a twin blade mixer
(R60B, Toyo Seiki Co. Ltd., Tokyo, Japan) connected to a controller and motor (Labo
Plastmill 4C150-01, Toyo Seiki Co. Ltd., Tokyo, Japan) at 200 ◦C and at a rotation speed
of 60 rpm for 5 min. For polarized optical microscopic observation, light scattering and
small-angle X-ray scattering measurement, a film specimen with a thickness of 500 µm was
prepared through hot pressing PVDF/TBAHS at 230 ◦C, and then quickly cooled to 20 ◦C.
For FT-IR measurements, a thin film specimen with a thickness of 20 µm was prepared
through the solvent casting of PVDF and PVDF/TBAHS on a thin aluminum plate using
dimethyl acetamide as a solvent.

2.2. Light Scattering Measurements

The prepared film specimen was melted at 230 ◦C for 3 min in a hot stage (Shamal
hotplate HHP-411V, AS One Corp., Osaka, Japan), and then rapidly transferred into another
hot stage (HS82 hot stage and HS1 hot stage controller, Mettler Toledo Inc., Greifensee,
Switzerland) set at the crystallization temperature on the stage of the polarized optical mi-
croscope and light scattering equipment. The development of the crystalline morphologies
during isothermal crystallization was observed by using a polarized optical microscope
(BX53, Olympus Corp., Tokyo, Japan) equipped with a CCD camera (DP74, Olympus Corp.,
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Tokyo, Japan). The structure under the polarized optical microscope was observed using
an optical microscope equipped with a sensitive tint plate, with an optical path difference
of 530 nm under cross polarizers.

A polarized He–Ne laser with a wavelength of 632.8 nm was applied vertically to the
film specimen. The scattered light was passed through the analyzer and then onto a highly
sensitive charge-coupled device (CCD) camera with 800 × 600 pixels (pco.1600, Tokyo
Instruments Inc., Tokyo, Japan). We employed Hv and Vv geometries in which the optical
axis of the analyzer was vertical to that of the polarizer and was horizontal to that of the
polarizer, respectively. The input data from the CCD camera were stored in a personal
computer for further analysis.

2.3. SAXS Measurement

SAXS experiments were performed using the NANO-Viewer system (Rigaku Corp.,
Tokyo, Japan). Cu-Ka radiation with a wavelength of 0.154 nm was generated at 46 kV
and 60 mA, and was collimated using a confocal max-flux mirror system. Measurements
were performed at room temperature, and the exposure time was 1 h. An imaging plate
(IP) (BAS-SR 127, Fujifilm Corp., Tokyo, Japan) was used as a two-dimensional detector
to obtain scattering images. The obtained scattering images were transformed into text
data using an IP reading device (RAXIA-Di, Rigaku Corp., Tokyo, Japan). The scattering
intensities were corrected with respect to the exposure time, the thickness of the specimen
and the transmittance.

2.4. FT-IR Measurements

FT-IR measurement was carried out using an infrared spectrometer (FTIR-4100, JASCO
Corp., Tokyo, Japan) equipped with an infrared microscope (IRT-5000, JASCO Corp., Tokyo,
Japan). To monitor the IR spectra during the crystallization at a high temperature, a hot
stage (HS82 hot stage and HS1 hot stage controller, Mettler Toledo Inc., Switzerland) was
set on the sample stage of the infrared microscope. A thin film specimen casted on the
thin aluminum plate was set on the hot stage, and the time-resolved IR measurement was
carried out by averaging 32 scans at a resolution of 8 cm−1 with 2 min intervals during
the isothermal crystallization at the crystallization temperature of 165 ◦C after melting at
230 ◦C.

3. Results and Discussion
3.1. γ-Phase Spherulite of PVDF/TBAHS

Figure 1 shows the polarized optical micrographs of neat poly(vinylidene fluoride)
(PVDF) and PVDF added to 1 wt% tetrabutylammonium hydrogen sulfate (TBAHS) ob-
tained through isothermal crystallization at 165 ◦C. Large typical spherulites with bright
blue and yellow interference colors due to the large birefringence were formed in the neat
PVDF. On the other hand, small spherulites with blue-violet and deep pink light interfer-
ence colors due to the small birefringence were formed in the PVDF/TBAHS. Our previous
study revealed that the γ-phase crystallites were obtained and the crystallization of PVDF
was accelerated through the addition of alkylammonium salt consisting of short-chain and
small-scale anion species, such as TBAHS, due to the nucleation agent effect, while α-phase
crystallites were obtained in the neat PVDF [33]. The characteristic band of the α-phase
was observed at 1210 cm−1 in the neat PVDF, while that of the γ-phase was observed at
1228 cm−1 in the PVDF/TBAHS, as shown in the FT-IR spectra (Figure S1). Thus, the small
spherulite with small birefringence of the PVDF/TBAHS shown in Figure 1b was γ-phase
spherulite, while the large spherulite with large birefringence of the neat PVDF shown in
Figure 1a was α-phase spherulite. Since the degree of chain arrangement of the TTTGTTTG’
in the γ-phase is higher than that of the TGTG’ in the α-phase, it is considered that the
birefringence of the crystalline chain in the γ-phase is larger than that in the α-phase one.
Hence, the small birefringence in the γ-phase spherulite might be attributed to the low
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ordering in the spherulite due to a low degree of arrangement for lamella in the lamellar
stacks or that for lamellar stacks in the spherulite.
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Figure 1. Polarized optical micrographs obtained through isothermal crystallization at 165 ◦C:
(a) α-spherulite of neat PVDF; (b) γ-spherulite of PVDF/TBAHS.

Figure 2 shows the small angle X-ray scattering (SAXS) profiles of the α-phase
spherulites of the neat PVDF and the γ-phase spherulites of the PVDF/TBAHS obtained
through isothermal crystallization at 165 ◦C. Though the size and birefringence of the α-
phase spherulite and γ-phase one were quite different, as shown in Figure 1, the difference
in the peak position qm and broadness of the peaks was small, indicating that the difference
in the periodicity and degree of arrangement for lamellae in the lamellar stacks was also
small, i.e., the periodicities of the lamellae in the lamellar stacks d in the α-phase spherulite
and γ-phase one calculated by d = 2π/qm were 9.7 nm and 11.4 nm, respectively. Thus,
the low degree of ordering in the γ-phase spherulite suggested by the small birefringence
shown in Figure 1 is not attributed to the low degree of arrangement for lamellae in the
lamellar stacks, but might be due to the low degree of arrangement for lamellar stacks in
the spherulite.

3.2. Morphological Evolution

Figure 3 shows the morphological evolution of the α-phase spherulites of the neat
PVDF during the isothermal crystallization at 165 ◦C after a temperature drop from 230 ◦C.
No structure was observed before 10 min (Figure 3a,b). Birefringent embryos with a Maltese
cross pattern and a bright blue and yellow interference color due to large birefringence
appeared at approximately 13 min (Figure 3c) and grew to larger spherulites (Figure 3d,e).
The size of the spherulites increased over time and occupied half the space at 30 min
(Figure 3f). Such spherulite growth is typical for the crystallization of polymers [34].
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at 165 ◦C: (a) 8 min, (b) 10 min, (c) 13 min, (d) 15 min, (e) 20 min, and (f) 30 min.
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On the other hand, different morphological evolution was seen in the γ-phase spherulites
of the PVDF/TBAHS, as shown in Figure 4. Optically isotropic embryos with a red-purple
interference color due to a lack of birefringence appeared at approximately 4 min, which
was earlier than that of the α-phase spherulites of the neat PVDF, suggesting the nucleation
agent effect of TBAHS (Figure 4a,b). No birefringent domain grew to a diameter of 9 µm
(Figure 4c), though a clear Maltese cross pattern with large birefringence was seen in the α-
phase spherulites when it grew to a diameter of 9 µm (Figure 3c). At approximately 10 min,
a light blue-violet and deep pink interference color due to the small birefringence appeared
in the domains, which became clearer over time, though the domain size of approximately
11 µm did not increase, suggesting that the ordering in the domains increased to yield
spherulite with small birefringence without an increase in the spherulite size (Figure 4d,e).
To the best of our knowledge, this is the first report of the characteristic morphological
evolution of the γ-phase spherulites of PVDF.
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3.3. Two-Stage Evolution of the γ-Phase Spherulites

To deeply understand the difference in the morphological evolution shown in Figures 3
and 4, the isothermal crystallization behavior was investigated using light scattering
measurement. Figures 5 and 6 show a series of Hv and Vv light scattering images during
the isothermal crystallization at 165 ◦C for the α-phase spherulites of the neat PVDF and
the γ-phase spherulites of the PVDF/TBAHS, respectively. Here, Vv light scattering is
ascribed to the optical anisotropy and density fluctuation, while the Hv one is ascribed to
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the optical anisotropy. In the α-phase spherulites, a circular pattern appeared in the Vv
mode (Figure 5(a2)) and a four-leaf clover pattern appeared in the Hv mode (Figure 5(b2)),
indicating the formation of spherulites with radially arranged lamellar stacks [35]. The
circular pattern became larger over time in the Vv mode (Figure 5(a3–a5)), and a four-leaf
clover pattern became smaller when the intensity increased in the Hv mode during the
growth of the spherulite (Figure 5(b3–b5)).
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Figure 6. Series of light scattering image of γ-spherulite of PVDF/TBAHS during isothermal crystal-
lization at 165 ◦C: (a) Vv scattering; (b) Hv scattering.

On the other hand, in the γ-phase spherulites, no scattering pattern was observed in
the Hv mode at the early stage (Figure 6(b1,b2)), while a circular pattern was observed in
the Vv mode (Figure 6(a1,a2)), indicating that the optically isotropic domain is formed and
grows over time at an early stage of the crystallization, as suggested by the polarized optical
microscopy shown in Figure 4. The intensity of the circular Vv pattern first increase then
decreased (Figure 6(a1–a3)), before increasing over time (Figure 6(a4,a5)). A four-leaf clover
pattern appeared in the Hv mode during the second increase in the Vv scattering intensity
(Figure 6(b4)), and the Hv scattering intensity increased over time (Figure 6(b4,b5)). The
appearance of the four-leaf clover pattern indicated the formation of spherulites with
radially arranged lamellar stacks as in the case of the α-phase spherulites. These results
suggest the two-stage evolution of the γ-phase spherulites, i.e., the optically isotropic
domain is formed and grows over time in the first stage, and the optical anisotropy starts
to increase when the ordering in the spherulite increases in the second stage.
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The crystallization kinetics can be estimated using the integrated light scattering
intensity, i.e., the invariant Q defined by [36–38]

Q =
∫ ∞

0
I(q)q2dq (1)

where q is the scattering vector; q = (4π/λ) sin(θ/2); λ and θ are the wavelength and
scattering angle, respectively; and I (q) is the intensity of the scattered light at q. The
invariant in Hv mode QHV is described by the mean square optical anisotropy <δ2>

QHv ∝
〈

δ2
〉
= φs(αr − αt)

2 (2)

where ϕs is the volume fraction of the spherulite, and αr and αt are the radial and tangential
polarizabilities of the spherulite, respectively [37]. (αr − αt) in Equation (2) is ascribed to the
intrinsic anisotropy of the lamellar stacks and the orientation function for the optical axis
of the lamellar stacks. (αr − αt) is highest when the lamellar stacks are radially arranged
from the center without fluctuation, and it becomes smaller when the ordering of the
arrangement for the lamellar stacks decreases by the increase in the fluctuations. Hence, the
ordering in the spherulite can be provided quantitatively by the light scattering intensity in
addition to the volume fraction of the spherulite. On the other hand, the invariant in the
Vv mode, QVv, is ascribed to both <δ2> and the mean-square density fluctuation <η2>. The
<η2> is given by 〈

η2
〉
= φs(1 − φs)(αc − αa)

2 (3)

where αc is the average polarizability of the crystalline domain, and αa is the polarizability
of the melt.

Figure 7 shows the time evolutions of the invariant QHv and QVv during the isothermal
crystallization at 165 ◦C for the α-phase spherulites of the neat PVDF and the γ-phase
spherulites of the PVDF/TBAHS obtained from Figures 5 and 6. A single peak was seen
in the QVv over time in the α-phase spherulites (Figure 7a). The QVv started to increase at
10 min, attained a maximum at 20 min and then leveled off, while the QHv started to increase
at 20 min and then levelled off. A small decrease in the QHv was seen before the level off
due to the multiple scattering owing to the large spherulite. The QVv attained a maximum
when the QHv reached half the value of that at the completion of the crystallization, as
expected from Equation (3), i.e., the QVv attains a maximum when the volume fraction of
the spherulite ϕs is 50%. Thus, the change in the QHv and QVv is attributed to the spherulite
growth. A lag in the onset time of QHv and QVv was seen due to the low ordering in
the spherulite at an early stage of the crystallization, i.e., the (αr − αt) in Equation (2), is
small and it increases over time at an early stage of the crystallization, as suggested in
poly(ethylene terephthalate) (PET) [38].

The interesting result here is that double peaks were seen in the QVv over time in the γ-
phase spherulites (Figure 7b). The QVv started to increase at 3 min, attained a first maximum
at 7 min and a second maximum at 15 min, and then leveled off at 30 min. On the other
hand, the QHv started to increase at 7 min and leveled off at 30 min without a maximum.
The QVv attained a first maximum before the QHv started to increase, indicating that the
first increase in the QVv is attributed to only density fluctuation without optical anisotropy.
Since the induction period was seen in the increase in the Vv light scattering intensity, the
evolution of the density fluctuation is not attributed to the liquid–liquid phase separation
via spinodal decomposition, which occurs spontaneously without an induction period of
the Vv light scattering intensity [39]. The QVv attained a second maximum when the QHv
reached half the value of that at the completion of the crystallization. Hence, the second
increase in the QVv is attributed to the increase in the anisotropy in the spherulite, and
the second maximum is attributed to the increase in the volume fraction of the crystalline
region in the spherulite, i.e., the ϕs in Equations (2) and (3) for the second stage of the
evolution is the volume fraction of the crystalline region in the spherulite. These results
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support the two-stage evolution of the γ-phase spherulites, i.e., the first maximum of the
QVv is attributed to the growth of the isotropic domain, and the second one is attributed to
the increase in the optically anisotropic crystalline region in the spherulite. The increase in
the optically anisotropic crystalline region might be attributed to the increase in the fraction
of lamellar stacks in the spherulite, as suggested in the late stage of the crystallization in
PET [40].
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The QHv was much smaller than QVv in the γ-phase spherulites of the PVDF/TBAHS
(Figure 7b), compared with those in the α-phase spherulites of the neat PVDF (Figure 7a).
The small QHv in the γ-phase spherulites supports the small birefringence in the spherulite
shown in Figure 4. This is attributed to the low degree of ordering in the γ-phase spherulites,
i.e., the (αr − αt) in Equation (2), is small due to the disordered arrangement of lamel-
lar stacks.
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Figure 8 shows the Hv light scattering profiles at an azimuthal angle of 45◦ during
the isothermal crystallization at 165 ◦C for the α-phase spherulites of the neat PVDF and
the γ-phase spherulites of the PVDF/TBAHS obtained from Figures 5 and 6. As expected
from the four-leaf clover patterns shown in Figures 5 and 6, the one-dimensional scattering
intensity profiles reached a maximum at the scattering vector qmax, as indicated by the
arrows. The qmax shifted to a lower q in accordance with the increase in the height of
the peak over time in the α-phase spherulites (Figure 8a). The spherulite radius R has
an inverse relationship with qmax, as described by R = 4.09/qmax [35]. Hence, the results
indicate that the spherulite size increased during the crystallization, i.e., the spherulite
radius R obtained from the qmax increased from 3.9 to 6.7 µm at the crystallization time
from 12.5 to 22 min. On the other hand, the qmax did not shift over time, while the height of
the peak increased in the γ-phase spherulites, indicating that the spherulite size does not
change even when the optical anisotropy increases, i.e., the spherulite radius R obtained
from qmax is 4.0 µm, and it did not increase during the increase in the optical anisotropy
after the growth of the spherulite to R = 4.0 µm (Figure 8b). These results support the
two-stage evolution in the γ-phase spherulites, i.e., the optical anisotropy in the spherulites
increased without an increase in the spherulite size in the second stage of the crystallization
after the growth of the isotropic domain in the first stage.
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165 ◦C: (a) α-spherulite of neat PVDF; (b) γ-spherulite of PVDF/TBAHS.

3.4. Mechanism of the Two-Stage Evolution of the γ-Phase Spherulites

Figure 9 shows the time-resolved FT-IR spectra of the γ-phase spherulites of the
PVDF/TBAHS during the isothermal crystallization at 165 ◦C. The characteristic band of the
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γ-phase was observed at 1228 cm−1, while that of the α-phase observed at 1210 cm−1 was
not seen during the evolution from the first stage (0–10 min) to the second one (10–30 min).
The peak area at 1228 cm−1 increased continuously over time. These results indicate that the
γ-phase crystallites are initiated and increase during the evolution from the first stage to the
second one without an α-γ solid–solid phase transition. Thus, the characteristic two-stage
evolution observed using polarized optical microscopic observation and light scattering
measurements is not attributed to the α-γ solid–solid phase transition. Crystallization
without solid–solid phase transition is the same as that reported in the PVDF added to
ionic liquid [31], while an α-γ solid–solid phase transition occurred in the PVDF added to
cetyltrimethyl ammonium bromide [24]. Since a shoulder peak of the γ-phase was seen
at 1228 cm−1 in the melt state before the crystallization (0 min), it is considered that the
γ-phase is initiated without a solid–solid phase transition from the α-phase due to the
strong ion–dipole interactions between TBAHS and PVDF chains to promote the formation
of trans sequences from the melt state by preventing relaxation from the TTTGTTTG’
conformation in the γ-phase to the TGTG’ in the α-phase, as suggested by Zhu et al. [31].
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Figure 9. Time resolved FT-IR spectra of γ-spherulite of PVDF/TBAHS during isothermal crystalliza-
tion at 165 ◦C.

Figure 10 shows a schematic illustration of the two-stage evolution of the γ-phase
spherulites of the PVDF/TBAHS. Disordered γ-phase domains initiated from the melt state
grew to larger ones and collided with each other in the first stage (Figure 10a,b). The fraction
of the optically anisotropic crystalline region increased to yield the spherulite consisting
of radially arranged lamellar stacks by increasing the fraction of lamellar stacks without a
change in the spherulite size in the second stage (Figure 10c,d). The two-stage evolution of
the γ-phase spherulites might be attributed to the disordered crystalline domains formed by
a nucleation agent effect due to the ion–dipole interaction in the first stage and to the delay
of the arrangement of the lamellar stacks due to the slow crystallization of the γ-phase
crystallites to yield the second stage.
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Figure 10. Schematic illustrations of the development of γ-spherulite of PVDF/TBAHS during
isothermal crystallization at 165 ◦C: (a) 4 min, (b) 10 min, (c) 15 min, and (d) 20 min.

4. Conclusions

The polarized optical microscopic observation and light scattering measurement
revealed the two-stage evolution of the γ-phase spherulites of the PVDF by adding 1 wt%
of TBAHS during the isothermal crystallization at 165 ◦C. Optically isotropic disordered
domains grew in the first stage, and then optical anisotropy started to increase in the
domain to yield the spherulite consisting of radially arranged lamellar stacks by increasing
the fraction of the lamellar stacks without a change in the spherulite size in the second
stage. Such two-stage evolution is not attributed to the α–γ solid–solid phase transition,
but might be attributed to the disordered domains formed by the nucleation agent effect
due to the ion–dipole interaction in the first stage and to the delay of the arrangement of
the lamellar stacks as a result of the slow crystallization of the γ-phase crystallites to yield
the spherulites in the second stage. Owing to the characteristic crystallization behavior, the
birefringence in the γ-phase spherulites of the PVDF/TBAHS was much smaller than that
in the α-phase spherulites of the neat PVDF, though the difference in the arrangement of
the lamellae in the lamellar stack was small.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14183901/s1, Figure S1: FT-IR spectra during isothermal
crystallization at 165 ◦C: (a) α-phase spherulite of neat PVDF for 100 min; (b) γ-phase spherulite of
PVDF/TBAHS for 40 min.
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